HARVARD UNIVERSITY.

LIBRARY
OF THE
MUSEUM OF COMPARATIVE ZOOLOGY.

11274

ExCHANGE.

May 3, 1904 - October 25, 1907.
Journal

OF THE

MARINE BIOLOGICAL ASSOCIATION

OF

THE UNITED KINGDOM.

VOLUME VII (N.S.).
1904-06.

PLYMOUTH:
PUBLISHED BY THE ASSOCIATION.

Agents in London:—Messrs. Dulau & Co., 37, Soho Square, W.
The Council of the Marine Biological Association wish it to be understood that they do not accept responsibility for the accuracy of statements published in this Journal, excepting when those statements are contained in an official report of the Council.
CONTENTS OF VOLUME VII.

(NEW SERIES.)

List of Governors, Founders, and Members—

<table>
<thead>
<tr>
<th>Event</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>March, 1904</td>
<td>147</td>
</tr>
<tr>
<td>May, 1906</td>
<td>408</td>
</tr>
</tbody>
</table>

First Report of the Council of the Marine Biological Association of the United Kingdom on work carried out in connection with the International Fishery Investigations

<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1903-1904</td>
<td>310</td>
</tr>
<tr>
<td>1904-1905</td>
<td>391</td>
</tr>
<tr>
<td>1905-1906</td>
<td>415</td>
</tr>
<tr>
<td>Balance Sheet, 1903-1904</td>
<td>326</td>
</tr>
<tr>
<td>ditto</td>
<td>1904-1905</td>
</tr>
<tr>
<td>ditto</td>
<td>1905-1906</td>
</tr>
</tbody>
</table>

Allen, E. J.

Pallasia murata, n. sp.: A new British Sabellarian 299

Eliot, C.

Notes on some British Nudibranchs 333

Johnstone, Jas.

Some Results of the International Fishery Investigations 437

Pace, S.

Note on two species of *Cucumaria* from Plymouth, hitherto confused as *C. Montagu* (Fleming); *C. Normani*, n. sp., and *C. saxicola*, Brady and Robertson 305

Plymouth Marine Invertebrate Fauna: Being Notes of the Local Distribution of Species occurring in the Neighbourhood. Compiled from the Records of the Laboratory of the Marine Biological Association 155

Thomson, J. Stuart.

The Periodic Growth of Scales in Gadidae as an Index of Age 1

Wolfenden, R. Norris.

Notes on the Copepoda of the North Atlantic Sea and the Faroe Channel 110

Notes and Memoranda

436

Professor W. F. R. Weldon, F.R.S.

331
PATRON.
HIS MAJESTY THE KING.

OFFICERS AND COUNCIL.

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.

The Duke of Abercorn, K.G., C.B.
The Earl of St. Germans.
The Earl of Morley.
The Earl of Dudley, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth, F.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.
The Right Hon. Joseph Chamberlain, M.P.

Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., M.P., F.R.S.
A. C. L. Günter, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.
Admiral Sir Erasmus Ommanney, K.C.B., F.R.S.
Sir Henry Thompson, Bart.
Rear-Admiral Sir W. J. L. Wharton, K.C.B., F.R.S.

COUNCIL.

Elected Members.

G. L. Alward, Esq.
G. P. Bidder, Esq.
G. C. Bourne, Esq.
F. Darwin, Esq., F.R.S.
G. Herbert Fowler, Esq.
S. F. Harmer, Esq., F.R.S.
Prof. W. A. Herdman, F.R.S.
Prof. G. B. Howes, F.R.S.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq.
Prof. E. A. Minchin.
Prof. Charles Stewart, F.R.S.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Governors.

J. P. Thomasson, Esq.
The Prime Warden of the Fishmongers' Company.
E. L. Beckwith, Esq. (Fishmongers' Company).

Prof. Sir J. Burdon Sanderson, Bart., F.R.S. (Oxford University).
A. E. Shipley, Esq. (Cambridge University).

Prof. W. F. R. Weldon, F.R.S.

(British Association for the Advancement of Science).

Hon. Treasurer.
J. A. Travers, Esq., Tortington, Arundel.

Hon. Secretary.
E. J. Allen, Esq., The Laboratory, Citadel Hill, Plymouth.

PERMANENT STAFF.

Director—E. J. Allen, Esq., D.Sc.

Naturalist in charge of Fishery Investigations.
W. Garstang, Esq., M.A.

Assistant Naturalist—S. Pace, Esq.

Assistant Naturalists for the International Investigations—
W. Wallace, Esq., B.Sc.
R. A. Todd, Esq., B.Sc.

J. O. Borley, Esq., M.A.
L. H. Gough, Esq., Ph.D.

Hydrographer (International Investigations)—D. J. Matthews, Esq.
The Periodic Growth of Scales in Gadidæ as an Index of Age.

By
J. Stuart Thomson, F.L.S.

(With Plates I.—VIII., and one Figure in the text.)

TABLE OF CONTENTS.

I. Introduction .. 1
II. Summary of Literature .. 2
III. Statistics ... 56
 General Statements relating to Statistics 56
The Pollack:
 General Statements relating to Statistical Tables 58
 Mode of Scale Measurement (with fig.) 61
 Detailed Statistical Tables 62
 Summarised Statistical Tables 74
The Poor Cod:
 Detailed Statistical Tables 79
 Summarised Statistical Tables 85
The Whiting:
 General Statement ... 85
 Detailed Statistical Tables 86
 Summarised Statistical Tables 96
The Haddock:
 Detailed Statistical Table 101
 Summarised Statistical Table 102
The Cod:
 Brief Table of Age .. 103
 The Eel ... 103
IV. Conclusion ... 104
Literature ... 105
Explanation of Plates ... 108

I. INTRODUCTION.

This work is a continuation of my preliminary paper on the same subject, which was published in a former number of the Journal of the Association (vol. vi., p. 373, January, 1902).

I must firstly express my indebtedness to those who have aided me in my work. I am signally indebted to Mr. Garstang, who, about two
years ago, suggested that I should endeavour to extend to marine fishes this newly revived though really old hypothesis, that the age of certain fishes might be determined by means of annual rings on their scales, an hypothesis which Dr. Hoffbauer had previously shown to be true for some fresh-water fishes, such as the carp. To Dr. E. J. Allen I am indebted, not only for placing all the possible facilities of the Plymouth Laboratory at my disposal, but also for reading the manuscript and proof-sheets. For the latter I am all the more indebted to Dr. Allen, in that, as I write, I am just on the point of leaving this country to take up a new biological appointment at Cape Town. I would further express my obligations to Professor McIntosh, Dr. T. Wemyss Fulton, and Dr. H. M. Kyle, who generously helped me in securing additional specimens. I must add that without the aid of a Government Grant, awarded through the Royal Society, this work could not have been accomplished in its present form.

This paper consists of two parts: the first part contains a review of the literature on fish scales, more especially so far as that bears on the subject of my investigation; the second part is composed of statistics dealing with the size, the number of growth-lines and annual rings in scales from fish of all sizes, and captured at the various seasons of the year. The accumulation of the necessary statistics for this second portion of my work has been an arduous and lengthy task, involving, as it has done, exact measurements of hundreds of scales and a more superficial observation of thousands of others.

II. SUMMARY OF LITERATURE.

I may firstly notice that, shortly after the invention of the microscope, Borello wrote a brief description of the microscopic appearance of a fish scale, and added a diagrammatic figure of the same.*

About a hundred years later, Hooke, in his Micrographia, gave a very brief description, but a fairly exact figure, of the scales of the sole.†

We are indebted to Leuwenhoeck for several interesting notes on the development and structure of scales.‡ In regard to the growth of scales, his first idea was that each year the scales increased in size by adding a new zone or circle to the pre-existing scale. Later, however, he abandoned this view, as in examining certain scales he observed that those of old fishes are very thick, much thicker than they would necessarily be if their mode of increase was simply by the addition of a new circle or zone each year.

He came to the conclusion that the portion which he had at first taken for a new zone disposed round the primitive scale was simply the most external part of a new scale, the part which exceeded the old scale in size, and that all these scales were intimately welded together.

* Borello, 1666. [For detailed references see Literature, p. 106.]
† Hooke, 1667.
‡ Leuwenhoeck, 1696.
In order to explain the formation of superimposed scales, Leuwenhoeck believed that the growth of scales, as that of hair, feathers, horns, and trees, ceases for a very short period at the end of the first year, and that scales are afterwards formed beneath and add themselves to the first. As the scales of a two-year-old fish exceed those of a one-year-old fish in size and dimensions, it follows that the scale of a two-year-old fish is partly covered by the first-year scale and extends beyond it. The same takes place for the following years, and thus the scales of a ten-year-old fish are composed of ten scales, secondarily superimposed the one upon the other, and fused so intimately with one another that they cannot be easily separated without tearing the scale into pieces. If, in the scales of fishes, new scales did not weld themselves each year to the old scales, then the scales of very large fish would of necessity be very thin and fragile. Leuwenhoeck restated these views in a later paper.

Réaumur made a study of the silvery substance of scales, sometimes known as "l’essence d’Orient."† He stated that this substance consists of a mass of an infinite number of small and very irregular bodies. These bodies are extremely thin, but of great solidity. He found this substance present almost solely on the internal surface, not on the external surface, of the scale. He held that this substance is covered over by membrane, and contained in vessels or tubes which extend in a direction transversely perpendicular to the length of the scale. Réaumur affirmed that this silvery matter contributed directly to the growth of scales. He agreed with Leuwenhoeck that each scale is composed of an indefinite number of layers, of which the largest are those nearest the body of the fish. Speaking of the concentric lines, Réaumur wrote "that they occupy the border of each layer, of which they mark the limit, and that they indicate the different degrees of growth in scales, just as the analogous markings indicate the growth of shells."

As to the radiating grooves in scales, Réaumur believed that they lodged blood-vessels. He also gave a good description of the scales of the lateral line, pointing out that scales from that region have a small canal on their external surface. These small canals abut end to end, thus forming a continuous channel, which apparently serves to carry away the mucus formed on the bodies of various fishes.

Roberg reproduced a figure of the scale of the eel, previously given by Leuwenhoeck.‡

In his Mémoire on the Carp, Petit dealt with the following points in connection with their scales, but only in a very brief manner: the mode in which scales overlap each other, the dimensions of scales in different regions of the body, the mode in which scales are enclosed in the skin, the furrows (sillons) on the upper surface of the scale, the silvery matter on the lower surface, etc. He, however, gave a much more detailed description of the scales of the lateral line.§

A few observations on scales are found in the writings of Schaeffer. He also gives figures of scales from five different species of perch. He notes the external characters of scales, and their variation in different parts of the body, but does not go into their detailed structure nor development. ||

* Leuwenhoeck, 1716. † Réaumur, 1716 and 1718. ‡ Roberg, 1717.
§ Petit, 1733. || Schaeffer, 1761.
Broussonet demonstrated the presence of scales in a number of genera of fish in which their existence had either previously been denied or held in doubt, for example Cepola, Remora, Ammodytes, Anguilla, Scomber. His descriptions are very brief, and the paper is not of great importance.†

We owe to Heusinger the first attempt at a classification of fish by means of their scales.† He divided fishes provided with scales into five groups:

I. Fish with small scales entirely hidden in skin (Anguilla, Muraena, Blennius, Murenophis).

II. Fish with scales properly so called (Carp, Esox, Salmo).

III. Fish with scales strongly toothed at their free margins (Chaetodon).

IV. Fish provided with osseous scales (Knochenschuppen). These scales resemble those of Group II.; but they have so much calcareous matter as to resemble hard teeth. They are not usually imbricated, but are isolated or simply contiguous; their surface is frequently furnished with spines (Lepidosteus and several species of the genera Trigla, Cottus, Silurus, Gasterosteus, etc.).

V. Fish with osseous plates (Knochenplatten). These plates form a solid cuirass round the fish (Ostracion, Diodon, Syagnathus, Hippocampus, Accipenser, etc.).

Selachians are not comprised in the preceding five groups. Heusinger places them in a separate division characterised by the "mode of conformation of the spiny formation," whose structure approaches to that of teeth.

Heusinger also gives a succinct description of true scales, and in regard to their structure agrees with Agassiz in regarding each scale as composed of superimposed lamellae or layers.

Kuntzmann's paper‡ is of importance chiefly because it contains the germ of an idea which Agassiz later developed more fully in his Classification des Poissons. In his paper Kuntzmann opposes the views of Schaeffer, who had emphasised the differences between scales of the same fish. Kuntzmann held "that though one does not easily find absolutely similar scales on the same species of fish, yet the scale of each species has some characteristic feature, and that an examination of scales may enable one to acquire a more exact knowledge of species, and that one may identify some genera and even some species simply by an examination of their scales." He compares scales to the leaves on plants, in which, although there is frequently quite a degree of variation among the leaves of the same species, still one may often recognise the species of plant by means of its leaves.

Kuntzmann experimented with scales in regard to their indestructibility in water, and showed that after prolonged immersion in water they were not softened to any marked degree.

He opposed the opinion of Leuwenhoeck as to the concentric lines on the upper surface of the scale indicating the age of the fish. He maintained that the scales of an old carp do not show a larger number of concentric lines than those of the young carp (see Hoffmann). As to the mode of scale growth, Kuntzmann agreed in the main with the views of Réaumur. He regarded the small quadrangular plates (described by Réaumur) on the internal surface of

* Broussonet, 1787. † Heusinger, 1823. ‡ Kuntzmann, 1824.
the scale as a precipitate, a deposit of mucus, which contributed directly to the formation of scales. He differed, however, from Rumunur as to the situation of these quadrangular plates later, affirming that they were contained between two membranes on the internal surface of the scale, and not in vessels. He held that growth does not take place at the edge, but over the entire scale, and that this mode of growth is a consequence of the structure which the scale shows at the time of its first formation, for the scales of a young fish and those of an old fish are not essentially different except in size. He thinks that this mode of formation allows one to explain the difference between scales of different species, especially the difference of the concentric lines, which may be wide or narrow, straight or curved, entire or interrupted in the different species.

Kuntzmann worked out a classification of scales into seven classes, remarking at the same time that quite gradual transitions existed between these classes, and that certain scales might equally well be placed in one class as in another. His classes are the following:

I. Membranous scales (hautigen Schuppen). Scales which do not show concentric lines (Gadus lota).

II. Semi-membranous scales (halbhautigen). Scales with a membranous posterior portion, but with the anterior portion marked out by incomplete concentric lines, crossed over by other lines running longitudinally (Clupea harengus).

III. Simple scales (einfachen). Scales with concentric lines covering their entire surface without those lines forming any definite design by other lines crossing over them (Salmo salar).

IV. Scales with a design (gezeichneten). Scales in which the concentric lines on the scale surface form a regular design due to the arrangement of the same (Murana anguilla).

V. Scales divided into several regions (gefelderten). Scales on which there exist numerous ornaments which parcel out the scale into four well-defined fields. These diverse fields, usually triangular in shape, meet at a point, which is usually at the same time the centre of the concentric lines (Cyprinus carpio).

VI. Scales with prickles. These scales are also frequently divided into four fields. The posterior field bears spines on a more or less extended portion of its surface, or sometimes only at its free border. These spines fall off on prolonged maceration, showing that they are not really portions of the scale, but arise from the skin which covers the scales. These spines also fall off naturally at certain seasons, and others take their place. "This fact seems to establish a kind of moulting, such as occurs in Amphibia." Examples—The scales of Scorpeua.

VII. Spinous scales (gedornite) are also divided up into several areas or fields. The spines are in this case, however, true prolongations of the scale, and do not become detached on maceration. Example:—Perca lucioperca.

Kuntzmann gives a short description of each type of scale with a corresponding figure. Although the preceding classification is interesting, yet it leads to an artificial comparison.

Ehrenberg described the crystals of silvery matter previously described by
Réaumur. Along with his description there is an analysis of this substance by Rose.*

Agassiz expressed himself in the following manner in regard to the structure and development of scales:——†

"Scales are contained in mucous cavities or in small sacs formed by the 'chorion,' to which, however, they do not adhere by vessels. They are formed of lamelae, of horny or calcareous layers, superimposed the one on the other, which are secreted at the surface of the chorion; these layers attach themselves successively to the inferior surface of the preceding, to which they weld themselves by layers of hardened mucus. In order to obtain a true idea of this development, it is necessary firstly to observe it in those genera of fish in which the scales appear to show these arrangements in the simplest state, for example, in the Eels, the Blennies, Cobitis, and Lenciscus. It is easy to assure oneself that the concentric lines of the anterior border and those of the posterior border are continuous the one with the other."

In order to support his theory, which after all is none other than that of Leuvenhoek, Agassiz appealed to the following:——

"After having macerated scales for some time in water, one can easily," he says, "divide them up in a large number of layers or plates of greater or less thickness, and of different size, but all of which have the form of the scale. These plates are superimposed in such a manner that the smallest occupy the centre of the scale, and form its interior part, while the largest, bordering the preceding, are successively welded to their inferior face. Thus one sees that the concentric lines which are visible on the exterior surface of scales are simply the borders of plates which compose them."

The radiating grooves (sillons rayonnants) Agassiz regarded as channels at the margin of the external surface, which connect one layer with another, and multiply during the growth of the scale. In this work Agassiz introduced his well-known classification of fish into four orders according to the nature of their scales, the Placoid, Ganoid, Ctenoid, and Cycloid orders.

Mandl,‡ well known as the opponent of Agassiz, held widely different views in regard to scale structure and development from those of all the authors previously mentioned.

He attempted to establish the existence of an internal life and true organisation within the scale. According to him, most scales are composed of two superimposed layers, superior and inferior. The superior layer shows the structure of cartilage with corpuscles, the inferior layer consists of lamelae which recall the structure of fibrous cartilage.

In the superior layer he describes longitudinal canals, cellular lines, and corpuscles.

Longitudinal Canals. Under the term "longitudinal canals" he describes the grooves which radiate out from the centre to the periphery of the scale. According to Mandl, these lines show all stages of formation, from that of a simple groove to that of a perfectly formed canal. These canals lead to a common point, the focus, which is a centre of nutrition, a point where tissue

* Ehrenberg, 1833. † Agassiz, 1834. ‡ Mandl, 1839.
is found developing. Mandl thought that these canals serve for the transport of nutritive material from the skin towards the centre of nutrition, in other words, that they fill the rôle of true vessels containing nourishment.

The Cellular lines. Under this term Mandl discusses the concentric lines or ridges parallel to the contour of the scale. He does not agree with previous authors in regarding these lines as the projections of secreted and superimposed layers. According to him, these lines owe their origin to special cells which originally form themselves on the superior surface of the scale; gradually these cells amplify and elongate, and finally come to represent cellular lines.

Corpuscles. Mandl is the first author to describe definite corpuscles in the tissue of scales. He describes those corpuscles as of a yellowish colour, and of an oblong, more or less elliptical form. They diminish in size towards the edge of the scale, showing there only a granulated appearance similar to that which one notices sometimes in the vicinity of the longitudinal canals. These corpuscles are usually arranged in a very regular way, sometimes crossing one another in such a manner as to form a cross. Under the action of acids they become transparent.

These corpuscles are contained in a definite tissue which is situated above the inferior surface of the scale. This tissue is an amorphous tissue like that in which the corpuscles of bone are deposited. The tissue constituting the superior layer of scales thus approaches that of cartilage with non-osified corpuscles.

Inferior layer of scale. Beneath the layer with corpuscles is found the inferior layer, which is a fibrous layer built up of fibrous lamellæ, in which the fibres cross one another at regular angles, but in which the fibres all follow the same direction in the same lamella. This arrangement approaches that of fibrous cartilage. This inferior layer is thickest at the focus (foyer) of the scale, and thinnest at the borders; it is this which forms the foundation of the longitudinal canals in the vicinity of the border of the scales.

Mode of scale formation. Mandl endeavours firstly to establish a distinction between the formation of the superior and inferior layers of scales. According to him, the superior layer, composed of cells, corpuscles, and of the fundamental substance which contains them, develops by growth, which takes place at the periphery round the cellular lines.

The inferior lamelle increase by the formation of new lamellæ beneath the preceding. The elements necessary for the formation of these lamellæ are brought by the longitudinal canals. The old lamelle being the smallest, this explains why the thickness of the scale ought to increase in degree as one approaches the focus (foyer).

"Si nous voulons appliquer les résultats que nous avons obtenus dans l'étude de la structure intime des écailles, à l'explication de la manière dont elles se forment, nous verrons tout d'abord qu'il importe de bien distinguer la formation de la couche supérieure, et celle de la couche inférieure. La première, composée de cellules et de leurs bases avec le tissu qui contient les corpuscles, prend son développement par des accroissements qui ont lieu dans la périphérie, autour des lignes cellulaires; au moyen, de pareils accroisse-
ments, ils forment, non-seulement plusieurs lignes cellulaires, mais les canaux longitudinaux eux-mêmes se trouvent allongés. Il est très probable que ces lignes cellulaires ne se forment pas, seulement, l'une après l'autre, mais que plusieurs lignes sont produites simultanément; nous en trouvons une preuve dans les écailles, qui dans leurs accroissement successifs, conservent les espaces marginaux, et dont les lignes cellulaires ou les cellules sont ainsi séparées en plusieurs groupes, nous citerons par exemple les écailles de cœlitis fossiles. Mais cet accroissement dans la périphérie n'expliquerait nullement, la grande épaisseur du milieu; nous en trouverons la cause dans la formation de la couche inférieure. Nous avons vu que celle-ci est composée de plusieurs lamelles. À chaque accroissement se forment toujours des nouvelles lamelles: les canaux longitudinaux, qui parcourent toute l'écaille, apportent les sucs nécessaires pour qu'une formation uniforme d'une nouvelle lamelle puisse s'opérer dans toute l'étendre de l'écaille. Il s'ensuit, que les anciennes lamelles étant plus petites, l'épaisseur doit s'augmenter, à mesure que l'on se rapproche du foyer."

As to the use of scales for purposes of classification, Mandl says that up to the present "we have found definite and characteristic forms for each family," and that further research on a sufficient number of individuals would decide whether this might also be applied to genera and species. Mandl's views were thus totally at variance with those of Agassiz, and the latter answered in a letter addressed to the Académie des sciences,* in which he attacks the results announced by his opponent. Agassiz concludes this letter by saying that the description which he had previously given of the structure of scales was correct, and that Mandl's method of viewing the subject was altogether wrong.

Mandl replied to Agassiz's letter by a counter letter, also addressed to l'Académie.† He reiterated that scales are organised bodies, and consist of true living tissue capable of nourishing itself and growing by intussusception. He replied to each of Agassiz's criticisms by a new affirmation to the opposite effect, and accused Agassiz of having badly understood or misinterpreted some of his points.

In the same year Agassiz published a fairly extended memoir,‡ in which he takes up the facts as stated by Mandl, one by one, and subjects them to the severest criticism.

After some points relating to the structure of the skin, Agassiz deals with the following:—

(a) Longitudinal canals, (b) cellular lines, (c) the corpuscles, (d) the fibrous layer, (e) the focus, (f) the teeth.

Firstly, Agassiz denied the existence of true longitudinal canals, and the rôle of these so-called canals as having the function of nourishing the scale.

As to the cellular lines, Agassiz emphatically denied the presence of cells, and wrote that Mandl had been deceived by an optical illusion. As to the corpuscles, Agassiz maintained that they are not situated in the thickness of the scale, as stated by Mandl; but on the contrary, close to the superior and inferior surfaces, for if one slightly scrapes one of these surfaces or, after a slight

* Agassiz, 1840. † Mandl, 1840. ‡ Agassiz, 1840.
maceration, raises some of the lamellae, the corpuscles disappear. Agassiz thought that the corpuscles beneath are lamellae incompletely formed, and those above are lamellae which have been broken down through the friction of scales against one another. As to the fibrous layer, Agassiz believed that this layer, which Mandl described as serving for the foundation of the cellular substance of scales, has as little existence as the cells themselves; in other words, that its supposed existence was founded on an error of observation, as all fibrous tissues (tendons, cellular tissue, etc.) produce gluten on boiling, yet well-cleaned scales never produce that substance. Agassiz maintained that scales do not show two distinct layers, but that the superior and inferior layers have the same composition. He thought that the fibres described by Mandl were due to a tearing of the younger and less consistent inferior lamellae, which gave rise to the appearance of fibres; but which was none the less an optical illusion. According to Agassiz, the focus is simply the oldest part of the scale, in which the superior lamelle have been worn away by friction or exfoliation. Altogether, Agassiz maintained that the material which Mandl had brought forward as to the detailed structure of scales was quite erroneous. Agassiz's idea as to the mode of scale formation may be summarised as follows:

"The scales of fishes are epidermic secretions, analogous to that of nails. As in nails, the scales are composed of exceedingly thin lamellae of a horny nature, superimposed the one on the other in the order of their formation. The secreting organ is the epidermic pouch, in which the scales are ensconced at their anterior borders. The newly formed lamellae are very soft, but of the same composition as the oldest lamellae. The pouch increases in such a manner that the newly formed lamellae are always larger than the older. The concentric lines are reflexed parts of the borders of superimposed lamellae, and these lines are more numerous in old than in young fish. Scales disintegrate or waste chiefly round the focus by friction of the scales among themselves or by exfoliation. The focus and corpuscles on the external surface are simply results of this wearing down; one does not find them in non-imbricated scales, as in those of the eel, for example. By means of sections one sees that scales are composed of lamellae, and that there are marks which correspond to concentric lines. The so-called teeth or notches are simply indentations of the posterior border of the lamella."

In the following year, Peters* gave a critical review and summary of the observations of Mandl and Agassiz. This author firstly gave some general considerations on the structure of the skin of fishes. In a fresh-water fish, one finds the following layers in the skin covering the scales:—

1. An epidermis composed of squamous cells (the latter being very abundant in the mucus of fishes).
2. A layer of pigmented cells.
3. The skin proper, a layer composed of fibrous connective tissue containing fatty globules.
4. An exceedingly thin membrane immediately on the external surface of the scale, but distinct from the skin. On this membrane are seen concentric

* Peters, 1841.
grooves and longitudinal ridges corresponding to the concentric ridges and longitudinal grooves on the scale. This membrane consists of thin crossed fibres, the intercrossing of which results in the indentations of the concentric ridges. The constituent fibres swell strongly under the action of acetic acid, a character which evidently belongs to fibres of connective tissue. The superior or external portion of the scale shows, moreover, a very fine inseparable layer, which shows the presence of fibres under the action of acetic acid, and which it is difficult to destroy by combustion. These intimate connections between skin and scale enable one to see how, during growth, the appearance of the scale surface may be modified without exfoliation taking place.

According to Peters, the scale is not formed in the epidermis, but in the skin itself; in that case the scale cannot be simply a horny secretion of the epidermis.

Peters agrees with Mandl in admitting the existence in all scales of a very soft lamellated inferior layer consisting of fibrous cartilage; he disagrees with Agassiz as to the number of lamellae corresponding to the number of concentric striae on the upper surface. He held that Agassiz had not sufficient proof of the non-existence of cartilage in scales, and did not believe in his statement as to the horny nature of scales.

As to the corpuscles, he maintained that these were found, not on both surfaces of the scale, as stated by Agassiz, but only on the inferior surface. He regards the corpuscles as special elements, and not as being due to incompletely formed lamellae or to the wearing down of these thin layers. Corpuscles of some solidity show a granular appearance towards the border of the scale, and give rise to the asperities existing on the posterior border of many scales (Perch). Towards the centre of the scale one finds beneath the elliptical forms quadrangular corpuscles which are arranged in regular series, and give rise to spines. These spines are not, as Mandl supposed, comparable to true teeth. Peters believed that scales could not afford a proper basis for a rational classification, showing that two kinds of scales, cycloid and ctenoid, occur in the same fish (Pelamys sarda).

As to the superior or external layer of the scale, Peters realised much difficulty, especially in attempting to explain the origin and meaning of the concentric lines and radiating canals.

The superior layer, he said, does not usually show any distinct elements, though sometimes one can recognise in it the same fibres and the same corpuscles as in the inferior layer; but never with the same degree of distinctness and clearness. He did not believe that the concentric striae represented the borders of superimposed lamellae or plates of the scale, in as much as the striae are not always parallel to the free border, but are sometimes perpendicular to it. For example, in Alepocephalus rostratus the striae are only disposed concentrically in the posterior third of the scale, while in the remainder of their extent they run straight forward, parallel the one to the other. He agrees with Agassiz in refuting the statement of Mandl in regarding the radiating canals as serving for the nutrition of scales, and regards them rather as sutures rendering growth possible in all directions. He adds that these sutures are not only found running out from the centre in the direction of the
periphery, but sutures are sometimes disposed concentrically (Ophidium, Sudis, Rypticus, Heterotis, etc.).

Peters denies the existence of osseous corpuscles in ordinary scales, but admits the fact of their presence in Polypterus and Lepisosteus.

In his paper on the embryology of the salmon, Vogt brings forward some facts relating to the development of scales. He states that the scales do not show themselves till three months after hatching; that the concentric plates, so numerous in the scales of the adult salmon, are relatively few in number in the young fish; but that the lines which indicate the borders of different plates are just as continuous in the young as in the old scale, and thus in no way indicate formation from isolated cells. He notes that the central focus is frequently smaller in the young as contrasted with the adult worn scale.

Müller issued a paper on Ganoids and natural classification of fishes. In part of this paper the author deals with some points relating to the taxonomic value of the characters of scales. He held that the differences between the scales of Cycloids and Ctenoids is of little importance, and can only be useful for purposes of classification in a very limited way. Later Vogt issued another paper, in which he discusses the value of the characters of scales in distinguishing different orders of Ganoids.

In the Manual of Comparative Anatomy, by Siebold and Stannius, the latter makes some statements regarding scales. He writes that scales cannot be regarded as horny epidermic formations, and that it is impossible to ignore the presence of a substance on the lower scale surface possessing a fibro-cartilaginous texture and the existence of osseous corpuscles in some scales. He does not admit that scale growth takes place only by means of super-imposed layers, and regards it as doubtful whether it would be right to take the different forms of scales exclusively as a basis for classification.

In a paper by Dareste on the classification of Plectognathes, we find some observations on the scales of fishes belonging to this order. In regard to the integuments of Diodons and Tetrodons, he writes that in these we have not scales, but spines, which are fixed in the skin by roots of a horny nature. The spinous portion is very closely analogous to the ivory of teeth, and contains as in these tubules which radiate out in all directions. The integument of Triodons differs from that of Diodons and Tetrodons in possessing true scales, comparable on the whole to those of osseous fishes. The external border shows indentations similar to the ctenoid condition as described by Agassiz. The cuirass of Ostracions results from the union of rhomboidal plates placed side by side, and which possess an inferior layer of a horny nature and a superior layer of osseous substance possessing calciferous tubes which recall the structure of teeth.

Dareste, in another paper on Blochius longirostris, gives some considerations on the value of scales as characters in classification. He would not give them the rôle of dominating characters.

Williamson published an important paper on the structure and development of the scales and bones of fishes. Writing in 1873, Baudelet claims

* Vogt, 1842. † Müller, 1844. ‡ Muller, 1843. § Vogt, 1845.
∥ Siebold and Stannius, 1849. ¶ Dareste, 1850.
** Dareste, 1850. †† Williamson, 1851.
that the latter paper is "one of the most important which has been published on the scales of osseous fishes."

Williamson brought forward important general views relating to the mode of composition of the scales and of the other hard parts in fishes. He endeavoured to show that scales, teeth, chondrified and membranous bones, etc., are not really formed of tissues of an entirely different nature, but of tissues which pass the one into the other by gradual transitions. Williamson commences his paper by a critical review of Mandl and Agassiz's work. He regarded Mandl's view of scale formation as given on page 7 as being more correct in some respects than that of other writers, but as being built upon a false foundation on account of his having mistaken solid calcareous granules for cells. He regarded Mandl's description of the inferior layer as correct, but denied the existence of longitudinal canals as described by him.

Williamson points out that although Agassiz at first refuted Mandl's statement as to their being two layers in scales, he subsequently acknowledged that each scale really consisted of two different strata. Williamson regarded Agassiz's views to be as little tenable as those of Mandl. He says that while Agassiz regarded the lower layer of the scale "as a horny substance, an exuded secretion from the sac into which he considers the lower and anterior portions of the scale to be fitted," it is really a fibrous substance.

He says that Agassiz has failed "to detect the existence of two distinct structures in the upper or calcified part of the scale," and that in regarding the corpuscles in the middle of the scale not as true corpuscles, but rather as due to some solution of continuity between the upper and lower tissue, he has quite mistaken their character. According to Williamson, cycloid and ctenoid scales consist of three layers, inferior, median, and superior.

The inferior layer consists of numerous membranous lamina arranged in parallel horizontal lines. These lamina are most numerous in the centre of the scale, and decrease in number as we approach the periphery, until finally only one is present. Each of these membranous lamina is composed of numerous fine fibres, all of which run parallel with one another in the same lamina. Numerous isolated lenticular calcareous bodies are to be observed imbedded among these membranous lamina. These calcareous bodies arise as a result of the calcification of the membranous lamina, and appear firstly as small calcareous atoms, which grow in size by the addition of successive concentric lamina to their external borders. "The growth in size of cycloid and ctenoid scales takes place by the successive addition of membranous lamellae on the inferior face of those which have been previously formed, each new plate being larger than the preceding."

The median layer of the scale is mainly built up of a mass of similar lenticular calcareous bodies which unite with one another as they increase in size, frequently also losing their original lenticular shape during this process of coalescence.

This median layer of the scale decreases in thickness as one proceeds from the centre to the periphery until at last it disappears altogether, the calcareous layer being not only thicker, but now consolidated towards the centre of the scale. After the calcareous granules have become fused and consolidated together, the median layer thus formed is split up into horizontal laminae
which agree in their direction with the membranous laminae previous to calcification. The laminae also exhibit a number of vertical cleavages or fissures. "The middle layer then is produced by the formation and coal-
escence of the small lenticular bodies, through the agency of which the calcification of the membranous laminae is effected. This calcification per-
meates the entire extent of the upper and earlier-formed lamella, whilst, with the exception of a few isolated granules, it has been confined to the margins of those which are inferior and of more recent growth."

The superior layer of the scale differs both in structure and in mode of origin from the median and inferior layer. This superior layer is the one by
various modifications of which all the ridges and tubercles seen on the surfaces of scales are produced. In vertical section it frequently shows an
undulating outline and has traces of a lamellar formation (the lamella being homogeneous and devoid of structure), the more external being parallel
with the upper surface of the section. The radiating lines (nutrient canals of Mandl) are produced simply by the absence of superficial tissue along
their course. While these radiating lines are not nutrient canals, as was
supposed by Mandl, neither do they pass through the entire calcareous portion of the scale and reach the underlying soft tissues, as was maintained
by Agassiz: they only do so at the margin of the scale, where the median layer is not yet developed; but towards the centre, where the median layer
exists, these grooves do not pass through it. The ridges intervening between
these radiating lines are of some thickness, and are transversely subdivided by
a large number of small ridges. These ridges are really the concentric lines
seen on the surfaces of most cycloid and ctenoid scales. The superior layer of
the scale covers the entire surface of the scale even to its extreme periphery,
but the median ceases to exist at some little distance from the margin. The
growth of the superior layer is effected at its upper surface by the calcifica-
tion of a thin superficial membrane which covers the scale at the same time
that the corresponding though different process is adding to the lower surface
of the median layer. He says "it thus becomes manifest that these concen-
tric ridges are not lines of growth, as thought by M. Mandl, but the result of
a peculiar arrangement of the superficial tissue of the scale, a conclusion
which accords with that arrived at by M. Agassiz." After a description of
the scales of the carp, pike, salmon, perch, he says, "The question which now
suggests itself is, what relation does the superior investing membrane bear to
the inferior fibrous portion?"

To this question, however, he is unable to give anything more than
hypothetical answers (see page 654, Williamson) and continues, "Be the
process of its genesis what it may, we have here demonstrative evidence of
the existence of such a superficial film of soft membrane as is essential to my
hypothesis, accounting for the peculiar structure and growth of the upper-
most layer." He further regarded the substance of the superior layer as
probably identical with the ganoin existing in Lepidosteus, Lepidotus, and
their allies.

Leydig gives a description of the structure of scales, in which his reference
to the corpuscles of Mandl is the most important point raised. These are

* Leydig, 1851.
sometimes situated freely side by side, or the one above the other, sometimes they increase directly to form the asperities and teeth on the posterior border of scales (Perca fluviatilis, Acerina cerma), sometimes they fuse together at their margins, forming a united mass, a layer of the scale. Leydig asks of what nature these corpuscles are which on fusing come to produce scales. In considering the rôle of these corpuscles in the production of scales, he considers them as analogous to the free globules of Czermak, which on fusing together produce dentary substance.

According to him, the grooves on the scales of the lateral line show a different texture from the rest of the scales. They are rather true osseous products superadded to the scales. In another paper Leydig gives observations on the structure of scales in Polypterus bichir,* which does not specially deserve attention in a paper dealing mainly with cycloid scales. In a later work Leydig deals with the subject of the corpuscles in scales of various genera; † but this consists in the main of a reproduction of his previous work in the first paper mentioned.

Hollard issued a monograph on the family Balistidae. ‡ The disposition of tubercles and spines on the scales, their grouping and mode of formation, have chiefly engaged his attention so far as he takes up the subject of scales in this monograph. Hollard§ published a second monograph on the Ostracions, in which he gave a detailed description of the tegumentary and scale systems in this family. He held that the spines on scales are of value for purposes of specific classification.

Steenstrup issued a paper in which there is an interesting note in direct connection with the main subject of my paper. || He says, "The scales of ossous fishes, Cycloid, Ctenoid, and Ganoid, persist during the entire life of the fish. They grow with the growth of the animal. The scaly covering of fish is consequently composed of the same number of scales during the entire life of the animal. This is so true, that allied species may be distinguished with certainty by the number of scales in each longitudinal line." Steenstrup states that the case is very different in cartilaginous fishes, that placoid scales do not grow with the fish. Their size never exceeds certain limits, and their existence is only temporary. They fall off continually and give place to others.

Owen gives a brief note regarding the scales of the tunny, and a description accompanied by a figure of the scales of the eel. ¶

Blanchard published a work on the fresh-water fishes of France. ** In this work he does not give any detailed description of the internal structure of scales, but he gives figures and descriptions of their external appearance for a number of species. He finds it difficult to agree with Agassiz's idea of the mode of scale growth by the successive addition of new plates or laminae to the inferior face of previously existing ones, and in regarding the concentric lines as the edges of those plates, as, according to Blanchard, the number of concentric strice is as great in very small as in very large fish of the same species. Blanchard brought forward a novel idea as to the function of scales, namely, that they fulfil a rôle in the respiratory function, varying in degree in

* Leydig, 1854.
§ Hollard, 1857.
** Blanchard, 1866.
† Leydig, 1866.
|| Steenstrup, 1861.
‡ Hollard, 1853, 1854.
¶ Owen, 1866.
different types, but notably developed in the Cyprinidae, for example, in which the scales are penetrated by canals through which water may easily percolate.

We are indebted to Dr. Salbey for an interesting paper on the structure and mode of growth of fish scales. In this work Dr. Salbey commences with some points on the structure of the skin, in which he reviews facts already known, then he gives a brief description of the four types of scales (Placoid, Ganoid, Ctenoid, and Cycloid) established by Agassiz, and lastly he deals with the external characters, internal structure, and mode of growth in the Cycloid and Ctenoid types. According to Salbey, there are two layers in scales, (1) an external or superior layer and (2) an internal or inferior layer. The superior layer develops at the expense of the superficial layer of the skin by the deposition of calcareous salts at the interior of this layer. The inferior layer is composed of superimposed lamellae, indefinite in number. These lamellae, are not homogeneous but are of two kinds. They are arranged in such a manner that a comparatively thin lamella is found between every two thicker lamellae. These thin and thick lamellae differ in character. The thick lamellae are colourless and calcareous in their nature, the thin lamellae are yellowish and composed of a conjunctive substance, a kind of cement (Kittsubstanz). Thus the arrangement of lamellae is that of a conjunctive layer disposed between every two calcareous layers. In making sections the conjunctive layer resolves itself into fibrous elements, the individual elements of which appear to follow the same direction. The number of superimposed lamellae has no definite relation to the age of the fish, as seen by a comparison of the number of lamellae on fish of the same species, but of very different ages. He thinks, however, that as the lamellae of older fish are thicker, and as the difference in colour between lamellae does not appear, it is probable that conjunctive lamellae calcify during progressing years and fuse with adjoining calcareous lamellae. From this occurrence, it would result that the number of lamellae, while really being greater in the older fish, does not appear to be so, on account of the lines of separation between the old lamellae having disappeared. On the preceding characters Dr. Salbey builds the following interpretation of scale growth. In the membrane situated at the inferior part of the scale there takes place a periodic deposit of calcareous matter. This membrane, impregnated with calcareous salts, represents the inferior lamella of the scale. Between this calcified inferior lamella and the skin there appears a new layer of conjunctive substance. After a varying lapse of time, this new layer calcifies itself in its turn and so on. This mode of growth may serve to explain, says the author, how it comes about that the inferior layer of the scale is the largest, and why there is a softer layer present at the inferior part of the scale. This softer layer is merely a layer of conjunctive substance, which has been deposited upon the most inferior layer between that and the skin. Besides these facts relating to the layers of scales, Salbey deals with the concentric lines, the grooves, the focus, and corpuscles.

Concentric lines. The concentric lines have not any connection with the lamellae which compose the scale, as one may easily show by vertical sections. These lines or ridges only belong to the superficial layer, and thus one under-

* Salbey, 1868.
stands how they may abruptly disappear, and how new striae may interpose themselves between previously existing striae.

The grooves. These represent channels carved out of the surface of the superior layer; and the conjunctive substance mentioned above constitutes their foundation. Besides the grooves directed from the periphery towards the centre of the scale, there exist in Ophidium and other fishes grooves concentrically arranged. "These varied grooves may contribute to the enlargement of the scale at the surface, and permit through the intermediate of the conjunctive substance, which calcifies slowly, a continued deposition of calcareous salts in the lamellæ, which are not in direct connection with the skin, and in the conjunctive substance of the scale."

The focus. Regarding the focus of the scale, Salbey agrees with Peters in rejecting Agassiz's idea as to its formation by a process of exfoliation or wearing down of the oldest layers of the scale. It is natural, he says, that the projections which are nearest the centre of the scale should be smaller and less apparent than those which are situated nearer the periphery, because at the central point, where the superior layer of the scale is thinnest, as it was formed at a period in the early life of the fish, the projections or crests would not be so distinct and pronounced as those in peripheral parts formed during the later life of the fish. The presence of skin at the surface of the scale does not allow of any other explanation, and in order to believe that a wearing down has there taken place, it is necessary to suppose that a destruction of the epidermis and of the skin has taken place at this part. The focus is nothing else than the oldest part of the scale. It is also the thickest part of the scale, because there we have the greatest number of lamellæ at the internal face of the scale.

Corpuscles. Salbey does not bring forward any important facts as to the corpuscles of scales. He agrees with Leydig in regarding them as ossified globular bodies.

Teeth. Regarding the teeth of scales, Salbey rebuffs the opinion of Peters, according to whom these parts develop from the corpuscles of scales. He also disagrees with Mandl, who regarded these appendages as true teeth. He considers these small teeth as integral parts of the superior layer. These minute teeth appear successively at the posterior border of the scale as that grows; it is because of this mode of growth that the points formed in the last part appear perfectly preserved, while those which during the progress of growth become carried further forward are very small and much broken by external friction.

Carpenter devotes several pages to the structure of scales in osseous, ganoid, and placoid fishes.* On the subject of osseous fishes, he deals in a very concise manner with the scales of the eel, carp, and sole.

Regarding the cycloid and eotenoid divisions established by Agassiz, he considers this sharp division as having little harmony with the general organisation of the types which it has the aim of separating.

Vaillant also takes up the question of the value of cycloid and eotenoid characters as propounded by Agassiz for purposes of classification.† He shows the great variation which occurs in the scales of Percide, not only in different

* Carpenter, 1863.
† Vaillant, 1872.
individuals of the same species, but on different regions of the body on the same individual. Owing to this variation he regards Agassiz's division into cycloid and ctenoid as of little value.

The next work which I have to notice is a lengthened and interesting paper by Baudelot, in three parts.*

Part I. is concerned with a historical review of the literature relating to scales previous to the year 1873, of which I have made ample use in the foregoing pages. Part II. contains a detailed study of a certain number of types of scales, considered from the point of view of structure and development. Part III. has a number of facts on the value of the characters found in scales in relation to classification.

Part II. consists of two sections, of which the second section gives a synthetic summary of the facts propounded in the first section.

In Section I. he treats of the following:

Analytical study of types of scales.

1. Perca fluviatilis, with eight figures.
2. Phoxinus levis, with one figure.
3. Esox lucius, with two figures.
4. Clupea harengus, with one figure.
5. Anguilla vulgaris, with five figures.
6. Ophidium barbatum, with two figures.
7. Gadus merlangus.
8. Cyprinus carpio, with eight figures.
9. Pleuronectes solea, with five figures.
10. Thymus vulgaris, with seven figures.
11. Mugil capito, with eleven figures.
12. Hypostomum, with fourteen figures.

In this analytical study of the foregoing types of scales, he devotes much attention to the corpuscles of scales.

In the second and synthetic section of Part II. he treats of the following:

1. The connection between the scales and integument.
2. The form of scales and their mode of orientation.
3. The size of scales.
4. The ridges on scales.
5. The spines on scales.
6. The grooves on scales.
7. The perforating canals in scales.
8. The internal lacunae of scales.
9. The focus or centre of growth.
10. The tissue of scales.
11. The formation and growth of scales.

1. The connection between the scales and integument. The scales of cycloid and ctenoid fishes are usually contained in small dermic sacs, and are more or less visible to the exterior; but in some cases they are not so, being deeply buried in the skin (Anguilla, Ophidium, Lota, etc.).

* Baudelot, 1873.
When scales are provided with spines, as in Ctenoids, the points of these may be seen piercing the epidermis, and so appearing freely at the surface. The degree with which scales adhere to the skin is subject to great variation in different fish. In the herring, for instance, scales are very easily detached; but in *Dactylopterus volitans*, etc., they are only separated from the skin with much difficulty. Scales are never entirely free in the dermic pouch, as they are always connected with its walls by fibrils of connected tissue, usually of extreme fineness. In imbricated scales the free portion has a more or less intimate connection with the skin, and so in extracting scales from the body of the fish, the free portion carries with it débris of the skin, from which it is frequently difficult to separate it. In certain varieties of carp (mirror carp, leather carp), in which, as one knows, scales may disappear on more or less extended parts of the body, the scales show very varied connections with the skin. On certain parts one meets with very large scales much imbricated, on other parts the scales are still larger, but scarcely covered over, or even entirely isolated. Extremely small scales are also found, which are completely enclosed in the depths of the skin. The imbrication of scales ought to be considered so far as a phenomenon of mechanical arrangement intimately connected with the greater or lesser development of scales and with the degree of their separation.

2. The form of scales and their mode of orientation. The form of scales is extremely variable. These variations occur not only in different species, but in different regions of the body of the same fish. In each fish the large scales covering the median region of the flank may be considered typical, that is to say, they possess in the largest measure and with most constancy all the proper characters of the species. Scales from the dorsal and ventral surface, from the head and fins, frequently show more or less marked deformations, and seem to lose some of their characteristic features. Scales oval at one place may change into a circular form at another place, polygonal scales to circular ones, elliptical to a more or less irregular form.

Lobes at the margins of scales, spines, concentric ridges, and grooves may vary considerably in number, and even disappear altogether in different parts of the body. "Nothing is more variable than the external characters of scales, and as in a tree one does not find two leaves exactly identical, so is it in regard to the scales of fishes; but the particular features of scales, as of leaves, do not all vary at the same time, and thus there generally remain several general characters of resemblance which scarcely allow us to confound the scales of one species with those of another." The simultaneous presence of ctenoid and ctenoid scales was pointed out by Baudelot in the following:— *Trigla lineata*, *Sarina Rondeletti*, *Perca fluviatilis*, *Pleuronectes solea*, *Pleuronectes flesus*, etc.

The form of scales appears somewhat to depend upon their connection with one another, their juxtaposition; thus scales isolated in the skin tend to have a rounded or circular form (Lota, Anguilla, Ophidium). On the contrary, where scales are large and much pressed the one against the other, they most frequently take a polygonal form. The orientation of the long axes of scales in relation to the axis of the body is usually fairly constant in those fish in which there is a regular and distinct imbrication of scales. In fishes in which the
scales are isolated and completely enclosed in the skin (Anguilla, Ophidium barbatum, etc.) the long axis of the scale does not usually show any fixed position as regards its direction.

It appears probable that the reciprocal pressure exercised by scales the one upon the other, contributes so far in bringing about a similar mode of orientation among them.

3. The size of scales. The size of scales is extremely variable. They even show varying dimensions on different parts of the body of the same fish. For instance, the scales on the flanks are larger than those near the caudal fins. Scales gradually diminish in size from the median region of the side towards the tail or anus. Scales are also reduced in size in various parts of the head, in the opercular and preopercular regions and in the suborbital region. Baudelot gives tables showing the variation in size in different regions of the body for the perch, pike, and mullet. These tables show in what proportions the size of scales varies with the age and size of the fish mentioned. Growth is continuous but unequal in scales from different regions of the body. One finds very great variation in the size of scales in different species of the same family of fish, and certain varieties of the same species show extreme differences in the relative sizes of their scales. For example, the so-called mirror carp has very much larger scales than those of the ordinary carp. In another variety, the leather carp, the scales have become very rudimentary or have entirely disappeared.

4. The ridges on scales (crêtes de l’écaill.e). In cycloid and stenoid fishes the surfaces of the scales show linear projections which are usually parallel to the external contour of the scale. Baudelot describes the arrangement of these under the term “crêtes de l’écaill.e.” Though these ridges are almost constantly present, yet in several types of fishes they disappear more or less completely, for example, in Dactylopterus volitans and the tunny. In the tunny one finds some scales provided with as many ridges as usual, others with ridges only at the margins, and others in which these ridges are completely wanting. In the eel, scales do not show ordinary ridges on their surfaces; these are replaced by reliefs of a quite distinct appearance, but really of the same nature as the ridges.

In regard to the disposition of ridges on the scale surface there is considerable variation in different fishes. In certain types of scales, those of the salmon for example, the ridges run parallel to the contour of the scale in a perfectly regular manner, thus forming a series of continuous reliefs which may truly be termed “concentric ridges.” In other types of scales, those of the pike, some Cyprinidae and Pleuronectidae, for example, the concentric ridges show some degree of regularity in the peripheral portion of the scale, but as they approach the centre of growth they lose their uniformity, become interrupted at various points, bent in various directions, intersected by secondary ridges, and finally appear like a “veritable labyrinth.” In regard to this point there are the greatest differences between scales of the same fish.

In many scales the characters of the concentric ridges undergo a greater or less change in the posterior region of the field; sometimes they may entirely disappear (herring, shad), sometimes they become very rare, they separate the
one from the other, lose their regularity, enlarge at certain points, or become covered by tubercular projections (carp and other Cyprinids).

In some fishes these ridges assume a peculiar mode of orientation. Instead of following a course parallel to the contour of the scale, they take a direction more or less perpendicular to this line, remaining, however, parallel to one another (Alepocephalus, herring, shad). The particular disposition observed in the herring, etc., is not an isolated fact, but the expression of a more or less general fact which appears in various degrees. The number of concentric ridges is not the same in the different regions of the scale. It is usually much greater in the anterior than in the lateral field, and in the lateral than in the posterior field (perch, pike, minnow); this fact helps to prove that all the ridges do not originate round the circumference of the scale. The number of ridges may show the greatest variations in scales of the same fish; the number appears to be in proportion to the extent of the scale. Thus in large scales from the flanks the ridges are relatively numerous, in very small and rudimentary scales from other regions of the body (caudal fin, opercular region) these ridges are extremely reduced in number. "Variations in the number of ridges are not usually great in scales from the same region. In fishes of the same species, but of different age, the number of ridges increases proportionately with age, and consequently also with the dimensions of scales."

It is easy to verify this fact by comparing scales from the same region in fish of very different size.

From this point of view, Baudelot made observations on scales of the pike, perch, and minnow to determine the differences in number from simple to double, triple, quadruple, and so onwards.

New ridges are formed successively at a very slight distance from the border of the scale by a partial calcification of the external layer. This calcification shows itself firstly as a simple track of calcareous molecules in the membranous zone which exists at the margin of the scale. This track of molecules represents a calcigenous centre round which the calcareous substance accumulates.

From the thickening of this calcareous track there results firstly a slight projecting part, which in raising itself soon constitutes a ridge. This enlarges little by little at its base by the addition of calcareous molecules and finally unites with adjoining ridges, so as to form a continuous calcareous investment on the surface of the scale. This mode of formation of ridges may be easily followed in the scales of the sole, in the membranous zone which constitutes the border of each of the lateral fields; and it is also obvious in the scales of many other types of fishes.

The ridges of the scale surface examined under a very high power show their free borders to be sometimes smooth, but in other cases crenated in such a manner as to present fine denticulations. These denticulations may be seen in the scales of the mullet, perch, and burbot, but the asperities are not uniformly present on all the ridges of the same scale, and they may be completely absent in the marginal ridges. In many scales (burbot, mullet) the concentric ridges appear to offer a marked inclination towards the centre of the scale. This inclination shows itself by a more or less pronounced difference in the degree of obliquity of the two planes corresponding to the two opposed faces of the
concentric ridge. Tranverse sections, that is to say, sections perpendicular to the surface of the scale, also show this point. The separation of the ridges is not great, and does not appear to vary with age; the latter point evidently proves that the scale does not grow at all points on its surface. The distance separating the ridges from one another may remain the same in the different regions of the scale; but this is by no means constantly the case. In the sole, for example, the ridges are much closer in the anterior than in the lateral part of the scale; and in most cycloid scales the ridges of the posterior region show a greater degree of separation than those of the lateral and anterior regions (minnow, Cyprinus, etc.).

"It is also not uncommon to find in the same area of the scale successive zones in the extent of which the ridges show different degrees of separation." (See figures of carp scales.)

From the following facts, Baudelot concludes that the ridges do not represent by any means the borders of superimposed plates or lancets, as many zoologists had supposed; but that these ridges, whether they be concentric lines or not, are nothing else than reliefs corresponding to lines of calcification at the external layer of the scale.

(1) The ridges only very rarely affect a complete arrangement in the form of concentric lines.
(2) These ridges may be perpendicular to the contour of the scale.
(3) These ridges may show the most irregular arrangement, become folded up against one another, entangled in all directions, or even form a sort of network of irregular meshes.
(4) The ridges are appendages to the superficial layer of the scale.
(5) They originate at the margin of the scale as points of isolated calcification.
(6) They show a marked inclination towards the centre of the scale.

5. The spines (spinula). Under this heading Baudelot discusses the small spinous projections seen in the posterior portion of actinoid scales. The variation in the form of those appendages is very great, affording transitions from simple denticulations to true teeth. In the tunny, for example, we find quite simple denticulations or cuttings in the posterior border of the scale which cannot be regarded as distinct organs, but simply as projecting lobes of the free border of the scale. At a further stage (some species of Sargus) denticulations project from the concentric ridges of the posterior field. This is really only a more marked phase of the microscopic denticulations already mentioned in connection with the concentric ridges. In a still further developed stage the spines cover the entire surface of the posterior field, and are conical, pointed, or truncated. Notable variations of this form are seen in different fishes; for instance, in the mullet the spines are plates, with the external surface raised in slightly projecting cones; but on the other hand, in the perch the spines are much elongated, and appear as true spines much tapered at their extremities.

In a fourth case, as in the sole and some other Pleuronectids, the spines are long, rounded, and drawn out at their extremities as in the last case; but they are not solid, but hollowed out internally into a more or less spacious
cavity. In the fifth degree, the spines have the same external form as in the last case; but they are not composed of homogeneous tissue similar to that of the scale, but of dentine, in which canaliculi extend from the central canal to near the surface. Such a structure is found, for example, in the spine of Hypostoma. As to the dimensions of spines on scales and their growth, he says that in passing from the free border to the centre of the scale they gradually lose their volume, but in a transitional manner. The dimensions of spines increase with the age of the fish in a marked degree. The number of spines also varies in different regions of the body and with age. By a comparison of scales from the same fish one finds that the number of spines varies only slightly in points from the same or adjoining regions of the body; but those scales from different regions show considerable variations as to the number of spines. There are, however, exceptions to this rule (dab). The number of spines as of concentric ridges is usually greatest in scales from the median region of the side.

In those regions in which scales tend to be rudimentary, they also tend to lose their spines, and thus become cycloid. The fact seems almost certain, that there does not appear to be a single ctenoid fish in which one would not meet cycloid scales on certain points of its body. Baudelot brings forward some facts to show that new spines form themselves behind those already existing on the posterior border. The spines and concentric ridges are homologous productions, and growth of both takes place in the same direction. According to Baudelot, then, spines are products of the same nature as the concentric ridges; they are ridges which have become very prominent, and cut into transversely in such a manner as to constitute a series of prolonged spines, each with a distinct base. In support of this hypothesis he brings forward the following facts:

In many scales, such as those of the perch and mullet, the edge of the concentric ridges presents a series of very distinct microscopic indentations, and in some ctenoid scales the spines are so small as to represent only stronger indentations of the ridges of the posterior region which have become very prominent. In many cycloid scales, such as those of the carp, the posterior region shows a series of tubercles arranged with as much regularity as spines, and which present the greatest analogy to these structures. These tubercles are, however, only partial thickenings of concentric ridges. In the same fish scales become altered and pass from the ctenoid to the cycloid condition, and in that case it frequently happens that the spines become replaced by simple ridges, a substitution which is a clear proof of the homology of spines and concentric ridges. Among Pleuronectidae, in which some are ctenoid (sole, dab), and others are cycloid (brill, flounder), the scales of cycloid forms frequently show in the posterior area, instead of rows of spines, distinct islets of calcareous matter, each supporting a fragment of concentric ridge. When these islets of calcareous matter become straitened and more regular, they evidently result in spines.

6. The grooves (sillons) on scales. This term has been given to very narrow grooves or trenches which are supposed to have been excavated at the expense of the superficial layer of the scale. These grooves are not present in
all scales; those of the salmon and hake, for example, do not possess them. They may be limited to one region of the scale, or be present over the entire surface. From a general point of view, they may be divided into two categories:—(1) Those which radiate from the centre of growth towards the periphery are termed radial or radiating grooves (carp, perch). (2) Those which have a direction parallel to the contour of the scale, and therefore perpendicular to the radiating canals, are termed transverse or concentric grooves (Ophidium, whiting). Those two kinds (radiating and concentric grooves) may be present simultaneously in the same scale; but in the majority of scales only the radiating or radial grooves are found. In most cases they only occupy the anterior region of the scale (perch, pike), but they may occupy the posterior as well as the anterior areas (carp), or they may be present over the entire surface of the scale, anterior, posterior, and lateral (loach, minnow, whiting). When the concentric grooves and radiating grooves are present in the same scale, two cases present themselves: firstly, that in which the two kinds of grooves are found in two different areas of the scale (several Pleuronectidae), in which case the radiating grooves exist in the anterior and posterior area, and the concentric or transverse grooves in the lateral areas; or secondly, that in which the radiating and concentric grooves exist in the same area of the scale, by which means the scale surface is divided up into numerous plates or divisions, which occasionally form a regular series of plates radiating from the centre to the periphery (Ophidium, whiting, eel).

While in a general way one may separate the grooves into these two categories, namely, radiating and transverse grooves, there are many scales in which the grooves lose their usual symmetry and affect a more or less irregular arrangement. Sometimes the grooves show up to a certain point the usual radiating arrangement and then anastomose with each other, thus forming on the scale surface a species of plexus of irregular webs (Labridae, Mormyridae). The grooves of the anterior area also frequently anastomose with those of the posterior area in the region of the centre of growth (Cyprinus, Labrus). In the herring and shad there are grooves in the anterior part of the scale which originate on the lateral border, and extend across the anterior area, keeping more or less parallel with one another.

As regards form, the grooves show extremely varied characters: sometimes they take the form of a simple line, resembling a fissure or line of break on the external surface of the scale (herring, shad, transverse grooves of Ophidium, whiting); sometimes they appear as a species of ravine, narrowed at the base and cut out perpendicularly at the sides; at other times they have the appearance of a wide trench of little depth and flat at the base; sometimes the grooves lose their regularity, become narrowed at some points and enlarged at others, constituting species of small depressions (lacules) with sinuous and irregular contours; sometimes a groove may be interrupted at certain places, and then one has a series of small cavities or depressions (lacules) lying in the same straight line and in the same direction. The edges of grooves are usually irregular and jagged, but they also frequently show rounded lobes, due to the presence of calcareous globules.

The radiating grooves do not usually extend over the entire distance from
the border of the scale to the centre of growth; a certain number of them do extend over all this distance, but the others usually only run over a portion of the radius. Some of the radiating grooves commence at the periphery and stop almost immediately, others extend a little further, and others still further without reaching the centre of growth. Ridges may also be seen commencing at only a short distance from the margin of the scale, sometimes terminating at the centre of the scale, and at other times terminating after a short passage. It is clear that there occur grooves whose course is reduced, as they only extend over a minimum portion of the radius. Grooves occupying the median portion of the anterior area are, as a rule, longer than those at the sides or lateral areas of the scale. This also holds true for the grooves in the posterior region of the scale. When the radiating grooves are wide, regular, and very close together, the scale surface appears as if it had been cut into a series of bands or triangular tongues, with the apices turned towards the centre of growth (see anterior region of scale of sole).

The concentric or transverse grooves are situated between the concentric ridges, and are more or less parallel to them. These grooves are, as a rule, only found on a limited part of the scale surface, and they occur more frequently in the periphery than in the part surrounding the centre of growth. These concentric grooves may be very narrow (whiting), Ophidium) or very wide (lateral areas in various Pleuronectids). When very wide concentric grooves co-exist with radiating grooves equally wide, the surface of the scale becomes divided up into calcareous areas of varying size. These areas may be irregular (posterior area of various Pleuronectids, scales of Gadus mola), or they may be regularly rounded and in the form of small medallions (scales of eel). The number of radiating grooves varies much in different scales from the same fish; these variations become very apparent in comparing scales from different regions of the body, rudimentary with well-developed scales. In extremely rudimentary scales grooves may not exist. In scales from the same region of the body the number of radiating grooves does not vary to nearly the same extent. The number of grooves of an individual scale is capable of varying with age. As regards the transverse or concentric grooves, there does not appear to be any doubt that these grooves, which are situated between the concentric crests, are formed at the same time as the latter. In regard to the radiating grooves, it appears that they multiply during the growth of the scale, at least in a very large number of cases.

If the number of grooves in scales increases with age, it may also become reduced. This fact appears true for the transverse grooves, as in scales in which these grooves are found (whiting, Ophidium) one usually finds them much more pronounced towards the periphery than towards the centre, where they may completely disappear. As to reduction in the number of radiating grooves, Mandl observed that they disappeared in old fish belonging to the genus Abramis, and in other old scales they evidently disappear in the area round the centre of growth. Baudelot remarks that "up to the present time (1873) the grooves on scales have not been explained in a satisfactory manner." Mandl regarded them as canals serving for purposes of nutrition of the scale; Peters as suture lines which rendered possible the growth of scales. Williamson held that they were erosions effected at the expense of the superior layer.
of the scale. Vogt thought the radiating lines as difficult to explain in young as in adult scales, and Blanchard regarded them as canals which had connection with the supposed respiratory function of scales. Dr. Salbey thought that they were excavations of the superior layer aiding the growth of the scale in surface extent. It appeared necessary to Baudelot to abandon all these interpretations of the grooves on scales. From his observations he held the following view: “The grooves of scales ought to be considered as lines or zones of non-calcification, that is to say, as lines to the level of which the calcification of the exterior layer of the scale has not taken place.” The exterior layer has centres of calcification which later unite with each other as these centres extend. “When the union of the centres of calcification takes place from the centre of growth towards the periphery and occurs at the same time in the transverse direction, that is to say, parallel to the external contour of the scale, there result radiating grooves; when, on the contrary, the union of calcigenous centres takes place parallel to the contour of the scale, without having taken place at the same time in the radial direction, transverse or concentric grooves result. When the union of calcigenous centres fails to take place both in the radial direction and transversal direction (parallel to the external contour of the scale) at the same time, there results the simultaneous existence of radiating and concentric grooves. Lastly, when the union of calcigenous centres takes place without order and symmetry, the surface of the scale shows grooves arranged in a more or less irregular manner. It is hardly necessary to add that when the union of centres of calcification takes place completely in all directions, there is no further trace of grooves at the surface of the scale.”

7. The perforating canaliculi. Under this term Baudelot described for the first time extremely small canals which traverse the scale through and through from the upper to the under side. Baudelot firstly observed these perforating canaliculi in the carp; but found them later in many other fish scales, both cycloid and stenoid. These perforating canaliculi are only found in the posterior area of the scale. In some types of scales they are easily observed, in others only with difficulty. In the scales of the carp the perforating canaliculi open externally in connection with the radiating canals of the posterior area, and traverse the scale through to the under side in a slightly oblique direction, and terminate internally on the inferior surface of the scale. This internal opening or ostiole is usually nearer the posterior border than the external ostiole, and further, if one takes a line down the middle of the scale, one finds that the internal ostiole is further from this axis than the external ostiole. In Mugil cephalus the canaliculi round the centre of growth present certain peculiarities which are noteworthy. They traverse the scale more obliquely, and have a larger diameter. At the external surface these canaliculi open into grooves or trenches and pass on towards the large canal, which in Mugil occupies the centre of each scale. The grooves in connection therewith anastomose with each other, and gradually enlarge as they approach the median canal, where they terminate by bending into a spout-like or canalicular orifice. The large canal in the centre of the scale should be considered as a species of collector in connection with the nearest adjacent canaliculi.
As to the mode of formation of these canaliculi, Baudelot remarks that he has not a sufficiently large number of facts to give a satisfactory answer to this question. He says, however, that where radiating canals exist, the canaliculi form themselves on their course, at their free extremities on the posterior border of the scale. At the extremity of the radiating groove there firstly appears a small depression; later by the mode of growth of the surrounding tissue this depression deepens more and more, and finally closes in at the posterior end, forming an aperture like a minute pierced gap across the lamina of the scale, which is very thin at this point. As the scale increases by the addition of new layers to its internal face, each gap become gradually converted into a narrow canal, in which the length varies with the thickness of the scale and with the distance of the canaliculi from the posterior border.

As to the nature and function of the perforating canaliculi, Baudelot throws out certain hints. He believes that the canaliculi give passage to a filamentous cord, which is either of the nature of connective tissue or a nerve-fibre. He is inclined to believe that it is of the latter nature, and if this is true, that there might be grounds for establishing a connection between the perforating canaliculi and the canals which traverse the scales of the lateral line. The scales of the lateral line receive nerve-fibres on their deep surface, and in their interior nervous structures have been demonstrated.

In Mugil, in all those scales showing similar passages to those of the lateral line, a certain number of perforating canaliculi anastomose with the median canal of each scale.

In the pike, many of the scales have a similar trench to those of the lateral-line scales. This trench, hollowed out at first, may be considered as analogous to the depressions which represent the first stage in the formation of the perforating canaliculi. In a sparoid fish showing a disjointed and equitant lateral line he found a scale which showed at its centre of growth a duct which penetrated obliquely from the internal to the external face of the scale. This duct, while much narrower than the median canal of the lateral line, was at the same time very much larger than the perforating canaliculi of adjoining parts, that is to say, a kind of transition between the two kinds of canals. From the preceding facts, which he throws out in passing, Baudelot thinks that if they are confirmed by later researches, a clear resemblance between scales of the lateral line and other scales would become apparent. This would also explain why in certain types all scales or a large number of them may revert to the characteristic features of scales from the lateral line.

8. The internal lacunæ of scales. Certain scales possess lacunæ developed in their interior. In Holocentron longipenne, for example, some of the perforating canaliculi show lateral diverticula which spread out horizontally in the scale substance. These diverticula constitute a system of lacunæ. In the scales of Hypostoma internal lacunæ are well developed, and constitute a vast system of anastomosing canals, in which the cavity communicates with those of the spines. In Dactylopterus valifans the scales are hollowed out in their central portions by large irregular lacunæ which communicate with each other. In the tunny the scales present remarkable lacunæ. In this case these lacunæ, which occupy all the median portion of the scale, form a species
of spongy tissue, limited at each side, namely, on the external and internal faces, by a thin plate of compact tissue. As to the mode of development of these lacunæ, Baudelot admits the absence of all knowledge; but he thinks that the "presence of these lacunæ in the tissue of certain scales establishes a clear analogy between the structure of these productions and that of osseous tissue." The lacunæ of the scales of the tunny and of Dactylopterus, for example, resemble very completely the lacunæ seen in the ossified connective tissue of the rays in the fins of various fishes (Gasterosteus, etc.). Ramifying lacunæ, such as are found in the scales of Holocentrum, can be observed with exactly similar characters in the operculum and suboperculum of the same fish, and as in the scales, the lacunæ of the opercular bones communicate with the exterior by ducts analogous to the perforating canaliculi. "These facts seem to show that the phylogeny of scales and that of osseous tissue should be associated."

9. The focus or centre of growth. Under this term one understands that more or less central part of the scale around which growth first takes place. In the rigorous meaning of the word the focus ought to be represented by a point which corresponds to the exact spot of origin of the scale; but in using this term zoologists have given this word a wider meaning, namely, that region of the scale in which formation first takes place in the life of the fish, and which is characterised by the absence of or irregularity of the concentric ridges. In some scales the focus is smooth or only very slightly roughened; in others its surface is marked by projecting calcareous reliefs, granulations, or tubercles, either laid down in lines or without any definite order; in others, again, ridges analogous to concentric ridges occur, which by their indefinite arrangement form an inextricable network, or a network of irregular meshes. The focus, as a rule, shows no grooves; but in some cases the radiating grooves are prolonged to the focus, sometimes retaining their original characters, sometimes, however, becoming interrupted from point to point, and thus forming small superficial lacunæ which are not disposed in any regular order. When these grooves reach the centre of growth (focus) they frequently anastomose with those of the opposed border. It is frequently difficult to define the precise limits of the focus, owing to the fact that an insensible transition is effected to the surrounding parts. The dimensions of the focus, however, show very great variations, not only in scales of different types of fish, but in scales from the same fish.

In the perch, minnow, and pike, Baudelot has shown how the dimensions of the focus may vary in the scales of the same fish; by the side of scales in which the focus is almost nil, one may meet with others in which the focus attains the size of one-half to two-thirds the total diameter of the scale. This fact alone is sufficient to demonstrate that the size of the focus is not proportioned to that of the scale. Some scales possess a very large focus, those of Labrus and Crenilabrus for example; others, on the contrary, possess a very small focus. The position of the focus in relation to the centre of the scale is very variable from one type to another. In some fish the focus occupies nearly the centre of the scale; this is the case, for example, in the lote, minnow, and eel; this fact appears more especially true when scales are small, rounded and concealed in the
depths of the skin. In the majority of scales the focus is carried backwards a greater or less distance from the centre of the scale, for example, in the perch, sole, brill, carp. In some cases the focus has been carried so far backwards that it is situated at the posterior border of the scales, as in several species of gobies. It is much more rare to find the focus carried forward from the centre of the figure; this is met with in the scales of the tench (*Cyprinus tinca*). Baudelot states that the scale increases at its periphery, and that there is not any true growth at the focus by intussusception; but only a process of simple repair, which may modify the configuration of the calcareous reliefs or cause their disappearance by transforming, for example, a surface primitively covered with regular concentric ridges into a granular surface with tubercles or with vermiform ridges.

Agassiz and Vogt regarded the focus as the result of the wearing down of the central portion of the scale. Peters successfully refuted this interpretation by observing that the frictional or wearing-down process could not take place owing to the fact that the scales are contained in pouches of the dermis, which would protect them. In order to explain the existence of the focus, Baudelot points out that scales frequently show zones with irregular ridges alternating with zones with normal and regular concentric ridges, and he concludes that the cause which produces this regularity or irregularity of the disposition of the ridges is itself very unstable, and he holds that it is some such cause which produces the focal region; in short, this hypothesis supposes a change in the mode of distribution of reliefs during successive epochs of the life. Baudelot held, however, that he had not a sufficient number of facts either to confirm or negative this hypothesis, and left the matter in abeyance.

10. *The tissues of scales.* Scales are composed of two substances: (1) *fundamental organic substance*; (2) *inorganic substance*. The fundamental organic substance belongs to the group of connective tissues (dermal); the inorganic substance consists of calcareous concretions of phosphate and carbonate of lime. The fundamental organic substance is more or less transparent and homogeneous in appearance, and is readily broken up into folia which are composed of elementary fibrils. By dissection or through the action of reagents, such as soda or potash, it is easy to separate the component folia of scales from one another. These folia are extremely thin, are superimposed the one upon the other like the leaves of a book, which become smaller as they approach the external face of the scale. The scale is more or less like a cone with a large base, and in which plates or folia are piled the one on the top of the other from base to summit. These folia separate from one another most readily in the median portion of the scale, but not so readily at the periphery, at which region, indeed, they adhere to one another so intimately that it becomes difficult to isolate them without tearing them and getting fragments of several adjoining folia. Isolated folia are somewhat transparent, flexible, and membranous. They are not entirely homogeneous, as with a high power they show in their thickness a fine striped appearance. At the periphery of the lamellae, where rents have been made, the tissue shows itself decomposed into fibrils or into bundles of fibrous tissue. The striae of adjoining lamellae do not follow the same direction, but cross at angles to one another. At the
focus the striae of adjacent folia cross each other usually at right angles; but this is not the case at the periphery, where they cross at very varied angles, sometimes forming vortices in which it is difficult to follow the direction of the striae.

The inorganic substance of scales consists of corpuscles of carbonate and phosphate of lime scattered in the depths of the folia of the organic fundamental substance.

There has been much difference of opinion as to the distribution of these calcareous corpuscles. Mandl maintained that the corpuscles were contained in a special tissue situated above the inferior surface of the scale. Agassiz held that these corpuscles are lodged near the superior and inferior surfaces of the scale. Peters believed that the corpuscles are found on the inferior surface of the scale, but never on the superior surface, as Agassiz had maintained. Williamson made use of sections, and was the first to recognise the presence of corpuscles in the entire thickness of the scale.

Baudelot agreed with Williamson in the main points, and after an analysis of the scale, layer by layer, enunciated the following more detailed points:

"(1) In the most internal folia of scales the corpuscles are few in number or entirely absent.

"(2) In the folia following the most internal the corpuscles become rapidly very numerous, and their number increases as one proceeds from the internal to the external surface of the scale.

"(3) Near the external surface of the scale, the corpuscles are so numerous that they form a sort of compact web in the thickness of the fundamental organic substance.

"(4) The external calcareous investment of scales is simply a conglomeration of fused calcareous corpuscles."

In other words, calcification of the folia of scales is more advanced as one approaches the external surface of the scale, and this one can readily understand, as it is on the internal surface that the formation of new tissue takes place. In each of the more internal folia of the scale calcification is more pronounced towards the periphery than in the focal region. In the focal region the corpuscles are less numerous, usually isolated and separated from one another by spaces completely deprived of calcareous deposits. Towards the periphery of the folia, on the other hand, the corpuscles are very abundant and become massed together throughout the fundamental substance. In the most external folia of the scale, in which the calcification is much more advanced, the corpuscles are seen to be numerous throughout the entire extent of the folia.

The corpuscles are not of the same volume at all points of the same lamella. In the focal region they are relatively large; but as one proceeds from the focus to the periphery they gradually diminish in size until they become of extreme delicacy. The volume of the corpuscles is not the same in the various folia of the scale; thus in the most recent and internal folia the corpuscles, where they exist, are usually much smaller than in the more external folia. The size of corpuscles seems to vary with the age of the scale; for example, in
the scale of a young fish the largest corpuscles are much smaller as compared with the largest corpuscles of a scale from an older fish.

The long axis of corpuscles does not present a uniform direction throughout the extent of the scale. The direction of the long axis generally agrees with the direction of the fibres of the folia to which the corpuscle belongs. It has already been noticed that fibres of consecutive folia of the scale cross one another frequently at right angles, and the same thing has taken place for the corpuscles which belong to these folia. Corpuscles of one, two, or several consecutive folia frequently become fused together. Corpuscles represent products of a crystalline nature, and exhibit a series of concentric lines which succeed one another from the centre to the periphery. This is not true for all corpuscles, as some have the appearance of vitreous substances, are perfectly homogeneous, and show no trace of concentric lines.

Baudelot concludes from his observations that the corpuscles are crystalline deposits effected in the tissues of the scales, and more or less modified by this tissue. They are of the same nature as the artificial products, studied firstly by Rainey* and then by Harting.†

11. The formation and growth of scales. Scales only appear subsequently to hatching, sometimes a long time after this has taken place; for example, in young eels measuring 7–8 centimetres in length they have not yet appeared. The scale originates as a spot of dermal calcification, which extends little by little, and thus comes to constitute a small solid lamella, which represents the primitive scale. The first lamella, once formed, sometimes remains closely united to the surrounding tissue, sometimes acquires a certain mobility; but this mobility is never complete, and the scale always retains intimate connections with the dermis by its internal surface and by its margins, and the external surface itself frequently shows adherences at the free margin. The young scale grows by the addition of new layers of increasing size, which add themselves successively to its internal face. This mode of growth explains how it is that the scale is considerably thicker towards the centre, and much thinner and less calcified at the periphery. At the internal surface of the scale, and at its margins, tracts of connective tissue are found, by means of which the scale adheres to the pouch in which it is contained; but at the external border, on the other hand, the line of demarcation between scale and dermal pouch becomes more and more marked. As to the subsequent progress of calcification, one can establish that it extends from the exterior towards the interior, and from the periphery of the scale towards the centre. In each layer the calcification is more complete on the border than in the central portion. These calcifications unite with each other, and constitute the calcareous crust of the scale surface.

As to the concentric ridges and spines, these appear successively on the borders of the scale as that gradually extends itself. One has to admit that

* "On the mode of formation of the shells of animals, of bone, and of several other structures, by a process of molecular coalescence, demonstrable in certain artificially formed products." Rainey, 1858.

all etenoid scales are cycloid at the beginning of their formation. Growth
does not take place equally in all scales of the same fish, as one may observe
scales of different sizes in different parts of the body. Although scales, as a
rule, form themselves by the successive addition of new layers to their
internal surface, there are some scales, such as those of the tunny and
Dactylopterus volitans, which present difficulties. These scales show internally a spongy tissue, hollowed out into lacunae of varying size. The
structure of these scales affords, according to Baudelot, a connecting link
between the tissue of scales and osseous tissue with internal lacunae, such
as one observes in the opercular skeleton of various fishes (Gasterosteus).

In the third part of his monograph, Baudelot takes up the question of
"scales considered from the point of view of classification." He considers
this question in relation to the following points:—(1) Connection of scales
with the integument. (2) The form of scales. (3) The dimensions of scales.
(4) The presence or absence of scales. (5) The ridges on scales. (6) The
spines on scales. (7) The grooves on scales. (8) The perforating canaliculi
and interior lacunae of scales. (9) The focus of scales. (10) The tissue of
scales. In summarising the results derived from a consideration of these
points, he concludes that none of these characters of scales taken by them-
selves can serve as a basis for the classification of fishes, that the most im-
portant of all of them, the cycloid and etenoid character, does not possess the
degree of importance which many zoologists have attached to it, and that the
other characters noticed are of still less value. Although each character by
itself is of little value, yet the characters of scales as a whole ought not to be
neglected in establishing natural groups. He recognises that in order to put
such a programme into execution a much more precise knowledge is necessary
of the external characters, structure, and mode of development of scales in
a large number of types of fishes. In this connection he refers to Steeg’s
paper as a useful essay on scales from the point of view of classification."

The next paper which I must notice is that by Ryder on the mechanical
genesis of the scales of fishes.† He says in his introduction "that fourteen
years previously he had suggested that the slow metamorphosis of the forms of
the crowns of the teeth in man, in the course of a vast number of successive
generations, might be ascribed to the continuous, slow, and cumulative action
of mechanical strains and pressures in definite directions, resulting in the pro-
duction of permanent stresses and consequent changes in the forms of the
crowns, especially of the molar series. . . . The present paper is an attempt to
apply somewhat analogous reasoning to a somewhat simpler, but no less
interesting problem in morphogenesis." Scales take their origin from a con-
tinuous subepidermal matrix, a basement membrane. This basement mem-
brane is thickest on the dorsal and lateral aspects of the body, as seen in
sections of the young, for example, in Batrachus tau, a scaleless form. It is
"seen in larval stages of scale bearing forms, and may be continuous with a
very thin basal membrane from which the primordial fin-rays of embryo fishes
seem to be partly differentiated. . . . Such a matrix appears to be co-extensive
with the entire epidermic layer of the young in many types of fishes, just at
the time when the scale commences to be developed."

* Steeg, 1857.
† Ryder, 1892.
Ryder's hypothesis seeks to account for the arrangement of scales in longitudinal and oblique rows in two directions, and for their state of imbrication. Scales are arranged in oblique rows showing two directions: (1) a direction from above downward and backward; (2) in the reverse direction, from below upward and backward. The scales may thus be enumerated in three different directions: (1) in a downward and forward direction; (2) in a downward and backward direction; and (3) starting from any scale in any oblique row, they may be counted either forward or backward longitudinally in the direction of the long axis of the fish. In archaic types, the number of scales in a longitudinal row on the sides of the body corresponds very exactly with the number of muscle-plates or somites of the body. The myocommata, or sheets of connective tissue intervening between the successive muscle-plates are attached with great firmness to the deeper layers of the skin or corium. The structural arrangements at the time of scale development noted above, affect and modify the subsequent growth of the scale matrix. During the swimming movements of the fish the entire integument is thrown into definitely circumscribed areole, the central portions of which remain in a passive condition, while the periphery is wrinkled and folded as a result of the action of the lateral muscles of the fish. In this way each and every one of the dermal and epidermal areole are circumscribed by the action of the fish in the normal act of swimming. In each of the circumscribed areole a scale develops; the continuity of its development with its fellows across the margins of the areole is prevented by the continual bendings or flexures to which the dermis is there subjected owing to the action of the muscles. As it is impossible to state clearly the details of Ryder's paper without also giving his drawings, I will content myself with quoting several of his sentences.

"It will be clear that in the case considered the arrangement and imbrication of the body is determined by the actions of the segmentally arranged muscles of the body. In other words, whatever has determined the development of somites has also, in the most clear and direct manner, determined the segmentally recurrent and peculiar trilinear and imbricated arrangement of the scales of many fishes. It may be urged that heredity has determined the number, arrangement, and the development of the somites, and therefore the development of the scale is also a sequence of hereditary influences working thus indirectly. This view of the case may be admitted without invalidating the conclusion that given the growing mechanism here described, the development of the scale would, under any circumstances, have been interfered with at the parts where the integument was being continually flexed, wrinkled, or folded, as it is around the integumentary areole wherein the scales are formed, as has been here proved to correspond with the facts."

Ryder summaries "two conclusions of prime importance:—

"(1) The scales of fish bear a segmental relation to the remaining hard and soft parts, and are either repeated consecutively and in oblique rows corresponding to the number of segments, or they may be repeated in rows as multiples of the somites, or segmental reduction may occur which may effect the arrangement of the scales so as to reduce the number of rows below the number of somites indicated by the other soft and hard parts."
“(2) The peculiar manner of interdigitation of the muscular somites as indicated by the sigmoid outline of the myocommata, as seen from their outer faces, and the oblique direction of the membranes separating the muscular cones, has developed a mode of insertion of the myocommata upon the corium which has thrown the integument into rhombic areolæ during muscular contraction. These areolæ are in line in three directions, and the folds separating them, particularly at their posterior borders, are inflected in such a manner by muscular tensions, due to the arrangement of muscular cones, as to induce the condition of imbrication so characteristic of the squamation of many fishes.”

The next paper which I must notice is a very important one by Dr. Klaatsch.* While acknowledging my indebtedness to and appreciation of this lengthened paper, I must at the same time agree with Ussow (see p. 202) in regarding some portions of Dr. Klaatsch’s work, for example, the section on the “Structure of the teleostean scale from the histogenetic standpoint,” as wanting in complete clearness.

The teleostean scale, its arrangement and position in the skin. The scales of Teleosteans are represented by more or less circular plates of hard substance, which exhibit considerable variation in their form. This variation is, however, insignificant in comparison with the general agreement which typical teleostean scales show with one another. Klaatsch chooses the cycloid scale as representative of the ordinary teleostean scale, not only because it presents simple conditions, but because it supplies a suitable object for placing the skin-covering of Teleosteans in line with that of Selachians and Ganoids. As examples of such scales, one may think of such as those of the salmon or of Esox. One distinguishes in such scales two layers: (1) an outer homogeneous layer and (2) an inner fibrillar layer. Each scale is in its anterior half arranged with regard to others in an imbricated fashion, namely, the anterior half of each is covered by three scales, one of which is anterior and dorsal to it, a second anterior and ventral, and a third directly anterior. The centrum of the scale is usually covered over, and scales surround the body in oblique rows.

For the arrangement of scales in the skin, he gives a figure and description of a transverse section through the skin of a young specimen of Cobitis fossilis.

Under the epidermis, which contains a large number of mucus cells, the dermis is seen to be raised in a series of projections, each of which corresponds with the posterior free end of a scale. Each scale lies in an oblique direction from behind forwards, and becomes enclosed in a compartment of the dermis, the so-called “scale pocket.” In this scale pocket one distinguishes an outer and an inner wall. The outer wall consists in its posterior part of loose connective tissue containing numerous chromatophores; in the anterior part the outer wall is composed of tense connective tissue, which is similar to the inner wall of the adjoining anterior scale pocket.

The fibrous projections of this connective tissue of the outer wall of the scale pocket unite themselves at the anterior border of the scale with the deepest layer of the dermis, in which the fibres have a course parallel to the surface of the body. The inner wall of the scale pocket in its posterior part unites with the outer wall of the adjoining posterior pocket. Further forwards it is

* Klaatsch, 1890.
built up of the fibrous processes of the deep dermis layer. Near the scale its condition changes, as immediately towards the inside of the same, numerous cells are found in a ground substance only slightly developed and not fibrillated. The fibres of the deep dermis layer have a similar arrangement to that of Ganoïds and Selachians.

One may easily ascertain this by observing a piece of skin from the surface. The fibres of one layer of fibrous bundles cross those of the next higher or deeper layer in such a way that, in relation to the long axis of the fish, the anterior and posterior angles of intersection are greater than right angles. The fibres surround the body in a diagonal direction to the body axis, corresponding to the rows of scales. Towards the musculature the dermis is bordered by a layer of cells which resemble the other cells of the dermis, but lie closer to one another. In this part chromatophores are also seen. Underneath the dermis the musculature only shows young fibres similar to those seen in immature forms. As regards number, the scales have nothing at all to do with the myocommata. Several scales are usually found on a myocomma; the relation to metamery suggested by Salbey does not exist.

The development of the teleostean scale has hitherto not been worked out; one only finds a few incomplete references to this subject. The first who takes any notice of the subject is C. Vogt, in his "Embryologie des Salmons," who mentions "poches épithéliennes," in which the scales are formed. According to him, these pockets are simply folds of the epidermal membrane. This point will be referred to further on.

Later Leydig devoted some attention to the structure of scales, but did not concern himself with their ontogeny. He says, "The scales of most of our fresh-water fishes appear partly as ossifications of flattened skin continuations which one generally terms scale pockets." He regards scales as fusion products, "peculiarly developed calcareous globules, concretions, or scale corpuscles," such as one finds on the lower side of scales in many Teleostians.

Baudelot held the same view as that of Leydig. Although Baudelot's work appeared in 1873, he does not make any note as to the part which cells take in scale formation; "according to him, the scale is simply a conglomerate of calcareous concretions or scale corpuscles, with whose measurements he fills many pages of an extensive treatise."

Development of scales in the trout. Klaatsch followed the development of cycloid scales mainly in the trout; but he also made use of Esoc and several Cyprinoids for some of the earliest stages. The following are the results of his investigations:

In the trout the first formation of scales appears several months after hatching. Trout 2 cm. in length show no scales, but somewhat older ones show the commencement of scale formation. Scales firstly originate in the anterior and median region of the trunk near the lateral line, and their formation extends from this region caudally, as well as ventrally and dorsally.

For this reason trout 3 cm. in length are suitable specimens for the study of scale formation, since older and younger stages occur near one another, the younger being more posterior. Before scale formation commences, the skin of a trout shows a thin epidermis and relatively very fine dermis. In the just hatched trout, the dermis is represented as a homogeneous layer of
little consistency. Within this lies a cellular layer resembling epithelium. This epithelial layer is that described by Hartschek as the "bordering epithelium of the dermis."

At the stage in which the first foundation of the scale appears the skin is about 0.03 mm. thick. Of that thickness the epidermis occupies about one-half, and consists of four to five layers of cells, of which the most external layer is somewhat flattened. In the remaining part of the epidermis the cells are somewhat cubical and show the presence of nuclei. Mucus cells with sickle-shaped compressed nuclei are also seen, and a thin basal membrane separates the epidermis from the dermis. The outer surface of the epidermis is smooth.

The dermis consists of a small number of lamellae lying horizontally upon one another. So long as there is no trace of scales, the lamellae in the dermis extend nearly to the epidermis. The dermis cells, which as in earlier stages lie in small numbers between its lamellae, show somewhat flattened nuclei. The cells become rather more numerous immediately beneath the basal membrane of the epidermis, and the nuclei here are slightly more circular in form than those of the other dermis cells. Chromatophores are also seen at this part; but of blood-vessels there is no trace in the dermis. Chromatophores are also to be seen situated above the bordering epithelium of the dermis. Internally to this last follows the musculature, the most external portion of which is made up of only young stages of muscle-fibres. The first foundation of the scale appears as an aggregate of dermis cells lying beneath the basal membrane of the epidermis; but neither the basal membrane nor the epidermis itself takes any part in the formation of the scale. The cells which gather together to form the scale foundation are distinguished from the other cells of the dermis in possessing larger nuclei and a better-developed protoplasmic body. This cell-mass, the foundation of the scale, resembles epithelial tissue. Each scale germ presses upward on the basal membrane of the epidermis as a slightly arched papilla. During this upward growth of the scale germ the upper surface of the epidermis remains smooth; but at the places where a scale germ is situated the epidermis is reduced from five to two or three layers of cells. In transverse section the scale germs are seen as papilla, whose highest points are not exactly at the centres of the masses of cells, but are situated slightly caudalwards. These cell-masses (scale germs), which approach the circular form in surface view, stand free from one another in regular rows, diagonal to the body axis. Later the entire cell-mass spreads itself out horizontally, and its elements arrange themselves in two slightly flattened layers. Between those two layers there appears a thin layer of strongly refractive substance. In transverse section it is seen that the formative cells lay down the new substance, alternately on the outside and on the inside, producing what looks like a slightly undulated plate. The form of the plate is approximately circular, corresponding to the form of the cell-mass. These plates can be isolated and represent small scales. The strongly refractive substance later on shows itself to be the hard substance of the scale: at what period this plate impregnates itself with lime salts Klaatsch has not investigated. The formative cells which give rise to the scale are known as scleroblasts, and they correspond to similar elements in Selachians and Ganoids. At this
period the minute scales appear as circular discs, which lie adjacent to one another in regular order; but they do not as yet show any special covering. The scales so far lie parallel to the upper surface of the body, and do not project nearly so strongly into the epidermis as they do later; but at the posterior end of each scale the epidermis projects inwards, as can be seen in transverse sections. In the strips of skin intervening between the scales, cells of the dermis lie embedded in great numbers in a ground substance consisting of a few irregularly arranged fibrille.

Above the anterior end of the scale several elements penetrate between the basal membrane of the epidermis and the scale, adding themselves to the scleroblasts already present there, and resembling the scleroblasts in their appearance. An increase of the dermis cells internally to the scales also takes place. As the scale was originally enveloped symmetrically on all sides by formative cells, a change in the distribution of scleroblasts is the more noteworthy. On the upper or more external surface of the scale they lie closer to one another than on the lower or more internal surface; but they lie particularly close to one another at the posterior part of the scale. As the latter portion of the scale is specially active in growth, the highest point of the scale germ becomes displaced entirely in the caudal direction. The slight inward invagination of the under surface of the epidermis, continued here from previous stages, becomes gradually considerably enlarged; but the epidermis by this infolding gains as little as previously any part in scale formation.

Contemporaneously all layers of the skin grow in thickness, and the epidermis comes thereby to consist of a large number of layers of cells. In the dermis also that part situated between the lamelle and the scales undergoes a great degree of cell proliferation. The scale comes thereby to lie on a layer of loose connective tissue, by which it is separated from the deeper part of the dermis, in which the ground substance had already undergone a lamellar differentiation. At the same time there takes place an increase of dermis cells between the epidermis and the scales, and new elements thus become added to the scleroblasts on the upper surface of the scales, while the uppermost or most external layers of the dermis separate scales and scleroblasts from the epidermis. The scales thus become enveloped on all sides by loose connective tissue, from which the scleroblasts receive new auxiliaries. The posterior end of the scale shows as yet no connective tissue covering. The result of this mode of growth is that the scale always inserts itself deeper in the epidermis. The scales, along with their envelopes of connective tissue, have the appearance of papille which press the epidermis before them in an oblique direction caudalwards. The epidermis during this process does not become uneven on the external surface, but, on the other hand, is thrown into folds on the internal surface. Klantsch regards these folds as equivalent to the "epithelial pockets" described by C. Vogt. A section shows the corresponding epidermic processes running out pointed in front and extending far underneath the posterior border of each scale. The position of the scale in the skin now undergoes an important change. The posterior border of the scale becomes pressed against the upper surface, and the anterior end expanding underneath the epidermic continuations, becomes sunk towards the interior. From the original horizontal position the scale passes into a position oblique to the upper surface. The
consequence of this change of position is that the scale, not being hindered by adjoining structures, can increase the extent of its surface in an oblique direction. A necessary result of further growth is that scales push themselves under adjoining anterior scales by their anterior borders, so that they begin to cover one another like tiles. In order to understand further changes it is necessary to bear in mind that all layers of the skin increase continuously in thickness. The deep lamellar layer of the dermis takes, in antithesis to early stages, a stronger growth, and in this development it is the outer layer next the scales which undergoes a change. The epidermis also grows, as well as the continuations of the same underneath the posterior part of each scale. In this inward growth of the epidermis no tissue change takes place; for instance, one finds in these continuations similar mucous cells to those in the rest of the epidermis. This growth of the epidermic continuations is not to be regarded as a process proceeding from the upper skin alone, but as the result of growth taking place in the entire skin. In this connection the constant increase of the scale at its posterior border is of significance. The anterior border of the scale inserts itself always deeper in the loose connective tissue of the dermis, whose stronger development towards the upper half of the deep dermis has already been noticed. It therefore happens that the scale does not lie next to the deep dermis; but it gives rise to an appearance as if the scales had pushed themselves between the lamellae. This takes place because the loose connective tissue underneath the scale gradually becomes differentiated in a similar manner to that which had taken place earlier in the deeper part of the dermis, and in this case also lamellar fibrillated bundles are formed. These lamellae do not, however, lie parallel to the surface of the body, but parallel to the scale. The lamellae form themselves in the same manner as the scales, growing stronger towards the anterior part; the dermis layer situated between the scales becomes so arranged that connective tissue septa exist between the scales. These septa, which are the inner walls of the scale pocket, are connected externally with the epidermic continuations, and internally they grade imperceptibly into the deep layer of the dermis. By the foregoing means the scale pockets come into complete formation. These scale pockets appear consequently as a result of scale growth. In this two different processes operate together: on the one hand the scale becomes separated from the epidermis by growing connective tissue, and so an outer wall to the pocket is formed in its anterior part; on the other hand the floor of the pocket and the posterior part of its outer wall is formed by the ingrowth of the scale into the loose portion of the dermis and by the development of the same. The floor of the scale pocket is of special significance in the development of the scale. The tissue of the dermis which produced the floor of the scale pocket retains immediately underneath the scale its indifferent state. Here there lie cells in a ground substance which is not yet broken up into fibrillae. When the same prove themselves active as scale formers, they lead to the formation of a deep scale layer, which shows in its histological relationship much peculiarity. A superficial view of the latest stages shows how the scales gradually insert themselves underneath the three next anterior, until we arrive at the condition found in older fish. The median point of the scale becomes distinctly prominent by the formation
of concentric ridges. It remains uncovered for a considerable time, until it also becomes overlaid by the posterior border of the next anterior adjacent formations.

Structure of teleostean scales from the histogenetic standpoint. The dermis cells which take part in scale formation are large elements with well-developed nuclei, each of which shows a distinct nuclear membrane, and also, as a rule, a large nucleolus. These cells lie at first so close to one another that they mutually affect one another in shape. From a circular form they pass over into a polygonal one. While the cells on the internal surface of the scale become disconnected from one another on the first separation of scale substance, different cell layers come into formation on the external surface. Above the deepest scleroblasts immediately overlying the young scale a layer of cells extends which easily allows itself to be lifted up in continuo. At the margins of the scale the original condition persists, as here the cells of the outer as well as the inner surface unite themselves into an almost complete covering for the scale substance.

The superficial scleroblast layer presents a very characteristic structure. Its polygonal-shaped elements simulate a flat epithelium. Between the protoplasmic parts, which stain deeply in carmine or haematoxylin, there exists a network which does not stain. This network appears like a system of intercellular spaces, and there is nothing so far to prove that the clear strips between the cells are an intercellular substance. The further changes of these cells clear up the meaning of the intervening substance. The cells undergo a process of change which seems to take place for all in a similar manner. Each cell extends itself in one direction, which is not quite determined in relation to the entire scale. It attains thereby a lengthened form, and the nucleus comes to have a more peripheral situation in the cell. The nuclei of adjoining cells during this process come to lie nearer one another. In all the cells a part containing the nucleus becomes distinct from a part in which there is no nucleus. In the latter part the protoplasm loses at one place its power of taking on stains, and in this part there appears a clear circular spot which resembles a nucleus in size and general form. There is no internal structure in this clear spot, which afterwards expands in the direction of that part of the cell farthest from the nucleus, and finally unites with the clear network between the cells.

The different stages correspond with a process of cell-metamorphosis: the clear strips between the cells, owe their origin like the clear spots in the cells above described, to a substance which has become differentiated from the rest of the protoplasm.

This substance unites with that part of the scale already existing. The nucleus and a part of the protoplasm are preserved. The substance derived from the cells is thus a secretory product. Klaatsch says, "An dem vorliegenden Objekte, welches für die Untersuchung des scleroblastischen Processes in Flächenbilde sich vortrefflich eignet, konnte ich nichts wahrnehmen, was zu Gunsten der Annahme spräche, dass Zellen in loto in das Produkt aufgingen; die Kerne zeigten keine Veränderung, ich sehe daher in der Bildung der Hartsubstanz einen Abscheidungsprocess." This product, the substance of the scale, is thus an intercellular substance.
hardened by the deposit of lime salts, and the described cell layer is simply a layer of scleroblasts, which are only distinguished by regularity of arrangement and by sharp marking of individual stages of the scleroblastic processes from the deeper cells of a similar kind with which they are continuously dependent at their borders. The nearer the scleroblasts are towards the margin the more do they show (though here no longer separable into layers) an increase of their cell-body in a tangential and a decrease in the radial direction in relation to the entire scale. As in other Physostomi, ridges are formed on the external surface of the scales of the trout. These ridges have a concentric arrangement on the scales of this fish, which is not, however, a general rule for superficial reliefs. In the trout the cells concerned arrange themselves so that they correspond exactly with the concentric ridges. One might expect that the superficial scleroblast layer would cover the deeper cell layer with its product, so that the constituent parts of the last would be taken up into the interior of the scale substance. This does not, however, take place in the trout. The cells arrange themselves as they pass through the changes described, so that they come to lie on the external surface of the ridges and contribute to the enlargement of these. They elaborate, as it were, the upper relief surface of the scale, for which the deeper cells had only supplied the foundation.

In the older stages and in the mature condition of all the scleroblasts there remain only the nuclei and small masses of protoplasm. One sees the cells lying on the surface of the scale; if one takes a scale from a living fish, for example from one of the Cyprinoids, and observes it in a fixing fluid, say chrome acid, then one easily recognises circular nuclei surrounded by protoplasmic masses which extend in fine continuations. A similar condition to that in the trout appears in other Teleostean; in many Clupeoids, for example in Elops saurus, Albula conorhynchus, cells are found perfectly similar in their arrangement to those in the trout and surrounded by scale substance; these represent true osseous cells adjoining the concentric ridges. In other forms there are numerous osseous cells present in the scales.

In Osteoglossom, for example, the wealth of bony cells, and in consequence the thickness of the cell-containing layer, is very apparent. In this form a true cell-containing osseous tissue constitutes an essential part of the scale; in the trout scale, so far as it has hitherto been observed, a similar tissue must be recognised. Its scleroblasts are osteoblasts; whether these become enclosed by their product or not is of subordinate significance, as in related forms sometimes the one, sometimes the other is the case.

 Originally the outer and the inner surfaces of the scale are alike in regard to their scleroblasts. On the inner surface, however, the scleroblastic processes gradually take another direction. As the outer and inner scleroblasts gradually pass into one another at the margin of the scale, and as both originate from the same cell material, no sharp separation can be drawn between them.

The scales retain for a lengthened period of their ontogeny the structure of a thin bony plate, whose growth takes place especially at the margins and at the external surface. Not until the time when the scales have reached the condition of being a tile-like covering does a considerable increase of volume
commence on the inner surface. The scale has here received, by the formation of a scale pocket, a connective tissue foundation. It appears that this lower layer gradually differentiates itself so that it becomes similar to the deep lamellar dermis layer, but that close to the scale a layer of cells persists, which continues in an indifferent condition, in so far as the tissue surrounding it still shows no fibrillar structure. This cell material on the floor of the scale pocket becomes a matrix for the so-called lower scale layer. In its fibrillar structure and the lamellar layering of the fibrils the lower scale layer agrees with the dermis tissue; by the total absence of cells it differs from that tissue. We cannot, however, assume from the first factor that the lower scale layer owes its origin to a development of connective tissue fibrils, for this is contradicted by the second factor and by the genesis of the layer. If previously differentiated dermis tissue of the scale pocket were included directly in the substance of the scale, there must exist a connection between scale and scale pocket in order that both of these may pass directly the one into the other. Secondly, the cells already occurring in the dermis tissue must be found again in the interior of the scale after the inclusion of the tissue in the interior of the scale. Neither of these occurs; in the interior of the lower scale layer there is no trace of cells or cell remains, and the scale is separated from the dermis tissue by an indifferent zone.

From the previous histogenetic facts one gains the following ideas as to the histological structure of scales:—

The outer layer consists of bony tissue. This layer is homogeneous and is deficient in any special structure, except for a slight lamellar layering (see, for example, Williamson, 1851, plate xxviii., fig. 9, of the Carp). The chemical composition consists of amorphous phosphate of lime and carbonate of lime. The formative cells of this layer are situated chiefly on the upper surface. They represent that which Williamson has described as a membrane, on which the growth of the layer depends. The scleroblasts form the superficial relief of scales. If they become enclosed in their own secretory product, then bone corpuscles are found in a great variety of conditions as regards number and arrangement. On the addition of hydrochloric acid the entire layer dissolves, but somewhat slowly. There is no difference in reaction with this acid between a piece of fish bone from the internal skeleton and the external scale layer; both develop at first rapidly and then more slowly carbon di-oxide.

The lower scale layer consists of fibres united into bundles, the fibres all running parallel within the bundles. The bundles of one layer again lie fairly parallel to one another, and cross those of the next higher and deeper layers at acute angles. There are usually three different systems to be distinguished in a scale, which cut one another at similar angles. This tissue agrees with tense connective tissue, and especially with that of the deep dermis layer. Consequently it appears right, as most authors do, to regard the lower scale layer as the connective-tissue part of the scale, yet no one has placed the peculiarities of this tissue in a clear light. This should be done in two directions: firstly, in regard to the adjoining connective tissue of the scale pocket; secondly, in regard to the external scale layer. As regards the first point, development has taught that the lower scale layer does not represent pre-
existing connective tissue of the scale pocket which has become annexed to
the scale. In regard to the deeper-situated connective tissue, this questionable
layer must be defined as tense connective tissue without cells, whose formative
cells probably originated from the connective tissue of the scale pocket. "The
development of this peculiar tissue can only be fully understood by taking
into consideration phylogenetic factors extending far backwards. Its peculiar-
arity may, however, be partly explained by reference to the development of
the entire dermis. As Hatschek has shown, and as I also find in the trout,
the dermis consists originally of a layer, the formative cells of which lie only
on the inner side. The formation of the fibrillar structure of the layer is
independent of cells, which only arrive later in its interior. The dermis cells
return likewise to an embryonic stage in the course of scale formation, and
it is conceivable that events which govern the formation of the entire dermis
repeat themselves in detail."

Regarding the relation of the lower to the upper layer, it is of significance
that the upper layer exists for a long time alone, and that it is not till later,
when the covering of the scale has completed itself, that the other part of the
scale first appears. There exists indeed a genetic relationship between both
layers, and the external bony layer has indeed occasioned the formation of the
second. But now as it is a matter not simply of a connective-tissue lower
layer of the original scale, but of an integral portion of the entire structure, it
follows that a sharp separation between both layers is as little tenable as a
separation between the formative cells of both surfaces. At the margins of the
scale the layers cohere intimately with one another. As the lower layer
becomes impregnated with calcareous salts, a closer coherency is by that means
given to both layers.

This impregnation with calcareous salts never takes place in the lower layer
to the same extent as in the upper layer; the substance remains little capable
of resistance against alkalies; but Klaatsch believes that a sclerotic-like forma-
tion takes place, though in lesser degree. The calcareous concretions which
Mandl has described thus appear in the lower layer. They are ovoid, layered
bodies which are largest in the centre of the scale. Immediately beneath the
outer layer they lie so thick and congregate so intimately together that
Williamson has made a special third layer out of that part. Leydig referred
to them as "Kalkkugeln." He overrated their significance in scale formation.
"Now they again gain significance, but in another sense to that which the earlier
authors thought. These formations appear as the lower scale layer gradually
becomes changed by a sclerotic-like formation. The scale represents a plate,
which consists of an outer and an inner layer. The outer is bony tissue, the
inner owes its origin to connective tissue, 'das in den Sclerosirungsprocess
einbezogen worden ist; sie besteht aus theilweise sclerosirten Bindegewebs-
lamellen, zwischen denen keine Zellen liegen.'"

In a later paper Klaatsch* returns to the question of the development of
the teleostean scale, and comes to the conclusion that it follows the same
course as that of the bones of the head, which he now describes. He points
out that his former work requires correction as regards the origin of the
elements which form the scale. The scleroblasts in reality arise from the

* Klaatsch, 1894.
etoderm, and not from the connective-tissue layers. Those beneath the scale (the lower scale layer) are budded off from the ectodermal invagination, which grows in under the posterior end of the scale.

To Ussow we are indebted for a paper on the development of the cycloid scale of Teleosteans. This author differs in a number of points from Klaatsch's views on the same subject. I shall endeavour to give a summary of Ussow's paper.

The scale of Teleosteans is built up of two layers, the structure of which is not agreed upon by the various authorities. Hofer, for instance, considers the first and outermost layer of the scale to be composed of a form of dentine which he terms "hyalodentine," and speaks of the transformation of this special tissue into common dentine. The second and innermost layer of the scale is, according to Hofer, formed from the dermis.

Klaatsch, from the presence of minute osseous bodies in the first layer of the scale, holds that this layer is built of ordinary bony tissue. He believes that the second layer of the scale is formed out of connective tissue which is developed from the scale pocket.

Leydig and Baudelot regarded the scales of Teleosteans simply as a conglomeration of calcareous concretions or little scale bodies.

In regard to literature dealing with the development of scales, Ussow cites the following three papers:

(1) Klaatsch, "Zur Morphologic der Fischschuppen und zur Geschichte der Hartsubstanzgewebe."

The species which Ussow selected for the study of scale development were the following:—In the family Cobitidæ, Cobitis tenia, Cobitis barbatula, Cobitis fossilis; in the family Cyprinidæ, Lencaspins delinatus, Leuciscus rutilus, Carassius vulgaris.

As the origin and development of teleostan scales takes place from the mesodermic elements of the dermis, Ussow first gives some notes on the epidermis and dermis of Cobitis tenia as an example. In young examples of Cobitis tenia the skin is imperfectly developed and the epidermis is thicker than the dermis. In such young stages (embryos 4 cm. long) mucous cells are present in the epidermis in great number. The dermis consists at this stage of numerous fibres and cells embedded in an intermediate ground substance. In older forms the epidermis becomes much thicker and the mucous cells increase in number. The dermis also becomes thicker at the expense of connective-tissue fibres which cross under one another almost at right angles; these fibres, surrounding the body of the animal, lay themselves down in diagonal lines in relation to its longitudinal axis. The dermis is separated from the muscles by an epithelial layer of cells, not clearly marked.

* Ussow, 1807.
out in all, which Hatschek termed the "marginal epithelium of the cutis." According to some authors, the dermis is separated from the epidermis by a thin membrane, a distinct and independent structure, sometimes termed the ground membrane. Tolstj, in his "Lehrbuch der Gewebelehre," however, says, "It has now been almost generally accepted, not as an independent structure, but as a modification and thickening of the upper layer of the connective tissue ground substance." Ussow thinks that this membrane as an independent structure does not occur in the families Cobitide and Cyprinide, but simply that a transition substance of connective tissue devoid of fibres lies between the epidermis and the dermis.

The first stage in the development of a scale consists of fairly distinct and prominent aggregations of mesoderm elements in the upper half of the dermis, immediately beneath the epidermis. The cells forming such a papilla, as we may call these aggregations, differ at least in the beginning from the other cells of the dermis, and no ground substance is developed between them. This papilla gradually grows out in a horizontal direction, pushing the epidermis before it slightly upwards. When the papilla has reached a certain stage, a change takes place in its constituent cells. All cells excepting the lower become more circular in form and their nuclei gradually become more transparent; the lower cells, on the contrary, are, as before, highly coloured and their nuclei are spindle-shaped. In the next stage a separation of the elements of the papilla into two layers, an upper and under, becomes distinctly observed. Between these two layers a thin strip of highly refractive substance stands out prominently. At the commencement this strip does not extend throughout the entire length of the papilla, and one may see, in sections, that it is thickest at the centre, and gradually thins out towards its border, until at the end of the section of the papilla the strip is not visible.

The secretion of this refractive substance thus does not commence with the peripheral elements, but with the cells found towards the centre of the papilla. In further development, the substance of the first layer of the scale shows itself throughout the entire length of the section of the papilla, and the strips also become broader; meanwhile the papilla grows out in a horizontal direction. In this way a round curved plate originates, lying parallel to the upper surface of the body of the fish close beneath the epidermis. The upper and lower surfaces of this plate are formed out of scleroblast cells (the formative cells of the scales). The upper layer of scleroblasts simulates in its appearance a flat epithelium with clear spaces between its component cells. Later, each of the constituent cells changes, its nucleus comes to lie towards one end, and a circular colourless space appears at the opposite end. Klaatsch held that the clear spots within the cells fuse with the clear spaces between the cells; but Ussow did not observe any such fusion in his preparations. Klaatsch's description of these processes does not appear at all clear to Ussow. Klaatsch says that the cell structure on the external surface of the scale shows differentiation into several layers of cells, and that these cells build up the substance of the first layer of the scales. The question would naturally arise, how it is that the cells of the lower row do not become covered by the product of the upper cells. It would seem that the lower cells would become quite changed by the product secreted on them; but according to Klaatsch this does not
take place, for he says, "An dem vorliegenden Objecte, welcher für die Untersuchung der scleroblastischen Processes in Flächenbilde sich vortrefflich eignet, konnte ich nichts wahrnehmen, was zu Gunsten der Annahme spräche, dass Zellen in toto in das Product aufgingen; die Kerne zeigten keine Veränderung, ich sehe daher in der Bildung der Hartsubstanz einen Abscheidungsprozess." In regard to the above, Ussow reiterates, "Alles das ist mir ganz unklar."

According to Ussow, the further development of the first layer of the scale takes place in the following manner:—

The cells overlying the substance of the first layer of the scale already secreted appear to waste themselves down more rapidly than the lower cells from the product secreted by them, so in the following stages one frequently sees a transparent strip of homogeneous substance in the position of the future scale; underneath this transparent strip and immediately united with it lies a row of scleroblasts with easily observable nuclei; on the upper side of the clear strips, on the contrary, one only sees three or four cells, the size of whose nuclei as compared with those of the lower scleroblasts is distinctly smaller. In still later stages one only meets with one or two such nuclei, and those much smaller than the nuclei of the lower scleroblasts. In section-cutting also it is easily seen that the overlying nuclei readily become loosened from the clear strips of the first layer of the scale, while, on the contrary, those elements lying beneath the clear strips form part of the latter, and never loosen themselves from it. In following stages the size of the underlying scleroblasts decreases, and at length there only remain, as in the case of the overlying cells, long extended, closely adjacent nuclei without trace of plasma, on which the first layer of the scale is formed.

Summary of preceding development.

1. The cells of the papilla arrange themselves in two layers, the upper and under; between these two layers there appears a thin strip of refractive substance, the substance of the first layer of the future scale.

2. The cells of the upper layer (the over-lying scleroblasts) use themselves up in the formation of scale material (its first layer) more rapidly than those of the under layer (the underlying scleroblasts); in consequence of this, one gets the stage of a plate with cells of the lower layer apparently enclosed therein.

3. The first layer of the scale is apparently the product of the scleroblasts, that is to say, it is due to the change of the plasma of the latter into dentine-like substance.

About this time, when the first layer of the scale is quite complete, the change of its position in the dermis commences. Its posterior end (that turned towards the tail of the animal) raises itself gradually and presses on the epidermis; the anterior end, on the contrary, becomes sunk in the deeper layers of the dermis. This change in the position of the scale comes about through the formation of the so-called "scale pockets." Between the plates of scale substance there exist free portions of the dermis which lie close on the epidermis in these intervening spaces, and contain small
aggregations of ordinary connective-tissue cells. By degrees the number and size of the cells increases, and there arise between them thin connective-tissue fibrils. Sections seem to show, without any doubt, that these fibrils of connective tissue in the scale pocket are directly formed at the expense of cells of the dermis, and are their immediate elongation. The developing connective tissue of this intervening part grows, as it were, between the epidermis and the anterior end of the scale, the horizontal position of the last gradually changing into an oblique position; the posterior end of the scale cuts into the epidermis, and envelops itself in this as in an envelope. The large development of connective tissue, the formation of the scale pocket, is thus the cause of the change in the position of the scale from a horizontal to an oblique position. The connective-tissue pocket itself appears as a newly developed connective-tissue layer, which lies between every two scales, the layer surrounding the scale on all sides (at least on the lower two-thirds). Owing to their oblique position in the skin of the fish, the scales can extend themselves in all directions without hindering one another in their growth.

When the first layer of the scale and the beginning of the connective-tissue pocket have already been formed, a layer of transparent, quite homogeneous substance appears at the border of the dermis underneath the scale; this layer contains pear-shaped nuclei, which increase very rapidly during the development of this layer; nucleoli are, as a rule, not observed. Klaatsch regarded this layer simply as cells of the dermis. According to Ussow, however, they are the lower elements of the papilla still remaining behind; during the entire development of the first layer of the scale they retained the characteristic spindle-shaped form of the basal elements of the papilla; but at this time they commence to increase in size and number, and between them a transparent intervening substance comes into appearance; further, one finds in longitudinal sections that this developing second layer enters into close connection with the first layer.

In this second layer one also finds nuclei which are plainly distinguishable by their size and pear-shaped form. No striation, no fibrils, are at first to be seen in the layer. At a later stage, however, we find a scale, which now consists of two distinct layers, the upper already known as the hyalodentin layer, and the lower without cells, but with fine strie parallel to the upper surface of the scale. How does this striation originate? From what are those longitudinal fibres of the second layer formed? Klaatsch says the following: "In order to understand the structure of the second layer of the scale, one must know the formation of the entire dermis." According to Klaatsch, the dermis at the commencement of development consists of a layer on whose inner side lie the formative cells. The breaking down of the dermis into fibrillae does not depend on those cells, which only penetrate into it much later. In the development of scales, the process which took place in the development of the entire dermis repeats itself, but in lesser degree. But the possibility of a direct appearance in the scale of the dermis of the connective-tissue pocket, already differentiated into fibrils, Klaatsch denies: he asks, "Where then do the connective-tissue cells disappear, for one finds no cells in the second layer of the scale (in the trout)." Ussow says, "I think my preparations show fairly clearly that the second layer develops itself anew, and is not merely
a part of the connective tissue of the scale pocket. As concerns H. Klaatsch's explanation, it is not at all clear to me, because the development of the dermis is also not clear." H. Klaatsch says that threads arise in the dermis without any participation of its cells; but literature seems not wholly to confirm this view, as we read, "Die Fäden aus Zellen entstehen, indem sie aus dem Plasma der letzten hervorwachsen (Ranvier)." Ussow then proceeds to note the varying opinions of different authorities in regard to the origin of the fibrils of connective tissue, and he concludes his remarks on this subject with the following sentence:—

"Eine genauere Vorstellung von dem histogenetischen Vorgänge der Fibrillenbildung auf Grund direkter Beobachtung zu geben, ist nun freilich scheiterig und mir sind nach wie vor auf mehr speculativer Erörterungen angewiesen."

In his preparations, Ussow sees something quite different to that described by Klaatsch. According to Ussow, the first phase of development of the second layer of the scale begins with a great numerical increase of the mesoderm elements underlying the first layer of the scale, then a transparent intermediate substance appears between them, firstly in a small degree, then always more and more, by which process the cells now become quite sunk in the intermediate substance. Ussow points out that in one of his figures (6u) one sees the dermis developing, which consists of cells embedded in a ground substance, and that this figure much resembles the figure showing the development of the second layer of the scale. He regards it as possible, as Klaatsch did, that in the development of the dermis these cells pass later towards the margins of the ground substance, and that the breaking up of the dermis into fibrille does not depend on these cells. But he asks if one can conclude either from his own or from Klaatsch's preparations that the fibrille originate without participation of the cells.

He says, "Mir scheint es, man kann nur sagen, dass man die Erscheinung der Schraffirung nur dann konstatiren kann, wenn die Kerne allein in dieser zweiten Schicht nach unten gegangen sind (fig. 7q), aber das heisst doch nicht, dass das Zerfallen in Fibrillen ohne jede Theilnahme der Zellen geschah, um so mehr als während der ganzen Entwicklungszeit der Zwischensubstanz der zweiten Schicht die Zellen in diese Zwischensubstanz versenkt waren und nicht an ihren inneren Rändern lagen; das letztere scheint mir geradezu unverständlich zu sein; diese Schicht ist so dünn, dass an welchen der inneren Ränder—den oberen oder den unteren—man auch diese zellen versetzen möchte, sie doch in der Schicht der Zwischensubstanz liegen würden."

He gives the following summary as to the development of the second layer of the scale:—

(1) "The formation of the layer of intermediate substance precedes the formation of the second layer of the scale; the intermediate substance contains large nuclei embedded in it, whose plasma cannot be distinguished from the intermediate substance itself; that the position of the formative cells is on the inner side of the strips of intermediate substance cannot be urged, in consequence of the insignificant width of that layer.

(2) "Such a substance with large nuclei we find firstly on the floor of the pocket, then beneath the first layer of the scale closely bordering on it.
(3) "This intermediate substance is formed at the expense of the basal elements of the papilla. As to the possibility that the fibrillae of the second layer of the scale may develop themselves at the expense of the intermediate substance by immediate breaking down into such, without participation of the cells, one can say nothing definite, for the reason that there is no possibility of distinguishing the plasma of the formative cells from the intermediate substance itself."

The reliefs on the surface of scales. Ussow has only studied the formation of these reliefs in cycloid scales. In perfectly developed scales this relief has most frequently the form of rolls or cylinders, which cover the entire surface of the scale and run parallel to its border. In sections the rolls generally appear as small elevations of transparent homogeneous material, the appearance of which does not differ from that of the first layer of the scale. One finds a cell on such a roll or often behind it. The question might at once be asked, Where do these cells come from? Klaatsch says that these cells make their appearance out of the connective tissue of the scale pocket, and that as they penetrate into the intermediate space between the epidermis and the scale (in its upper part which has penetrated into the epidermis) as well as between the lower part of the scale and the pocket, they arrange themselves on the external surface of the scale in curved rows, and form, always in front of themselves, the substance out of which the rolls are made. Ussow saw such aggregations of cells in his sections, but in distinctly later stages than those figured by Klaatsch, namely when the reliefs at the sides of the scale are already completely formed; but at the stage when those reliefs occurred for the first time, no such cell aggregations existed. Ussow regards it as very possible that these cells later take part in the formation of the reliefs, but he believes that the commencement of their formation arises at the expense of the peripheral elements of the papilla, and that for the following reasons: "Commencing with the stage of a plate of scleroblasts, one finds in all subsequent sections the following formation: at the ends of the scales one observes masses of cells which differ in form and colouring from the scleroblasts of the plate, and are similar rather to the peripheral and basal elements of the papilla; they are, namely, much smaller than the scleroblasts and stain more deeply; in a word, they are cells which have taken no part in the formation of the scale, as the cells which form the scale change their form and appearance, their nuclei become larger, get a pear-shaped form, and are not so intensively stained. In following stages, tooth-like projections formed of transparent substance become observable at the ends of the plate, where the cell-masses were situated; behind each tooth lies a cell, or more properly only its nucleus, for the plasma has apparently been spent in the formation of the roll or cylinder which appears as a tooth in transverse section."

In connection with cycloid scales, Ussow believes that the teeth or small spines are not in any true sense comparable to rudimentary forms of the spines of placoid scales either in internal structure or development, but that there is merely an external resemblance. He holds that these spines are built of the same substance as that of the entire upper substance of the scale, that is to say, according to Hofer, of hyalodentin.
Ussow concludes his paper in the following words:

"The scale of Teleostea is a plate consisting of two layers. The upper layer (including the relief) consists of homogeneous tissue without any structure (frequently one can, however, observe on focussing a slight striation running parallel to the upper surface of the scale). This layer originates at the expense of the mesoderm elements of the dermis, at the expense of the so-called scleroblasts; its inorganic portion consists of amorphous calcium phosphate. The tissue of this layer is an ordinary simple bony tissue."

"The lower layer of the scale also originates at the expense of the same mesoderm elements. It is formed in part out of indurated (sclerosirten) connective-tissue fibrilla, between which no cells exist (in the species investigated by me). One terms its tissue a tense connective tissue."

The next paper which I notice, that by Hoffbauer* on the "Age-determination of carp by means of their scales," bears more distinctly on my own contributions on the scales of marine fishes than any of the papers previously mentioned. Dr. Hoffbauer's work is that from which my investigations had their origin, and I would therefore lay all due stress upon it. This author showed that carp bred in pond or aquarium, for all of which he had exact knowledge as to their age and history, possessed in their scales a means of age-determination.

The scale of a carp shows the following structure:—There are two distinct areas, firstly, a non-transparent part covered by the upper skin, and situated towards the tail of the fish, which may be termed the posterior field or area; and a transparent part enveloped in the scale pocket, which may be called the anterior field or area. Only the anterior area comes into consideration in the determination of age. This anterior field, as distinguished from the posterior, shows fine lines which run approximately parallel to the margin of the scale, and apparently take their origin from a more or less median point lying back towards the posterior area of the scale. This median point is the centre of growth, and constitutes the oldest portion of the scale, characterised by the absence of lines or striae. He describes these lines or striae in the anterior area of the scale as concentric lines or striae, which show much similarity in their arrangement to the annual rings seen in the transverse sections of trees. The concentric lines consist of ridge-like elevations of the upper surface of the scale, in consequence of which the upper surface is rougher to the touch than the under surface. The formation of these concentric lines has a very close connection with the growth of the scale. According to Baudelot, the lines are due to the fact that the lower surface of the scale, consisting only at first of a small thin plate (the centre of growth), gradually lays down lamellae which always become larger in peripheral circumference, and on their free projecting margins concentric lines form themselves. It was at one time believed that a new lamella was formed each year, and that the concentric lines were the thrown up projecting margins of individual lamella; for example, that a twelve-year-old fish had twelve individual lamellae and twelve concentric lines corresponding to the number of lamellae. In a previous paper Hoffbauer showed that this accepta-

* Hoffbauer, 1869.
tion was incorrect (Allgem. Fischerei-Zeit, 1898, Nr. 19), as firstly the number of lamellae is not the same as that of the concentric lines, and secondly the total number of concentric lines is much greater than the number of years. The number of concentric lines which form themselves at the free margin of the lamella stands, however, in direct relationship with the growth of the latter. As a result of this, the comparative distance of the concentric lines from one another also changes; it is greatest at the time of greatest growth, that is to say, in the summer.

He gives a diagrammatic transverse section of the scale of a two-year-old carp. He notes the difficulty of investigations dealing with the compounding of the lamellae, that is to say, their number in relation to the size of the scale and their relation as a foundation for the concentric lines, as the hardness of their material renders it difficult to secure intact sections. In addition to the concentric lines, there are also radial lines on the surface of scales, the arrangement of which he considers to be of some service in the determination of age. He notes the presence of scales which differ in their structure from that described above. This variation from the normal consists of an expansion of the centre of growth so that it sometimes comes to occupy quite an extensive area, and there is a corresponding reduction of the number of concentric lines; but other scales from the same carp will show usually the normal arrangement. This deformity shows itself in very intensively developed carp, whose quick growth is expressed in the structure of the scale which does not form concentric lines to the usual extent.

Age-determination from the scale. The hypothesis upon which, in the first place, his method rests is the mode of the carp's life.

"It is clear, that in an animal which has a so-called winter sleep, whose means of nourishment decreases in autumn at the commencement of colder days, and whose body-weight remains the same in winter-time even under the most favourable circumstances, while in warm months much growth takes place as a result of a rich supply of nourishment, this reaction makes itself evident in a corresponding manner by changes in the structure of the body. We find that this phenomenon is shown, not only in every animal with such a mode of life, but it is true also in the plant world."

He believes that this change in the nourishment of the fish in summer as contrasted with winter shows itself in the scale as well as in other organs of the body; but the former is particularly well adapted in its structure to show the effect of the change.

He says, "As I have now investigated hundreds of carp scales with the most favourable results, I may indeed accept with complete assurance the truth of my hypothesis."

He acknowledges that one finds individual scales from which age-determination would be difficult, and that there are other scales which would tend to make the inexperienced worker very doubtful; but the uncertainty disappears after observing several scales from the same fish, as among them some would be found showing more distinct demarcations.

He then describes the superficial structure of a scale taken from a carp at the end of its second summer, namely, in late autumn, as illustrated by a photomicrograph. The means of determining the age is, as previously mentioned,
found in the arrangement of the concentric lines on the scale surface. The best way to observe the arrangement of those lines is to begin at the centre of growth, and to pass straight outwards to the median border of the anterior area. The first lines round the centre of growth are rather irregular and interrupted, and are comparatively widely separated from one another; then follow more regular lines, which lie close to one another until they run into a bordering zone appearing somewhat darker. This zone marks the end of the first year's growth. In the second zone (the second year's growth) the arrangement of the concentric lines shows a repetition of that occurring in the first year, namely, firstly, irregular lines comparatively separated from one another; secondly, more regular lines with little separation between them. In scales of carp observed at the end of the third summer, a third zone shows itself similar in general arrangement to the last. "The number of concentric lines within a year's zone is, in individual scales from a scale row of the same carp, running, for example, close above or beneath the lateral line, approximately the same. Their number only decreases at those places where the scales themselves become smaller, as at the gill-slit and at the tail; the number is also only subject to slight fluctuations in corresponding scales on the right and left sides of the same individual fish; in corresponding scales from different individuals it can, however, vary considerably, according to more or less intensive growth within a year."

He gives a statistical table to bring out these points, in which he shows the number of concentric lines in individual scales in the row of scales dorsal to and above the lateral line in the direction from the gill-slit to the tail. The structure described above is seen in all normally formed scales, that is to say, from carp living under favourable and natural conditions. He, however, also considers less favourable conditions. The fish's growth may have an irregular course, it may grow faster or slower. For example, what influence has illness, or want of food, or both of these, for one or several years upon the method of age-determination.

But, "in this case, the structure of the scale does not leave us in a difficulty; on the contrary, we gain from it, in a manner, a self-registering, infallible control over the mode of life of its bearer." He takes a case to show this point. He commences with the most unfavourable case: the case of a carp in its third summer which had grown slowly all its life in consequence of less food. This mode of life showed itself in the arrangement of concentric lines at an equal distance from one another within a period of growth. As a result of this, the border separating one year from another becomes more indistinct. As a rule, one sees a divergence of the concentric lines at the age border where the posterior area meets the anterior area at the right and left of the concentric lines. If one follows this divergence towards the front margin of the anterior field, then the separation area between one year and another becomes more distinctly marked out than one had hitherto supposed, or rather observed. Besides this, the radial lines also aid one in age-determination. It is frequently the case that at the border between one zone and another, either several radii of the previous year's zone end, or new radii of the succeeding year's zone begin. Lastly, the total number of concentric lines is a sure way of dispelling all further doubts on the subject.
One does not need a detailed observation such as the above to distinguish a slow-growing carp of three summers from a well-grown carp of two summers, as superficially the difference in the distance of the concentric lines, in such a two-year carp of approximately the same size, is distinctly greater at its chief period of growth, and besides this, the age border between the first and second year is also much more distinct. With practice one can in a similar way distinguish between a slow-grown carp of two summers and a quickly grown carp of one summer. The age-determination of rapidly grown carp offers no difficulty, the difference in the distance of the concentric striae appears distinctly prominent at the time of the growth period. One may lay down the following general rule in regard to the relationship of the concentric lines:

"Je intensiver das Wachstum der Karpfen, respektive seiner Schuppe, um so grosser wird der Abstand der konzentrischen Streifen von einander und umso unregelmässiger, unzusammenhängender ihr gegenseitiger parallel Verlauf."

He shows, from his figures that from spring until the height of growth in the summer months a steady increase of the distance of the concentric striae appears, which finally are represented as zigzag lines partly anastomosing with each other. In autumn the lines become much closer to one another, until finally they become extremely close and regular. In some cases in the first year's zone, in consequence of a great expansion of the centre of growth, concentric lines are not formed in spring-time, but only in summer-time.

Under some circumstances, however, an intensive growth may take place in spring-time, as shown in fig. 6 (Hofbauer). This figure shows that the concentric striae at the commencement of the second year have a very regular course and are at a great distance from each other. In other figures he shows how much the centre of growth may expand; thus in fig. 8, representing the scale of a one-summer carp, only twenty irregular concentric lines have been formed at the conclusion of the growth period, while under normal conditions fifty to sixty and more are to be seen. Further, in fig. 9 the first year's zone is altogether without concentric lines, which only commence their formation at the beginning of the second year. Even the second year's zone may have no concentric lines, as he shows in his tables giving the number of concentric lines; this is, however, a rare occurrence.

The remainder of his paper is taken up with a consideration of photomicrographs of scales from carp bred in pond or aquarium, for all of which he had exact knowledge as to their age and history, and to my mind these figures show in a very clear and interesting manner the truth of this mode of age-determination. He shows that in carp, the scales of which were periodically examined, the increase in the dimensions of the size of the scales, the number of concentric lines formed in them, and the amount of separation between the lines, corresponded with the known facts as to whether the fish were slowly or quickly gaining weight, and this in a very striking manner. He says, "Die Unterschiede sind so deutlich erkennbar, dass wir uns eine bessere und untrugliche Orientirung gar nicht verschaffen können." He further takes up the case of two carp of the same brood and of equal weight; one of these was put into an aquarium, the other into a pond at the same time, their scales being first examined. The carp placed in the pond naturally gained weight more quickly than that placed in the aquarium, and on the scales of both being
examined some time later, those from the pond showed an increase of scale surface, with widely separated concentric lines, while those from the aquarium showed little increase of scale surface and closely situated concentric lines. The increase in the case of the pond fish he ascribes to the supply of plankton food from the water. Another interesting case is that of carp whose growth was partly disturbed for a time by an accidental drying up of the water in the pond in which the carp was living. On the scales of this carp being examined some time after the renewal of the supply of water, the effect of the partial drying up and subsequent renewal of the water appears marked out in the scales, the adverse condition by dark closely situated lines lying close together, the normal condition by clear and more widely separated lines. During the partial drying up of the pond, the fish were probably deprived of their wonted nourishment.

In conclusion, he deals with the case of an invalid carp. When this carp was caught it appeared thin and poorly nourished. On examination this appeared to be due to a swelling in the anal region. The scales seemed clearly to show at what time this swelling had effected a disturbance in the growth of the animal. He concludes his first paper on this subject by saying that age-determination from the scales will not probably be so easy in carp older than three years, as the older the carp becomes the larger and thicker do its scales become, and consequently they are not so transparent, and recognition of the concentric striae becomes more difficult, especially in the first year's zone surrounding the centre of growth.

In the following year Dr. Hoffbauer issued a second paper, a continuation of the last noticed. His subject is now somewhat wider, namely, "Further contributions on the structure of fish scales for determination of the age and course of growth."* In this paper Hoffbauer strengthens his position by means of further results and statistics, and also replies to certain criticisms by Dr. Walter (Jahresberichte der Fischerei Zeitung, Bd. iii., 1900, Nr. 19). Walter had allowed the general correctness of Dr. Hoffbauer's observations, but had regarded them as less certain and easy of recognition for practical men than for Dr. Hoffbauer.

Hoffbauer regards Walter's position as largely due to unnecessary methods which he employed in cleaning scales, by which the characteristic features of the scale became less apparent.

In this second paper Hoffbauer, in addition to extending his observations on the scales of the two varieties of carp treated of in his first paper, includes those of Carassius carassius, L., Micropterus salmoides, and Perca lucioperca in his observations with equally good results.

In January, 1902, I published a preliminary paper on the same subject as my present contribution.†

From this paper I quote the following paragraphs:—

"The formation of these annual rings results from the fact that the lines of growth on the scale surface are comparatively widely separated from one another in that portion of the scale formed during the warmer season of the year; but much less widely separated in that part built up during the colder

* Hoffbauer, 1901.
† Thomson, 1902.
season. Thus by following the arrangement of the lines of growth on scales, it is a simple matter to observe the starting-place of any year's growth by the comparatively wide separation of the growth-lines at that portion of the scale, and in this way the surfaces of scales appear mapped out by annual rings. These annual rings supply us with an index as to the age of the fish, and may be roughly compared to the rings in many trees. The annual rings in the stems of trees are due to seasonal nutritive conditions, and the rings on the scales of fishes are probably the result of seasonal environmental conditions, such as food, temperature, etc. In more detail, the alternate occurrence of comparatively rapid and slow areas of growth in scales is probably the result of the variations in food, temperature, etc., which are associated with the alternation of summer and winter. For example, the abundant supply of food (plankton, etc.) during the warmer season of the year probably has much connection with the comparatively rapid growth of the scale at that time as compared with the slow increase during the colder season, when there is a decrease in the supply of food.

"These facts appear to possess both scientific and economic importance, since they permit the extension to marine fishes of a new system of age-determination by means of these annual rings on scales, a system which has recently been shown and demonstrated by Dr. Hoffbauer for the carp.

"I hope to illustrate clearly the mode of formation of annual rings in Gadoid scales by the aid of the figure on the accompanying plate.

"The figure [Plate II., Fig. 1, of the present paper] represents the scale of a pollack, 28·5 centimetres (11½ inches) in length, captured towards the end of October. A minute translucent area (see Fig. 1, C) devoid of any lines is situated towards the narrower and more internal end of the scale; and around this area, which is the first portion of the scale to be formed, are grouped numerous excentric lines of growth similarly disposed to the excentric layers in the starch grains of the potato.

"The excentric lines of growth on this scale, however, are arranged in such a manner (see figure) as to map out its surface into two main regions, namely, an internal area, which is the entire growth of the first year, and an external part, the summer growth of the second year. One understands how these two areas appear so distinctly if one follows the lines of growth outwards from the translucent area to the broader and more external part of the scale. One may firstly observe that there are nineteen lines comparatively widely separated from one another, which indicate the growth of the first summer, and secondly, ten lines less widely separated, indicating growth of the first winter. External to these there follows an area showing much more widely separated lines of growth, which indicate the scale growth of the second summer.

"The difference between the lines of growth formed during the second summer and those of the preceding winter is so apparent as to clearly define the termination of the first year's growth. The widely separated lines of the second summer number nineteen, and as the pollack from which this scale was taken was captured in October, it appears that in this scale the number of lines formed during the second summer exactly agrees with the number formed during the first summer."
I must conclude my review of the literature of scales, so far as it bears on
the subject of my investigations, with a notice of a preliminary paper by Dr.
Marett Tims.* This paper deals with later stages of scales than those of
Klaatsch and Ussow.

The scales observed by Marett Tims were from several species of Gadidae—
Gadus eirens, G. lusceus, G. pollachius, G. callarias, etc. As this paper is very
brief, I content myself mainly by quoting several of his sentences.

"The formed scale is a compound structure consisting of a fibrous stratum,
upon the upper surface of which are situated numerous 'scalelets,' arranged in
lines radiating from a more or less homogeneous centrum. It is the presence
of these structures that gives the 'sculptured' or 'ringed' appearance to the
scales; but these terms, though frequently applied, are misleading."

"The fibres (of the fibrous stratum) are arranged in definite layers: (1) a
superficial, in which the bundles are concentric; (2) a deep layer, in which the
individual bundles interlace with one another at right angles, each set running
diagonally to the long axis of the scale. A third layer, the fibres of which
form an irregular network, is possibly present, but it is much more difficult to
demonstrate."

"The scalelets, placed upon the upper surface of the fibrous stratum, are
themselves covered with a delicate epidermis. . . . They consist of flattened,
imbricated, calcareous plates."

He infers from reactions with borax-carmine and acid that in the earlier
condition the scalelets "are more thoroughly calcified, or rather, perhaps, that
in the later stages they contain a larger amount of organic material, and thus
stain more readily."

"Between the radiating lines of scalelets the deeply stained fibrous stratum
is seen, resembling the spokes of a wheel.

"In an early stage, before the scalelets become imbricated, the fibres may
also be noticed as transverse bands passing between the individual plates of a
row.

"On examining a section of an undecalcified scale, the scalelets are seen to
be for the most part implanted in sockets on the upper surface of the fibrous
stratum with a varying inclination. Those at the centrum appear to have
fused, forming a horizontal plate, while at the periphery of the scale they are
almost perpendicular. In a section through the skin of a green cod about
4 cm. long the individual scalelets are quite isolated. Each consists of a basal
plate, from the upper surface of which projects a minute spine, thus resembling
a small placoid scale.

"Such a condition is only evident in material from which acid has been
rigidly excluded. The condition does not appear to have been previously
noted; the figures given by Klaatsch and others being similar to those which
I obtained from material which has been passed through acid alcohol, and
which do not show the true nature of the scale."

If the forecasts of the results of this paper are true, they necessarily invalida-
date many ideas previously held as to the nature of scales, and must also
introduce quite a new set of terms in their description. I prefer, however, to
keep cautiously to the older and more established views and terms until

* Marett Tims, 1902.
Dr. Marett Tims's facts may be affirmed by the publication of his detailed paper, to which I look forward with much interest.

[Since Mr. Thomson left for South Africa, Mr. A. W. Brown, of St. Andrews, has been good enough to send me a reprint of a note communicated by him to the Royal Society of Edinburgh (Proceed. Roy. Soc. Edinburgh, 1902–3, p. 437), entitled "Some Observations on the Young Scales of the Cod, Haddock, and Whiting before Shedding." This note is as follows:—

"During the winter of 1902–3, I conducted observations upon the scales and their condition, in several of the gadoid fishes. Investigation was commenced in October, 1902; but it was not until the beginning of March 1903 that the first appearance of the young scale took place. In stained specimens, it can be recognised as a deeply staining 'nucleus,' lying beneath the old scale, just under its centre. Such an appearance was found in cod, haddock and whiting of all ages from one to three or four years; and, in all, the young scale is clearly recognisable, underlying the old. As soon as these fishes have spawned, they appear to shed their scales, the epidermis first peeling off. An examination of a few large haddocks, eight pounds weight and over twenty-seven inches in length, showed that in January the ovary was black, shrunken, and not in spawning condition. I am inclined to think that these fish are past the age for spawning. I examined very carefully this class of haddock right on till April. In every case I found that the scales showed evidences of hard wear, and in some cases were frayed. In these fishes no traces of the replacing scales were found, and the probable conclusion is that no further shedding of the scales takes place after the close of the reproductive period.

"It has been suggested that the annual rings of growth may be traced upon the gadoid scales; but I find that upon the cod, haddock, whiting, green cod, and pollack, of one to three years of age, scales may be obtained from different parts of the body showing ninety, sixty, or thirty rings, according to the part selected.

"I have been enabled to trace back the first appearance of the new scale to the month of February, when it may be recognised as a dark tip growing upon a small papilla.

"By the middle of April, the epidermis on the head commences to peel off, and, probably somewhat later, over the body. The details of this process will have to be followed in sections; but sufficient evidence is to hand to make it probable (1) that gadoid fishes shed their scales immediately after spawning; (2) that after the age limit of spawning is reached no further shedding of scales takes place; (3) that the concentric rings of the scales do not represent annual increments, but must have other causes."

Mr. Thomson had heard verbally of this communication, but had not seen the note. He states that the presence of minute scales amongst the larger ones in the trout was described and figured by Klaatsch in 1891, and their presence in Gadidae has been known to him for two years. He refers to these small scales in another part of this paper (p. 57), and does not attach to them the same significance as that given them by Mr. A. W. Brown.

—E. J. A.]
III. Statistical Section.

This section of my paper is chiefly concerned with measurements of the surface size, enumeration of the lines of growth and annual rings for scales of the following: pollack, poor-cod, whiting, haddock, and cod.

The area of the body from which scales were generally selected for examination was the median region of the flanks, that is to say, slightly posterior to the pectoral fin, and either slightly above or below the lateral line.

In the majority of cases I have given data in the tables for half a dozen scales from the same fish, three of which were taken from the right side, and the other three from the left side of the body.

Scales from any part of the body show annual rings, though scattered among the normally developed scales are some minute scales mentioned by Klaatsch, to which I will later refer. Of the five species mentioned above, that which shows annual rings in the scales least satisfactorily is the whiting; so much is this the case that at times their determination becomes a matter of real difficulty, and it is only after a comparison of the lines of growth in scales from a number of specimens that one attains any degree of certainty in the matter. The other species mentioned show annual rings remarkably clearly, much more so, indeed, than is brought out in the photomicrographs. The coal-fish (Gadus rivic) and the Norwegian whiting-pollack (Gadus Esmarkii) also show annual rings very distinctly (see plates), and I only regret that want of time prevents my giving statistics for these two species. In regard to the cod, Gadus callarias, L., from photomicrographs which I have taken, it appears that the system would also be applicable to this species; but not having a complete series of this fish, I have only given a few figures, and more exclusively confined my attention to Gadidae of the English Channel.

In passing, I may say that I approached the subject of the age of fishes with an unbiassed mind, as I had little previous knowledge as to the ideas of either practical or scientific men on this subject, and it was only after I had compiled my own statistics on age-determination that I compared my results with those arrived at by other workers by different methods (see Cunningham, Fulton, etc.).

The determination of the years of large and aged fish from their scales is a much harder task than in the case of younger fish, as the scales of the former have, firstly, become much thicker and less transparent, and secondly, the scales of such are frequently more or less disintegrated. As an illustration of this one may notice the photomicrograph of a scale of a pollack 31 inches in length, which appears to possess 8 annual rings (see Plate IV.).
That in the life of fish, as in trees, there will be good years and bad years is more than probable, and as this variation in metabolism expresses itself in the stems of trees, one might, reasoning from analogy, expect a similar change in the scales of fishes. That such an effect does take place appears probable from my figures and photomicrographs.

In regard to locality of capture, as my work was mainly done at Plymouth, most of the fish examined were from the western portion of the English Channel, chiefly from the bays of Devon and Cornwall. Few of the fish examined were captured by the ocean-going trawlers, as in fish caught by this method the scales were, as a rule, completely rubbed off by the time the fish came to hand.

If, as in the case of a few whiting, etc., the fish examined were captured at other localities, I have stated that such is the case in the column of notes.

The haddocks examined were caught in the North Sea, off the Firth of Forth, in Aberdeen Bay, and off the Shetlands.

The cod, only a very few statistics about which I am able to give, were brought in at St. Andrews.

A friendly critic has suggested that annual rings would either not be found, or would not be clearly marked, in scales from fish of deep water, on account of the fact that in this case fish are not exposed to the same seasonal variation in temperature as in shallow water; in other words, is it not probable that the growth of fish living in deep water will be less accelerated in the summer and less arrested in the winter than in forms living in shallow water. In order to determine if such was the case, I compared scales from a series of haddock (10–15 inches in length) captured in comparatively shallow water (8–14 fathoms) at Aberdeen Bay with another series (10–16 inches) caught in deep water (60–80 fathoms) seven miles off the Shetlands. The result of my observations was that annual rings were as clearly marked in the scales of haddocks from deep water off the Shetlands as in those from shallow water of Aberdeen Bay, excepting that in the older stages of the former the rings appeared very slightly less clearly defined.

The weights of fish in the statistical tables must be slightly allowed for as not being exactly accurate, as in most cases the fish were weighed after having been for some time in spirit or formalin.

THE OCCURRENCE OF MINUTE SCALES.

In my observations on the skin of Gadidae I noticed the presence of minute scales situated near the larger and better developed. These minute scales I found chiefly in the younger stages of the fish. In older stages of the animal they appeared to be almost entirely covered over by the larger ones, and to lie in such positions that their growth would
apparently be much hindered by the latter. The small scales do not appear to be arranged on the skin in the regular manner characteristic of the larger scales, and they do not possess many lines of growth. According to my opinion, these minute scales never grow to any size, and can always be distinguished from the better-developed and more regularly arranged scales. In the early stages I believe that the diminutive scales lie freely and are not covered over by the larger scales; but as these larger scales grow, they cover over the smaller scales and hinder their growth, consequently the latter either remain small or disappear altogether. That these minute scales grow and later take their place alongside of the larger scales I do not believe. We have also to remember in this connection that the exact number of scales in a row on the fish has been regarded as sufficiently constant for use in the determination of species.

Klaatsch has referred to these small scales in two connections, firstly, in the development of the trout, and secondly, in a comparison of the teleostean with the placoid scale. He also gives a figure of these small scales in a young trout. In his section dealing with the development of trout scales he says that at the same place in a fish one finds scales which are by no means similarly advanced in development. Between such large scales as already partly cover one another, small scales are very frequently found which are in the earliest stages of development. In older animals such an irregularity does not occur.

In his section dealing with a comparison of the teleostean and placoid scales, he says that the arrangement of the rhomboid scales on the skin of the trout is similar to the arrangement of the rhombic basal plates of the dogfish; both of them are arranged in oblique rows. There is a further point of similarity. As in Elasmobranchs, new scales originate in the trout between the well-developed scales; thus one finds lying between the older scales of the trout even in later stages quite young scale foundations. This irregularity in the early development soon ceases in the trout.

The Pollack (*Gadus pollachius*).

The following tables give detailed measurements of the surface size, number of lines of growth, and annual rings for scales of pollack, which varied from about 1\(\frac{3}{4}\) inches to 33 inches in length. According to Cunningham, on the coast of Cornwall the spawning of the pollack commences in February or March, and the young of the year are found in April. In that month they are from \(\frac{3}{4}\) to 1 inch in length, and he estimates their age at approximately six weeks.

In 1901 I found fish of the latter size, at the beginning of May, possessed of extremely minute scales without any lines of growth.
Pollack 1 3/4–2 3/4 inches in length, caught on 8th July, would thus be about three months old, and these show, on an average, 3–4 lines of growth, thus giving a formation of 3–4 lines in two months.

Cunningham further says, “In October I have taken a number in Cawsand Bay, 3 1/2–4 3/4 inches long, and I have no doubt these were hatched in the preceding spring.”

I have examined Cunningham’s actual specimens, and the scales of these give on an average 15 lines of growth, and their structure bears out his statement, and gives a formation of approximately 2–3 lines of growth per month.

Two months later, in December, there are an average 18 lines of growth, giving an addition of 1–2 lines of growth per month. One would naturally expect to find fewer lines of growth during these winter months. In another sentence Cunningham says, “The pollack caught in Plymouth Sound in June and July are 12–15 inches long, and are probably in their third year.”

This is also brought out in my table. It will be seen that a fish 15 inches long captured in the middle of June has 2 annual rings and 7 young lines of growth occurring on its scales.

If growth for the third year started in the middle of April, this again would give a formation of about 3 lines per month.

In the following detailed tables dealing with the pollack, I have given a comparison of scales from four different regions of the body in two cases, firstly, that of a young fish (3.79 inches), and secondly, that of an older fish (15.19 inches). The four regions of the body from which scales were examined in these two cases were the following:—

1. The anterior region, laterally, slightly posterior to the eye.
2. The median region of the flanks, that part of the body which has the greatest depth vertically beneath the first dorsal fin and posterior to the pectoral fin. This has been the usual area from which I have examined scales throughout my investigations.
3. Region vertically beneath the posterior part of the second dorsal fin, adjoining the lateral line.
4. Region vertically beneath the third dorsal fin, adjoining the lateral line.

In a comparison of scales from these four regions the following facts may be noticed:—

1. That commencing with the anterior area and proceeding backwards to the posterior area, the number of lines of growth increases in both the young and older fish.
2. That proceeding in the same direction, the length of the scale increases in a similar manner.
(3) That the length of the axis AB^1 or AB^n (axis from centre of growth to posterior end of scale) increases in a corresponding way.

(4) That in young fish the broadest scales are those taken from the median region of the flanks (second region); but in the case of the older fish the broadest scales are those from the third region, namely, vertically beneath the second dorsal fin.

I have selected that region vertically beneath the first dorsal fin as the area from which I usually take scales for examination for several reasons: firstly, that it is the area from which previous workers have taken scales; secondly, that this is, according to Klaatsch, Ussow, etc., the region in which scales first develop; thirdly, that in the case of fish in which the scales have been rubbed off by mechanical friction, this area appears to retain them longer than others. This may be because it is partly protected by the pectoral fin.
Fig. 1. Diagram of a pollack's scale with three annual rings to show the mode of measurement adopted in the statistical tables.

$\text{Ant} = \text{anterior end of scale}$; $\text{Post} = \text{posterior end of scale}$; $\text{MB}^n = \text{length of scale}$; $\text{MB}^{\text{th}} = \text{maximum breadth of scale}$; $\text{AB}^n = \text{long axis from centrum to posterior end of scale}$; $\text{LB}^1 = \text{total length of 1st year's growth}$; $\text{AB}^1 = \text{long axis from centrum to posterior end of Ring I}$; $\text{B}^1\text{B}^2 = \text{long axis from end of Ring I to end of Ring II in posterior direction}$; $\text{B}^2\text{B}^3 = \text{long axis from end of Ring II to end of Ring III in posterior direction}$.

Enumeration of the lines of growth is taken throughout from the centrum in the posterior direction; they are more numerous towards the latter than towards the anterior end of the scale. In the tables the signs + and - are used in connection with the occurrence of annual rings; for example, if no annual rings are as yet formed the term - 1 is used; if one annual ring is complete, and there are additional lines of growth present, the sign 1 + is used.
Tabular Results of Examination of Pollack Scales

<table>
<thead>
<tr>
<th>Length</th>
<th>Weight in grams</th>
<th>Date of capture</th>
<th>Total length in mm</th>
<th>Maximum breadth in mm</th>
<th>Length of A B in mm</th>
<th>Number of concentric lines</th>
<th>No. of annual rings</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' 4 cm. = 1' 73 in.</td>
<td>64</td>
<td>July 8, 1901</td>
<td>15</td>
<td>12</td>
<td>0' 9</td>
<td>2</td>
<td>- 1</td>
<td>Scales taken from left side of the body of the fish.</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td>23</td>
<td>11</td>
<td>1' 4</td>
<td>3</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td>20</td>
<td>13</td>
<td>0' 9</td>
<td>3</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td>18</td>
<td>0' 7</td>
<td>1' 1</td>
<td>2</td>
<td>"</td>
<td>" right</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td>15</td>
<td>1' 2</td>
<td>0' 7</td>
<td>2</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td>16</td>
<td>1' 3</td>
<td>0' 8</td>
<td>1</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
<td>18</td>
<td>1' 1</td>
<td>10</td>
<td>2</td>
<td>"</td>
<td>Average for preceding 6-dozen scales, all from same fish.</td>
</tr>
<tr>
<td>4' 8 cm. = 1' 88 in.</td>
<td>78</td>
<td>July 8, 1901</td>
<td>23</td>
<td>1' 6</td>
<td>1' 4</td>
<td>2</td>
<td>- 1</td>
<td>Left side.</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td></td>
<td>23</td>
<td>1' 3</td>
<td>1' 1</td>
<td>1 + 1 forming</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td></td>
<td>18</td>
<td>1' 0</td>
<td>0' 9</td>
<td>1 + 1 forming</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td></td>
<td>22</td>
<td>1' 2</td>
<td>1' 3</td>
<td>2</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
<td>22</td>
<td>1' 3</td>
<td>1' 2</td>
<td>2</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>5' 4 cm. = 2' 12 in.</td>
<td>1' 08</td>
<td>July 8, 1901</td>
<td>25</td>
<td>1' 4</td>
<td>1' 6</td>
<td>2 + 1 forming</td>
<td>- 1</td>
<td>Left side.</td>
</tr>
<tr>
<td></td>
<td>1' 08</td>
<td></td>
<td>22</td>
<td>1' 3</td>
<td>1' 4</td>
<td>2</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
<td>28</td>
<td>1' 8</td>
<td>1' 6</td>
<td>3</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td></td>
<td>28</td>
<td>1' 1</td>
<td>1' 0</td>
<td>3</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td></td>
<td>26</td>
<td>1' 4</td>
<td>1' 7</td>
<td>3</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>5' 9 cm. = 2' 32 in.</td>
<td>1' 45</td>
<td>July 8, 1901</td>
<td>34</td>
<td>2' 0</td>
<td>2' 2</td>
<td>4</td>
<td>- 1</td>
<td>Left side.</td>
</tr>
<tr>
<td></td>
<td>1' 45</td>
<td></td>
<td>35</td>
<td>2' 1</td>
<td>2' 2</td>
<td>4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>30</td>
<td>2' 2</td>
<td>1' 7</td>
<td>4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
<td>34</td>
<td>2' 2</td>
<td>2' 1</td>
<td>4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>33</td>
<td>2' 1</td>
<td>2' 1</td>
<td>4</td>
<td>"</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>Scale</td>
<td>Age (y)</td>
<td>Sex</td>
<td>Heel</td>
<td>Head</td>
<td>Total</td>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'1 cm.</td>
<td>1.67</td>
<td></td>
<td>26</td>
<td>18</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>20</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>21</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>20</td>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>20</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
<td>24</td>
<td>25</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>24</td>
<td>25</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>26</td>
<td>26</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>21</td>
<td>22</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>25</td>
<td>19</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>24</td>
<td>23</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
<td>22</td>
<td>23</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>23</td>
<td>22</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>26</td>
<td>23</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>23</td>
<td>22</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>24</td>
<td>23</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>23</td>
<td>22</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>36</td>
<td>48</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>37</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>35</td>
<td>38</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>34</td>
<td>41</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>35</td>
<td>36</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>36</td>
<td>13</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>735</td>
<td>105</td>
<td>195</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>37</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>735</td>
<td>37</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>35</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>37</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>105</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>745</td>
<td>395</td>
<td>5075</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9'15 cm.</td>
<td>3.60</td>
<td></td>
<td>60</td>
<td>36</td>
<td>48</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>37</td>
<td>44</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>35</td>
<td>38</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>34</td>
<td>41</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>35</td>
<td>36</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>36</td>
<td>13</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>735</td>
<td>105</td>
<td>195</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>37</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>735</td>
<td>37</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>35</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>37</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>105</td>
<td>51</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>745</td>
<td>395</td>
<td>5075</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The scales being taken at the deepest region of the body, immediately above or below the lateral line (usual area).
<table>
<thead>
<tr>
<th>FISH.</th>
<th>SCALES.</th>
<th>REMARKS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length.</td>
<td>Weight in grams.</td>
<td>Date of capture.</td>
</tr>
<tr>
<td>9.50 cm. = 3.74 in.</td>
<td>6.67</td>
<td>Dec. 4, 1889</td>
</tr>
<tr>
<td>9.65 cm. = 3.79 in.</td>
<td>5.45</td>
<td>Oct. 2, 1890</td>
</tr>
<tr>
<td>9.65 cm. = 3.79 in.</td>
<td>6</td>
<td>Oct. 2, 1890</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>Date</td>
<td>Scales</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>9.65</td>
<td>Oct 2, 1890</td>
<td>72</td>
</tr>
<tr>
<td>9.65</td>
<td>Oct 2, 1890</td>
<td>74</td>
</tr>
<tr>
<td>9.65</td>
<td>Oct 2, 1890</td>
<td>80</td>
</tr>
<tr>
<td>9.85</td>
<td>Dec 4, 1889</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Length</td>
<td>Weight in grms</td>
<td>Date of capture</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>10 cm. = 3.93 in.</td>
<td>9.45</td>
<td>Dec. 4, 1889</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10.15 cm. = 3.99 in.</td>
<td>7.5</td>
<td>Dec. 4, 1889</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10.20 cm. = 4.01 in.</td>
<td>8.20</td>
<td>Dec. 4, 1889</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

The periodic growth of scales in Gadidae.
10.25 cm. = 4.03 in.	Oct. 2, 1890	94	45	65	15	- 1 Left side.
10.35 cm. = 4.07 in.	Oct. 2, 1890	77	42	56	16	- 1 Left side.
10.45 cm. = 4.11 in.	Oct. 2, 1890	90	48	63	17	- 1 Left side.
10.55 cm. = 4.15 in.	Oct. 2, 1890	88	50	61	16	- 1 Left side.

Average for preceding ½-dozen scales.

Average for preceding ½-dozen scales, all from same fish.
Tabular Results of Examination of Pollack Scales—continued.

<table>
<thead>
<tr>
<th>Length</th>
<th>Weight in grams</th>
<th>Date of capture</th>
<th>Fish Scales</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.75 cm. = 4.23 in.</td>
<td>6.95</td>
<td>Oct. 2, 1890</td>
<td>Total length in mm.</td>
<td>Maximum breadth in mm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.34</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.33</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.78</td>
<td>.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.84</td>
<td>.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.89</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.85</td>
<td>.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.84</td>
<td>.45</td>
</tr>
<tr>
<td>10.80 cm. = 4.25 in.</td>
<td>8.33</td>
<td>Oct. 2, 1890</td>
<td>.79</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.78</td>
<td>.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.85</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.80</td>
<td>.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.85</td>
<td>.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.88</td>
<td>.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.825</td>
<td>.466</td>
</tr>
<tr>
<td>11 cm. = 4·33 in.</td>
<td>11·75 cm. = 4·62 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9·35 Oct. 2, 1890</td>
<td>12·20 Dec. 4, 1889</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.936</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.675</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.641</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left side.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right side.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average for preceding ½-dozen scales, all from same fish.</td>
<td>Average for preceding ½-dozen scales, all from same fish.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| A few scales from this fish were in a disintegrated condition.
Tabular Results of Examination

<table>
<thead>
<tr>
<th>Length in cm.</th>
<th>Weight in grns.</th>
<th>Date of capture</th>
<th>Total length in mm.</th>
<th>Maximum breadth in mm.</th>
<th>Length of A B in mm.</th>
<th>No. of rings</th>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5 = 11'2" in.</td>
<td>Not ascertained.</td>
<td>End of Oct. or begin. of Nov.</td>
<td>2.20</td>
<td>1.30</td>
<td>1.75</td>
<td>49</td>
<td>-2</td>
</tr>
<tr>
<td>35.5 = 13'9" in.</td>
<td>530</td>
<td>July 4, 1901</td>
<td>3.28</td>
<td>1.40</td>
<td>2.32</td>
<td>57</td>
<td>2+</td>
</tr>
<tr>
<td>38.0 = 15'19 in.</td>
<td>535</td>
<td>June 18, 1901</td>
<td>3.58</td>
<td>1.53</td>
<td>2.22</td>
<td>65</td>
<td>2+</td>
</tr>
<tr>
<td>38.6 = 15'19 in.</td>
<td>535</td>
<td>June 18, 1901</td>
<td>4.08</td>
<td>1.84</td>
<td>2.14</td>
<td>70</td>
<td>2+</td>
</tr>
<tr>
<td>38.6 = 15'19 in.</td>
<td>555</td>
<td>June 18, 1901</td>
<td>3.85</td>
<td>1.87</td>
<td>2.37</td>
<td>69</td>
<td>2+</td>
</tr>
</tbody>
</table>

Note: Lengths and weights are given in millimeters and grams, respectively. The figures are representative of the periodic growth of scales in Gadidae.
OF POLLACK SCALES—continued.

<table>
<thead>
<tr>
<th>YEAR I.</th>
<th>YEAR II.</th>
<th>YEAR III.</th>
<th>REMARKS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length of B²B² in mm.</td>
<td>Length of B²B² in mm.</td>
<td>No. of lines in B²B²</td>
</tr>
<tr>
<td>*86</td>
<td>20</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*82</td>
<td>20</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*82</td>
<td>19</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*83</td>
<td>20</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*85</td>
<td>21</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*89</td>
<td>19</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*85</td>
<td>20</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>*85</td>
<td>20</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Average for preceding 8 scales, all from same fish.

1.00 28 80 5 Right side.
1.05 28 22 5
1.16 30 30 6
1.08 30 28 6
1.07 31 18 6
1.28 33 30 6
1.35 29 30 5
1.20 29 25 6
1.14 30 34 6 Average for preceding 8 scales, all from same fish.

The following 24 measurements have been made for purposes of comparison of scales from four different regions of the body in an older fish.

1.2 30 17 5 Scale from left side of body, posterior to eye.
1.6 28 22 5
1.3 29 25 5
1.15 28 22 6
1.40 27 25 6
1.17 28 32 7
1.30 28 24 6 Average for preceding ½-dozen scales.
1.12 32 43 8
1.09 30 33 6
1.10 31 34 6
1.40 31 45 8
1.38 31 26 6
1.50 30 32 7
1.25 31 36 7 Average for preceding ½-dozen scales.
1.28 34 33 7
1.14 30 31 7
1.24 35 30 5
1.28 36 35 6
1.20 30 30 5
1.17 33 40 8
1.22 33 33 7 Average for preceding ½-dozen scales.
1.26 31 25 6
1.27 34 32 5
1.37 34 36 6
1.28 36 34 6
1.17 34 37 5
1.51 34 34 8
1.31 34 33 6 Average for preceding ½-dozen scales. Numerous scales in this region were disintegrated.
TABULAR RESULTS OF EXAMINATION

<table>
<thead>
<tr>
<th>FISH.</th>
<th>SCALES.</th>
<th>YEAR I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length in cm.</td>
<td>Weight in grms.</td>
<td>Date of capture.</td>
</tr>
<tr>
<td>44·40 = 17·5 in.</td>
<td>721·01</td>
<td>Apr. 30, 1901</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>60 = 23·62 in.</td>
<td>1922·70</td>
<td>Apr. 30, 1901</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FISH.</th>
<th>SCALES.</th>
<th>YEAR I.</th>
<th>YEAR II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length in cm.</td>
<td>Weight in grms.</td>
<td>Date of capture.</td>
<td>Total length in mm.</td>
</tr>
<tr>
<td>88·82 = 33 in.</td>
<td>4184·70</td>
<td>June 13, 1901</td>
<td>8·49</td>
</tr>
</tbody>
</table>

N.B.—All the scales of this fish which were examined were seen to be more or less disintegrated. The measurements above were taken from one of the least disintegrated scales; but on account of the fact that many of the excentric lines had disappeared in the median plane (A B), the measurements interrogated, and the excentric lines in connection
OF POLLACK SCALES—continued.

<table>
<thead>
<tr>
<th>YEAR II.</th>
<th>YEAR III.</th>
<th>YEAR IV.</th>
<th>YEAR V.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length of $B^1 B^2$ lines in mm.</td>
<td>Length of $B^3 B^4$ lines in mm.</td>
<td>Length of $B^5 B^6$ lines in mm.</td>
<td>Length of $B^7 B^8$ lines in mm.</td>
</tr>
<tr>
<td>1'23</td>
<td>30</td>
<td>52</td>
<td>18</td>
<td>06</td>
</tr>
<tr>
<td>1'28</td>
<td>30</td>
<td>67</td>
<td>19</td>
<td>08</td>
</tr>
<tr>
<td>1'09</td>
<td>30</td>
<td>56</td>
<td>19</td>
<td>08</td>
</tr>
<tr>
<td>1'06</td>
<td>27</td>
<td>57</td>
<td>17</td>
<td>09</td>
</tr>
<tr>
<td>1'17</td>
<td>29</td>
<td>58</td>
<td>18</td>
<td>08</td>
</tr>
<tr>
<td>1'00</td>
<td>28</td>
<td>66</td>
<td>17</td>
<td>67</td>
</tr>
<tr>
<td>.80</td>
<td>22</td>
<td>45</td>
<td>12</td>
<td>54</td>
</tr>
<tr>
<td>.90</td>
<td>25</td>
<td>82</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>.95</td>
<td>24</td>
<td>85</td>
<td>23</td>
<td>85</td>
</tr>
<tr>
<td>.91</td>
<td>25</td>
<td>70</td>
<td>18</td>
<td>70</td>
</tr>
</tbody>
</table>

Average for preceding 4 scales.

Several scales were disintegrated.

Average for preceding 4 scales.

<table>
<thead>
<tr>
<th>YEAR III.</th>
<th>YEAR IV.</th>
<th>YEAR V.</th>
<th>YEAR VI.</th>
<th>YEAR VII.</th>
<th>YEAR VIII.</th>
<th>YEAR IX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of $B^2 B^3$ excenentric lines in mm.</td>
<td>Length of $B^4 B^5$ excenentric lines in mm.</td>
<td>Length of $B^6 B^7$ excenentric lines in mm.</td>
<td>Length of $B^8 B^9$ excenentric lines in mm.</td>
<td>Length of $B^10 B^11$ excenentric lines in mm.</td>
<td>No. of excenetric lines</td>
<td>No. of excenetric lines</td>
</tr>
<tr>
<td>.35</td>
<td>12</td>
<td>.37</td>
<td>12</td>
<td>.42</td>
<td>11</td>
<td>.41</td>
</tr>
<tr>
<td>.64</td>
<td>9</td>
<td>.51</td>
<td>11</td>
<td>.40</td>
<td>10</td>
<td>.20</td>
</tr>
</tbody>
</table>

therewith, were taken in a more lateral direction. At the same time the scale as observed laterally showed fairly conclusively eight annual rings plus a few excenetric lines, evidently the growth of the early summer of 1901.
The following table gives a summary of the more detailed tables along with other results, with special reference to annual rings and lines of growth. It may serve to bring out some interesting points. The case of the fish with an asterisk, for example, 27'62 cm. in length, deserves notice. This fish only shows the following lines of growth: year I., 13; year II., 13; year III., 18.

We have evidently here to deal with a rapidly grown fish, and this fact has expressed itself in the formation of the scale, in the small number of lines of growth for the first and second year. The more intensive the growth the smaller the number of the lines of growth. To compare with this we might take the case of a slower growing pollack, 44'40 cm. The scale of such a pollack shows the following lines: year I., 21; year II., 29; year III., 18; year IV., 2. It is probable that in the first case the fish grew quickly in years I. and II., and in year III. about the normal.

SUMMARY OF EXAMINATION OF POLLACK SCALES,

With Special Reference to the Annual Rings and Lines of Growth.

<table>
<thead>
<tr>
<th>Length of fish. cm.</th>
<th>Weight in gms.</th>
<th>Date of capture</th>
<th>No. of ann. rings</th>
<th>Average number of lines of growth (excentric lines) in years.</th>
<th>Notes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'5</td>
<td>not.1'9</td>
<td>40</td>
<td>May</td>
<td>-1</td>
<td>About 6 weeks old.</td>
</tr>
<tr>
<td>4'4</td>
<td>1'73</td>
<td>64</td>
<td>July</td>
<td>2</td>
<td>2 months old.</td>
</tr>
<tr>
<td>4'8</td>
<td>1'88</td>
<td>78</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5'4</td>
<td>2'12</td>
<td>1'08</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5'9</td>
<td>2'32</td>
<td>1'45</td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6'1</td>
<td>2'40</td>
<td>1'67</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6'2</td>
<td>2'51</td>
<td>1'95</td>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>7'0</td>
<td>2'75</td>
<td>2'35</td>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>9'15</td>
<td>3'60</td>
<td>6'60</td>
<td>Dec.</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>9'15</td>
<td>3'60</td>
<td>not taken</td>
<td></td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>9'25</td>
<td>3'64</td>
<td>6'22</td>
<td>Oct.</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>9'59</td>
<td>3'74</td>
<td>6'67</td>
<td>Dec.</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>9'65</td>
<td>3'79</td>
<td>5'45</td>
<td>Oct.</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>9'65</td>
<td>3'79</td>
<td>6'0</td>
<td></td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>9'85</td>
<td>3'87</td>
<td>9'25</td>
<td>Dec.</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>10'0</td>
<td>3'89</td>
<td>9'45</td>
<td></td>
<td>not taken</td>
<td>8</td>
</tr>
<tr>
<td>10'15</td>
<td>3'99</td>
<td>17'5</td>
<td></td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>10'15</td>
<td>3'99</td>
<td>not taken</td>
<td></td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>10'20</td>
<td>4'01</td>
<td>8'20</td>
<td></td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>10'25</td>
<td>4'03</td>
<td>8'92</td>
<td>Oct.</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>10'30</td>
<td>4'07</td>
<td>8'30</td>
<td></td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>10'35</td>
<td>4'10</td>
<td>8'45</td>
<td></td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>10'55</td>
<td>4'15</td>
<td>8'10</td>
<td></td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>10'75</td>
<td>4'23</td>
<td>6'95</td>
<td></td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>10'80</td>
<td>4'25</td>
<td>8'33</td>
<td></td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>11'0</td>
<td>1'33</td>
<td>9'35</td>
<td>Dec.</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>11'15</td>
<td>1'52</td>
<td>12'20</td>
<td>Dec.</td>
<td>20</td>
<td>20 weeks old.</td>
</tr>
<tr>
<td>11'15</td>
<td>4'02</td>
<td>not taken</td>
<td></td>
<td>not taken</td>
<td>8</td>
</tr>
<tr>
<td>11'20</td>
<td>4'75</td>
<td>Sept.</td>
<td></td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>11'20</td>
<td>5'87</td>
<td>April</td>
<td>1</td>
<td>18</td>
<td>1 yr, 6 wks. old.</td>
</tr>
</tbody>
</table>

† See Pl. I., Fig. 1. ‡ See Pl. I., Fig. 3. § See Pl. I., Fig. 2. || See Pl. I., Fig. 4.
SUMMARY OF EXAMINATION OF POLLACK SCALES—continued.

<table>
<thead>
<tr>
<th>Length of fish</th>
<th>Weight in</th>
<th>Date of</th>
<th>No. of</th>
<th>Average number of lines of growth</th>
<th>Notes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cu. inches</td>
<td>grams</td>
<td>capture</td>
<td>ann. rings</td>
<td>(excentric lines) in years.</td>
<td></td>
</tr>
<tr>
<td>15 1/2</td>
<td>6 0</td>
<td>not taken</td>
<td>April</td>
<td>1+</td>
<td>not taken</td>
</tr>
<tr>
<td>15 1/2</td>
<td>6 1/2</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>16 3/16</td>
<td>6 6/16</td>
<td>Sept.</td>
<td>-1</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>16 3/16</td>
<td>6 6/16</td>
<td>May</td>
<td>1+</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>16 3/16</td>
<td>6 6/16</td>
<td>Sept.</td>
<td>-1</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>17 1/16</td>
<td>6 7/16</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>17 1/16</td>
<td>6 7/16</td>
<td>May</td>
<td>1+</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>17 1/16</td>
<td>6 8/16</td>
<td>Sept.</td>
<td>-1</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>17 1/16</td>
<td>6 8/16</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>17 1/10</td>
<td>6 9/10</td>
<td>April</td>
<td>1+</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>18 3/8</td>
<td>7 1/2</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>18 3/8</td>
<td>7 1/2</td>
<td>Sept.</td>
<td>-1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>18 3/8</td>
<td>7 1/2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>18 3/8</td>
<td>7 3/8</td>
<td>April</td>
<td>1+</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>18 3/8</td>
<td>7 3/8</td>
<td>Sept.</td>
<td>-1</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>19 3/8</td>
<td>7 5/8</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>19 3/8</td>
<td>7 5/8</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td>April</td>
<td>1+</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td>Sept.</td>
<td>-1</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td>May</td>
<td>2</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>20 3/16</td>
<td>8 1/16</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

* See text, p. 74.
†† See Pl. 1., Fig. 5.
<table>
<thead>
<tr>
<th>Length of fish, cm.</th>
<th>Weight in grams</th>
<th>Date of capture, May</th>
<th>No. of ann. rings</th>
<th>Average number of lines of growth (excrescence lines)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.94 12.62</td>
<td>not taken</td>
<td>April</td>
<td>2+</td>
<td>not taken</td>
<td>About 2 yrs 6 wks. old.</td>
</tr>
<tr>
<td>32.96 12.62</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>32.33 12.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>32.33 12.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>32.33 12.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>32.33 12.75</td>
<td></td>
<td>Oct. 3</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>32.92 13.0</td>
<td>not taken</td>
<td>April 1</td>
<td>2+4</td>
<td>not taken</td>
<td>2 yrs 6 wks. old.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td>325</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.92 13.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>33.97 13.37</td>
<td>315</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.29 13.50</td>
<td>not taken</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.29 13.50</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.29 13.50</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.61 13.02</td>
<td></td>
<td>May</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td>April</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>34.92 13.75</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.25 13.97</td>
<td>539</td>
<td>July</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.50 11.0</td>
<td>not taken</td>
<td>April</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.50 11.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.87 14.12</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.87 14.12</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.87 14.12</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>35.87 14.12</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>36.83 14.50</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>37.46 14.75</td>
<td>470</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>38.6 15.19</td>
<td>535</td>
<td>June</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>38.73 15.25</td>
<td>not taken</td>
<td>April</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>44.40 17.50</td>
<td>1922.70</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>44.40 17.50</td>
<td>not taken</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>45.72 18.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>45.26 19.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>45.26 19.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>45.26 19.0</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>50.15 22.50</td>
<td></td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>60.00 23.62</td>
<td>1922.70</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>60.00 23.75</td>
<td>not taken</td>
<td></td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>60.50 25.0</td>
<td>May</td>
<td>6+7</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>64.77 25.50</td>
<td>April</td>
<td>5+</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>78.74 31.0</td>
<td>Apl or May</td>
<td>8+</td>
<td>2+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>80.01 31.50</td>
<td>not taken</td>
<td>April</td>
<td>7+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>83.82 33.0</td>
<td>11811.70</td>
<td>June</td>
<td>8+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
<tr>
<td>96.52 38.0</td>
<td>not taken</td>
<td>April</td>
<td>10+</td>
<td></td>
<td>2 yrs 6 wks.</td>
</tr>
</tbody>
</table>

* See text, p. 74.
The following two tables are summaries of the more detailed tables and of other results, giving the ages of a number of fish in a more convenient and concise form. The first of these tables may serve to bring out exceptions or variation, namely, that in some cases pollack of approximately the same size may be of a very different age.

The second of these tables is a more general one, and serves rather to bring out the more general facts as to the size of pollack in relation to age.

POLLACK

<table>
<thead>
<tr>
<th>No. taken</th>
<th>Length of fish in cm</th>
<th>Age of fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2-7</td>
<td>First summer.</td>
</tr>
<tr>
<td>21</td>
<td>9-11.75</td>
<td>" winter.</td>
</tr>
<tr>
<td>2</td>
<td>14.60-14.92</td>
<td>" summer (late).</td>
</tr>
<tr>
<td>3</td>
<td>14.92-15</td>
<td>Second spring.</td>
</tr>
<tr>
<td>1</td>
<td>15.55</td>
<td>First summer (late).</td>
</tr>
<tr>
<td>1</td>
<td>16.33</td>
<td>Second spring.</td>
</tr>
<tr>
<td>4</td>
<td>16.58-17</td>
<td>First summer (late).</td>
</tr>
<tr>
<td>1</td>
<td>17.14</td>
<td>Second spring.</td>
</tr>
<tr>
<td>3</td>
<td>17.46</td>
<td>First summer (late).</td>
</tr>
<tr>
<td>3</td>
<td>17-18</td>
<td>Second spring.</td>
</tr>
<tr>
<td>1</td>
<td>18.09</td>
<td>First summer (late).</td>
</tr>
<tr>
<td>1</td>
<td>18.66</td>
<td>Second spring.</td>
</tr>
<tr>
<td>4</td>
<td>18-19</td>
<td>First summer (late).</td>
</tr>
<tr>
<td>24</td>
<td>19-25</td>
<td>Second spring.</td>
</tr>
<tr>
<td>1</td>
<td>27.62</td>
<td>Fourth.</td>
</tr>
<tr>
<td>1</td>
<td>28.5</td>
<td>Second winter.</td>
</tr>
<tr>
<td>19</td>
<td>28-32</td>
<td>Third spring.</td>
</tr>
<tr>
<td>1</td>
<td>32.75</td>
<td>" winter.</td>
</tr>
<tr>
<td>25</td>
<td>33-34</td>
<td>" spring.</td>
</tr>
<tr>
<td>1</td>
<td>35.5</td>
<td>" summer.</td>
</tr>
<tr>
<td>9</td>
<td>35-37</td>
<td>" spring.</td>
</tr>
<tr>
<td>1</td>
<td>38.6</td>
<td>" summer.</td>
</tr>
<tr>
<td>1</td>
<td>38.75</td>
<td>" spring.</td>
</tr>
<tr>
<td>2</td>
<td>41.50</td>
<td>Fourth.</td>
</tr>
<tr>
<td>1</td>
<td>45.72</td>
<td>" "</td>
</tr>
<tr>
<td>2</td>
<td>48.26</td>
<td>" "</td>
</tr>
<tr>
<td>1</td>
<td>57.15</td>
<td>Fifth "</td>
</tr>
<tr>
<td>1</td>
<td>60.0</td>
<td>" "</td>
</tr>
<tr>
<td>1</td>
<td>60.32</td>
<td>Sixth "</td>
</tr>
<tr>
<td>1</td>
<td>63.30</td>
<td>Seventh "</td>
</tr>
<tr>
<td>1</td>
<td>61.77</td>
<td>Sixth "</td>
</tr>
<tr>
<td>1</td>
<td>78.74</td>
<td>Ninth "</td>
</tr>
<tr>
<td>1</td>
<td>80.01</td>
<td>Eighth "</td>
</tr>
<tr>
<td>1</td>
<td>83.82</td>
<td>Ninth summer.</td>
</tr>
<tr>
<td>1</td>
<td>96.52</td>
<td>Eleventh spring.</td>
</tr>
</tbody>
</table>
THE PERIODIC GROWTH OF SCALES IN GADIDAE

POLLACK.

Summarised Table of Age.

<table>
<thead>
<tr>
<th>Length of fish in cm.</th>
<th>Age of fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–19</td>
<td>First summer</td>
</tr>
<tr>
<td>3–11.75</td>
<td>,, winter</td>
</tr>
<tr>
<td>14.92–25</td>
<td>Second summer</td>
</tr>
<tr>
<td>28.5</td>
<td>,, winter</td>
</tr>
<tr>
<td>28.6–38.6</td>
<td>Third summer</td>
</tr>
<tr>
<td>27.02–38.26</td>
<td>Fourth ,,</td>
</tr>
<tr>
<td>57.15–60.0</td>
<td>Fifth ,,</td>
</tr>
<tr>
<td>60.32–64.77</td>
<td>Sixth ,,</td>
</tr>
<tr>
<td>63.50</td>
<td>Seventh ,,</td>
</tr>
<tr>
<td>80.01</td>
<td>Eighth ,,</td>
</tr>
<tr>
<td>78.74–83.82</td>
<td>Ninth ,,</td>
</tr>
<tr>
<td>96.52</td>
<td>Eleventh ,,</td>
</tr>
</tbody>
</table>

NOTE.—Summer is here taken as from April to October, winter as from October to April.

The next table is a summary of averages from the more detailed tables to show, in a general way, the increase in the length and breadth of scales, at various ages of the fish. From these tables it would be an easy matter to calculate the approximate area of scales, as many of the pollack's scales are nearly elliptical in shape.

Summarised Table

Showing Average surface size of Scales in the Pollack at various ages.

<table>
<thead>
<tr>
<th>No. of fish</th>
<th>Range of length in cm.</th>
<th>Range of weight in grams</th>
<th>Month of capture</th>
<th>Average length of scale in mm.</th>
<th>Average breadth of scales in A.B.N.</th>
<th>Average lines of growth in years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>14.4–5.9</td>
<td>64–1.45</td>
<td>July</td>
<td>25</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6.1–7.9</td>
<td>1.67–2.85</td>
<td>"</td>
<td>35</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>10.0–10.80</td>
<td>6.95–9.45</td>
<td>"</td>
<td>816</td>
<td>565</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>11.0–11.75</td>
<td>9.35–12.20</td>
<td>"</td>
<td>883</td>
<td>610</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>28.5</td>
<td>not taken</td>
<td>Oct. or Nov.</td>
<td>2.58</td>
<td>1.75</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>35.5–38.6</td>
<td>550–635</td>
<td>June–July</td>
<td>3.49</td>
<td>2.17</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>41.40</td>
<td>721.01</td>
<td>April</td>
<td>4.01</td>
<td>2.87</td>
<td>2.16</td>
</tr>
<tr>
<td>1</td>
<td>60.0</td>
<td>1922.70</td>
<td>"</td>
<td>5.55</td>
<td>3.12</td>
<td>3.06</td>
</tr>
<tr>
<td>1</td>
<td>83.82</td>
<td>4184.70</td>
<td>June</td>
<td>8.49</td>
<td>5.00</td>
<td>4.35</td>
</tr>
</tbody>
</table>

For purposes of comparison, I annex a short table of ages for the pollack from Cunningham's paper on the "Rate of Growth of some Sea Fishes" (Journal of Marine Biological Association, vol. ii., n.s., 1891–2).
The Poor Cod (*Gadus minutus*).

Cunningham mentions the occurrence of over two hundred specimens less than three inches long in Whitsand Bay in the middle of June, and that they undoubtedly developed from ova shed the preceding spring. He calculates the age of these at about three months.

Tabular Results of Examination of Scales of Poor Cod, *Gadus minutus*.

<table>
<thead>
<tr>
<th>Length</th>
<th>Weight in grns</th>
<th>Date of capture</th>
<th>Total length in mm</th>
<th>Maximum breadth in mm</th>
<th>Length of A B in mm</th>
<th>No. of excentric lines</th>
<th>No. of annual rings</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 cm = 1.29 in.</td>
<td>0.27</td>
<td>June 3, 1889</td>
<td>23</td>
<td>13</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>Locality of capture, Whitsand Bay.</td>
</tr>
<tr>
<td>3.53 cm = 1.53 in.</td>
<td>0.18</td>
<td>June 3, 1889</td>
<td>21</td>
<td>15</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>From Whitsand Bay.</td>
</tr>
<tr>
<td>4.3 cm = 1.69 in.</td>
<td>0.55</td>
<td>June 17, 1889</td>
<td>31</td>
<td>22</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>Average.</td>
</tr>
<tr>
<td>4.7 cm = 1.76 in.</td>
<td>0.65</td>
<td>June 17, 1889</td>
<td>50</td>
<td>40</td>
<td>28</td>
<td>6</td>
<td>0</td>
<td>From Whitsand Bay; also numerous minute scales without any excentric lines.</td>
</tr>
<tr>
<td>4.7 cm = 1.85 in.</td>
<td>0.73</td>
<td>June 3, 1889</td>
<td>34</td>
<td>26</td>
<td>19</td>
<td>3</td>
<td>0</td>
<td>From Whitsand Bay.</td>
</tr>
<tr>
<td>4.8 cm = 1.88 in.</td>
<td>1.22</td>
<td>June 17, 1889</td>
<td>58</td>
<td>55</td>
<td>33</td>
<td>7</td>
<td>0</td>
<td>Average.</td>
</tr>
</tbody>
</table>

Locality: From Rame Head.
RESULTS OF EXAMINATION OF SCALES OF POOR COD—continued.

<table>
<thead>
<tr>
<th>Length in cm</th>
<th>Date of capture</th>
<th>Weight in gms</th>
<th>Total length in mm</th>
<th>Maximum breadth in mm</th>
<th>No. of eccentric lines</th>
<th>No. of annual rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.88</td>
<td>June 17, 1889</td>
<td>.8</td>
<td>.32</td>
<td>.39</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5.96</td>
<td>June 3, 1889</td>
<td>1.07</td>
<td>.55</td>
<td>.50</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5.20</td>
<td>June 17, 1889</td>
<td>1.09</td>
<td>.32</td>
<td>.25</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.16</td>
<td>June 17, 1889</td>
<td>1.27</td>
<td>.32</td>
<td>.25</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.60</td>
<td>June 17, 1889</td>
<td>1.32</td>
<td>.38</td>
<td>.25</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.60</td>
<td>June 17, 1889</td>
<td>1.30</td>
<td>.37</td>
<td>.35</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>5.70</td>
<td>June 17, 1889</td>
<td>1.35</td>
<td>.61</td>
<td>.62</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5.70</td>
<td>June 17, 1889</td>
<td>1.32</td>
<td>.50</td>
<td>.56</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5.80</td>
<td>June 17, 1889</td>
<td>1.40</td>
<td>.75</td>
<td>.65</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5.80</td>
<td>June 17, 1889</td>
<td>1.30</td>
<td>.50</td>
<td>.42</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5.80</td>
<td>June 17, 1889</td>
<td>1.75</td>
<td>.31</td>
<td>.23</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES.
- From Whitsand Bay.
- Average.
- From Whitsand Bay.
- Average.
- Same lot of fish; few scales remaining on fish.
- Average.
- From Whitsand Bay.
- Average.
- All from same fish; from Whitsand Bay.
AS AN INDEX OF AGE.

RESULTS OF EXAMINATION OF SCALES OF POOR COD—continued.

<table>
<thead>
<tr>
<th>FISH.</th>
<th>SCALES.</th>
<th>NOTES.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Weight in grms.</td>
<td>Date of capture</td>
</tr>
<tr>
<td>5-9 cm. =</td>
<td>2-32 in.</td>
<td>1-55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-9 cm. =</td>
<td>2-32 in.</td>
<td>1-65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-0 cm. =</td>
<td>2-36 in.</td>
<td>1-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-0 cm. =</td>
<td>2-36 in.</td>
<td>1-65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1 cm. =</td>
<td>2-40 in.</td>
<td>1-77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1 cm. =</td>
<td>2-40 in.</td>
<td>1-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-3 cm. =</td>
<td>2-48 in.</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-5 cm. =</td>
<td>2-55 in.</td>
<td>2-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-8 cm. =</td>
<td>2-67 in.</td>
<td>2-57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm. =</td>
<td>Late winter or early spring 1901</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW SERIES.—VOL. VII. NO. 1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results of Examination of the Periodic Growth of Scales in Gadidae

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Weight (gms)</th>
<th>Date of Capture</th>
<th>Total Length (mm)</th>
<th>Maximum Breadth (mm)</th>
<th>Length of A Bar (mm)</th>
<th>No. of Excentric Lines</th>
<th>No. of Annual Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>14.8</td>
<td>July 9, 1901</td>
<td>1.97</td>
<td>1.63</td>
<td>1.09</td>
<td>40</td>
<td>1 + 10 c.l.</td>
</tr>
<tr>
<td>11.7</td>
<td>15.75</td>
<td>July 9, 1901</td>
<td>1.99</td>
<td>1.80</td>
<td>1.09</td>
<td>42</td>
<td>1 + 9 c.l.</td>
</tr>
<tr>
<td>12.5</td>
<td>16.8</td>
<td>July 9, 1901</td>
<td>1.57</td>
<td>1.10</td>
<td>0.94</td>
<td>36</td>
<td>1 + 10 c.l.</td>
</tr>
<tr>
<td>13</td>
<td>18.4</td>
<td>July 9, 1901</td>
<td>2.09</td>
<td>1.90</td>
<td>1.19</td>
<td>43</td>
<td>1 + 12 c.l.</td>
</tr>
<tr>
<td>13</td>
<td>19.5</td>
<td>July 9, 1901</td>
<td>2.18</td>
<td>1.85</td>
<td>1.23</td>
<td>43</td>
<td>1 + 11 c.l.</td>
</tr>
<tr>
<td>13.5</td>
<td>24.5</td>
<td>July 9, 1901</td>
<td>2.22</td>
<td>2.00</td>
<td>1.27</td>
<td>44</td>
<td>1 + 13 c.l.</td>
</tr>
<tr>
<td>14.3</td>
<td>24.9</td>
<td>July 9, 1901</td>
<td>1.57</td>
<td>1.30</td>
<td>0.98</td>
<td>32</td>
<td>1 + 10</td>
</tr>
<tr>
<td>18.8</td>
<td>53.15</td>
<td>not known</td>
<td>3.00</td>
<td>2.77</td>
<td>1.95</td>
<td>70</td>
<td>2 + c.l.</td>
</tr>
<tr>
<td>19.5</td>
<td>55</td>
<td>not known</td>
<td>2.52</td>
<td>2.30</td>
<td>1.92</td>
<td>52</td>
<td>2 + c.l.</td>
</tr>
</tbody>
</table>
SCALES OF POOR COD—continued.

<table>
<thead>
<tr>
<th></th>
<th>YEAR I</th>
<th></th>
<th>YEAR II</th>
<th></th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total length year's growth in mm.</td>
<td>Length of A'B in mm.</td>
<td>No. of excentric lines</td>
<td>Length of B'B' in mm.</td>
<td>No. of excentric lines</td>
</tr>
<tr>
<td>1.35</td>
<td>80</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>Few scales on this fish, and those mostly disintegrated.</td>
</tr>
<tr>
<td>1.64</td>
<td>7.8</td>
<td>33</td>
<td>22</td>
<td>9</td>
<td>Several scales disintegrated.</td>
</tr>
<tr>
<td>1.54</td>
<td>8.9</td>
<td>27</td>
<td>20</td>
<td>6</td>
<td>Average.</td>
</tr>
<tr>
<td>1.59</td>
<td>8.4</td>
<td>30</td>
<td>21</td>
<td>8</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.20</td>
<td>7.2</td>
<td>26</td>
<td>22</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>7.7</td>
<td>22</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>8.7</td>
<td>19</td>
<td>25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>9.0</td>
<td>25</td>
<td>24</td>
<td>9</td>
<td>Average.</td>
</tr>
<tr>
<td>1.22</td>
<td>8.2</td>
<td>23</td>
<td>23</td>
<td>9</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.40</td>
<td>8.5</td>
<td>31</td>
<td>34</td>
<td>12</td>
<td>A number of disintegrated scales.</td>
</tr>
<tr>
<td>1.50</td>
<td>1.00</td>
<td>28</td>
<td>35</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>1.45</td>
<td>9.3</td>
<td>30</td>
<td>35</td>
<td>11</td>
<td>"</td>
</tr>
<tr>
<td>1.55</td>
<td>9.0</td>
<td>32</td>
<td>33</td>
<td>11</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.64</td>
<td>8.2</td>
<td>31</td>
<td>31</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>1.40</td>
<td>8.0</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>"</td>
</tr>
<tr>
<td>1.52</td>
<td>8.7</td>
<td>31</td>
<td>32</td>
<td>11</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.42</td>
<td>8.4</td>
<td>32</td>
<td>43</td>
<td>12</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.40</td>
<td>8.5</td>
<td>32</td>
<td>31</td>
<td>10</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.22</td>
<td>7.5</td>
<td>32</td>
<td>37</td>
<td>13</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.42</td>
<td>8.5</td>
<td>32</td>
<td>35</td>
<td>13</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.37</td>
<td>8.2</td>
<td>32</td>
<td>37</td>
<td>12</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.05</td>
<td>7.0</td>
<td>22</td>
<td>28</td>
<td>10</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.43</td>
<td>9.0</td>
<td>28</td>
<td>32</td>
<td>10</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.41</td>
<td>1.00</td>
<td>31</td>
<td>26</td>
<td>9</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.70</td>
<td>8.8</td>
<td>26</td>
<td>34</td>
<td>11</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>1.40</td>
<td>9.0</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR I</th>
<th>YEAR II</th>
<th>YEAR III</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length year's growth in mm.</td>
<td>Length of A'B in mm.</td>
<td>No. of excentric lines</td>
<td>Length of B'B' in mm.</td>
</tr>
<tr>
<td>1.48</td>
<td>80</td>
<td>23</td>
<td>78</td>
</tr>
<tr>
<td>1.50</td>
<td>65</td>
<td>23</td>
<td>82</td>
</tr>
<tr>
<td>1.49</td>
<td>78</td>
<td>26</td>
<td>89</td>
</tr>
<tr>
<td>85</td>
<td>64</td>
<td>17</td>
<td>56</td>
</tr>
<tr>
<td>1.10</td>
<td>70</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td>0.98</td>
<td>67</td>
<td>19</td>
<td>51</td>
</tr>
</tbody>
</table>
SUMMARY OF EXAMINATION OF SCALES OF POOR COD.

<table>
<thead>
<tr>
<th>Length of fish.</th>
<th>Weight in grains.</th>
<th>Date of capture.</th>
<th>No. of annual rings.</th>
<th>No. of lines of growth (excentric lines) in years</th>
<th>Approximate age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm.</td>
<td>in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>1 29</td>
<td>27</td>
<td>June</td>
<td>-1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>3.9</td>
<td>1 53</td>
<td>48</td>
<td>"</td>
<td>"</td>
<td>2 0 0</td>
</tr>
<tr>
<td>4.3</td>
<td>1 70</td>
<td>55</td>
<td>"</td>
<td>"</td>
<td>5 5 5</td>
</tr>
<tr>
<td>4.4</td>
<td>1 73</td>
<td>65</td>
<td>"</td>
<td>"</td>
<td>5 5 5</td>
</tr>
<tr>
<td>4.7</td>
<td>1 85</td>
<td>73</td>
<td>"</td>
<td>"</td>
<td>5 5 5</td>
</tr>
<tr>
<td>4.7</td>
<td>1 85</td>
<td>72</td>
<td>"</td>
<td>"</td>
<td>5 5 5</td>
</tr>
<tr>
<td>4.8</td>
<td>1 88</td>
<td>1 22</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>4.8</td>
<td>1 88</td>
<td>8</td>
<td>"</td>
<td>"</td>
<td>6 6 6</td>
</tr>
<tr>
<td>5.0</td>
<td>1 96</td>
<td>1 07</td>
<td>"</td>
<td>"</td>
<td>6 6 6</td>
</tr>
<tr>
<td>5.2</td>
<td>2 04</td>
<td>1 09</td>
<td>"</td>
<td>"</td>
<td>8 8 8</td>
</tr>
<tr>
<td>5.5</td>
<td>2 10</td>
<td>1 27</td>
<td>"</td>
<td>"</td>
<td>3 3 3</td>
</tr>
<tr>
<td>5.6</td>
<td>2 20</td>
<td>1 45</td>
<td>"</td>
<td>"</td>
<td>3 3 3</td>
</tr>
<tr>
<td>5.6</td>
<td>2 20</td>
<td>1 32</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>5.7</td>
<td>2 24</td>
<td>1 35</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>5.7</td>
<td>2 24</td>
<td>1 32</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>5.8</td>
<td>2 23</td>
<td>1 40</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>5.8</td>
<td>2 25</td>
<td>1 30</td>
<td>"</td>
<td>"</td>
<td>8 8 8</td>
</tr>
<tr>
<td>5.8</td>
<td>2 28</td>
<td>1 75</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>5.9</td>
<td>2 32</td>
<td>1 55</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>5.9</td>
<td>2 32</td>
<td>1 65</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>6.0</td>
<td>2 36</td>
<td>1 50</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>6.0</td>
<td>2 36</td>
<td>1 65</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>6.1</td>
<td>2 40</td>
<td>1 77</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>6.1</td>
<td>2 40</td>
<td>1 92</td>
<td>"</td>
<td>"</td>
<td>9 9 9</td>
</tr>
<tr>
<td>6.3</td>
<td>2 48</td>
<td>2 3</td>
<td>"</td>
<td>"</td>
<td>7 7 7</td>
</tr>
<tr>
<td>6.5</td>
<td>2 55</td>
<td>2 22</td>
<td>"</td>
<td>"</td>
<td>9 9 9</td>
</tr>
<tr>
<td>6.8</td>
<td>2 67</td>
<td>2 57</td>
<td>"</td>
<td>"</td>
<td>8 8 8</td>
</tr>
<tr>
<td>10.0</td>
<td>3 93</td>
<td>8 0</td>
<td>late winter or early spring</td>
<td>1 +...21 g.</td>
<td>23 23 23</td>
</tr>
<tr>
<td>10.16</td>
<td>4 0</td>
<td>4 0</td>
<td>October</td>
<td>-1</td>
<td>not taken</td>
</tr>
<tr>
<td>11.5</td>
<td>4 54</td>
<td>14 8</td>
<td>July</td>
<td>1+</td>
<td>30 10 0</td>
</tr>
<tr>
<td>11.70</td>
<td>4 60</td>
<td>15 75</td>
<td></td>
<td>1+</td>
<td>30 8 0</td>
</tr>
<tr>
<td>12.23</td>
<td>5 37</td>
<td>not taken</td>
<td>February</td>
<td>-1</td>
<td>not taken</td>
</tr>
<tr>
<td>12.50</td>
<td>5 92</td>
<td>18 3</td>
<td>July</td>
<td>1+</td>
<td>23 9 9</td>
</tr>
<tr>
<td>13.0</td>
<td>5 11</td>
<td>15 4</td>
<td></td>
<td>1+</td>
<td>30 11 11</td>
</tr>
<tr>
<td>13.0</td>
<td>5 11</td>
<td>19 5</td>
<td>February</td>
<td>-1</td>
<td>not taken</td>
</tr>
<tr>
<td>13.33</td>
<td>5 25</td>
<td>"</td>
<td>January</td>
<td>-2</td>
<td>11 months.</td>
</tr>
<tr>
<td>13.50</td>
<td>5 31</td>
<td>24 5</td>
<td>July</td>
<td>1+</td>
<td>32 12 0</td>
</tr>
<tr>
<td>13.65</td>
<td>5 37</td>
<td>not taken</td>
<td>May</td>
<td>1+</td>
<td>1 year 3-4 months.</td>
</tr>
<tr>
<td>14.3</td>
<td>5 32</td>
<td>21 9</td>
<td>July</td>
<td>1+</td>
<td>30 10 0</td>
</tr>
<tr>
<td>14.3</td>
<td>5 62</td>
<td>not taken</td>
<td>May</td>
<td>1+</td>
<td>1 year 3-4 months.</td>
</tr>
<tr>
<td>14.60</td>
<td>5 75</td>
<td>25 0</td>
<td>February</td>
<td>-1</td>
<td>not taken</td>
</tr>
<tr>
<td>15.55</td>
<td>6 12</td>
<td>not taken</td>
<td>February</td>
<td>-1</td>
<td>1 year 2 months.</td>
</tr>
<tr>
<td>15.87</td>
<td>6 25</td>
<td>26 0</td>
<td>April</td>
<td>2+</td>
<td>11 months.</td>
</tr>
<tr>
<td>17.14</td>
<td>6 75</td>
<td>35 5</td>
<td></td>
<td>2+</td>
<td>2 years 1 month.</td>
</tr>
<tr>
<td>17.78</td>
<td>7 0</td>
<td>not taken</td>
<td>October</td>
<td>-3</td>
<td>2 years 7 months.</td>
</tr>
<tr>
<td>18.09</td>
<td>7 12</td>
<td>63 9</td>
<td>May</td>
<td>2+</td>
<td>2 years 2 months.</td>
</tr>
<tr>
<td>18.3</td>
<td>7 30</td>
<td>53 15</td>
<td>not known</td>
<td>2+</td>
<td>2 years 3-4 months.</td>
</tr>
<tr>
<td>19.05</td>
<td>7 50</td>
<td>not taken</td>
<td></td>
<td>-3</td>
<td>Under 3 years.</td>
</tr>
<tr>
<td>19.36</td>
<td>7 62</td>
<td>48 5</td>
<td>April</td>
<td>3+</td>
<td>3 years 1 month.</td>
</tr>
<tr>
<td>19.45</td>
<td>7 66</td>
<td>not taken</td>
<td>not known</td>
<td>-3</td>
<td>Under 3 years.</td>
</tr>
<tr>
<td>19.5</td>
<td>7 67</td>
<td>55 0</td>
<td>"</td>
<td>3</td>
<td>About 3 years.</td>
</tr>
<tr>
<td>19.5</td>
<td>7 67</td>
<td>55 0</td>
<td>"</td>
<td>3</td>
<td>Under 3 years.</td>
</tr>
<tr>
<td>19.65</td>
<td>7 75</td>
<td>not taken</td>
<td>April</td>
<td>2+</td>
<td>1 year 1 month.</td>
</tr>
<tr>
<td>20.32</td>
<td>8 0</td>
<td>51 5</td>
<td>February</td>
<td>-2</td>
<td>1 year 11 months.</td>
</tr>
<tr>
<td>22.22</td>
<td>8 75</td>
<td>110 0</td>
<td>February</td>
<td>-3</td>
<td>2 years 11 months.</td>
</tr>
</tbody>
</table>
AS AN INDEX OF AGE.

Summarised Table

Showing Average surface size of Scales in the Poor Cod at various stages.

<table>
<thead>
<tr>
<th>No. of fish</th>
<th>Range of length in cm</th>
<th>Range of weight in grms.</th>
<th>Month of capture</th>
<th>Average length of scale in mm</th>
<th>Average length of A Bl or A Bs in mm</th>
<th>Average breadth of scale in mm</th>
<th>Average lines of growth in years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3·3</td>
<td>27</td>
<td>June</td>
<td>.23</td>
<td>.12</td>
<td>.13</td>
<td>0 - -</td>
</tr>
<tr>
<td>7</td>
<td>3·9-4·8</td>
<td>18-80</td>
<td></td>
<td>.35</td>
<td>.21</td>
<td>.30</td>
<td>4 - -</td>
</tr>
<tr>
<td>13</td>
<td>5·0-5·9</td>
<td>1·07-1·65</td>
<td></td>
<td>.56</td>
<td>.34</td>
<td>.50</td>
<td>7 - -</td>
</tr>
<tr>
<td>7</td>
<td>6·0-6·8</td>
<td>1·59-2·57</td>
<td></td>
<td>.68</td>
<td>.47</td>
<td>.61</td>
<td>8 - -</td>
</tr>
<tr>
<td>1</td>
<td>10·0</td>
<td>8</td>
<td>uncertain, late winter or early spring</td>
<td>1·49</td>
<td>.86</td>
<td>1·19</td>
<td>23 - -</td>
</tr>
<tr>
<td>2</td>
<td>11·5-11·70</td>
<td>14·8-15·75</td>
<td>July</td>
<td>1·92</td>
<td>1·07</td>
<td>1·71</td>
<td>30 9 -</td>
</tr>
<tr>
<td>5</td>
<td>12·5-14·6</td>
<td>16·8-21·9</td>
<td></td>
<td>2·02</td>
<td>1·18</td>
<td>1·76</td>
<td>29 11 -</td>
</tr>
<tr>
<td>1</td>
<td>18·8</td>
<td>53·15</td>
<td>not known</td>
<td>3·68</td>
<td>1·84</td>
<td>2·22</td>
<td>20 25 11</td>
</tr>
<tr>
<td>1</td>
<td>19·5</td>
<td>55</td>
<td></td>
<td>2·49</td>
<td>1·53</td>
<td>2·10</td>
<td>19 21 16</td>
</tr>
</tbody>
</table>

POOR COD.—Summary of Age.

<table>
<thead>
<tr>
<th>Length of fish in cm</th>
<th>Age of fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-10</td>
<td>First summer</td>
</tr>
<tr>
<td>10·16-15·55</td>
<td>winter</td>
</tr>
<tr>
<td>11·50-14·60</td>
<td>Second summer</td>
</tr>
<tr>
<td>13·33-22·22</td>
<td>winter</td>
</tr>
<tr>
<td>15·87-20·32</td>
<td>Third summer</td>
</tr>
<tr>
<td>17·78-23·75</td>
<td>winter</td>
</tr>
<tr>
<td>19·36-......</td>
<td>Fourth summer</td>
</tr>
</tbody>
</table>

Note.— The detailed table shows more clearly how variable in size fishes of the same age may be.

GADUS MINUTUS, THE POOR COD.

Table from Cunningham's "Rate of Growth of some Sea Fishes" (Journal of Marine Biological Association, 1891-2).

<table>
<thead>
<tr>
<th>Date of collection</th>
<th>Number of specimens</th>
<th>Length in cm</th>
<th>Length in inches</th>
<th>Calculated age</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 28, 1890</td>
<td>12</td>
<td>2·3-1·3</td>
<td>1·1-1·7</td>
<td>8-12 weeks</td>
</tr>
<tr>
<td>June 17, 1890</td>
<td>215</td>
<td>4·2-7·2</td>
<td>1·6-2·9</td>
<td>About 3 months</td>
</tr>
<tr>
<td>July 9, 1891</td>
<td>6</td>
<td>11·5-16·2</td>
<td>4·5-6·4</td>
<td>1 year 3 "</td>
</tr>
<tr>
<td>April 19, 1891</td>
<td>7</td>
<td>14·3-19·0</td>
<td>5·6-7·5</td>
<td>2 years.</td>
</tr>
<tr>
<td>June 17, 1890</td>
<td>2</td>
<td>13·7-15·0</td>
<td>5·4-5·8</td>
<td>1 year 2 months.</td>
</tr>
<tr>
<td>"</td>
<td>1</td>
<td>20·0</td>
<td>7·8</td>
<td>" 2 "</td>
</tr>
</tbody>
</table>

The Whiting (Gadus merlangus).

According to Fulton, "the spawning season of the whiting extends from the beginning of March to the end of June or beginning of July, with its maximum about the end of April, and at the temperature of the water at that time the eggs will take about ten or twelve days to hatch."

"The bulk of the larval whittings may thus be regarded as beginning
their independent pelagic life in the early part of May, at a length of about 3.5 mm. (½ inch)."

By the end of the summer they are, on an average, more than four inches in length. "The growth of the young whiting is very rapid."

According to Cunningham, the whiting at Plymouth spawn in February and March. In the middle of June they are about two inches in length, and he estimates their age at three or four months. In the middle of July they are two to three and a half inches in length, and he estimates their age at about four or five months.

Tabular Results of Examination of Scales of Whiting, Gadus merlangus.

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Weight (grms.)</th>
<th>Date of capture</th>
<th>Length in mm</th>
<th>Maximum breadth in mm</th>
<th>Length of A.P.</th>
<th>No. of lines of growth</th>
<th>No. of annual rings</th>
<th>NOTES</th>
</tr>
</thead>
</table>
| 5.4 | 2.12 | June 17, 1889 | 29 | 23 | 17 | 3 | 1 | Locality of capture, Whitsand Bay. These scales were taken from a part slightly posterior to the usual area. Average.
| | | | 33 | 28 | 22 | 4 | | From Cunningham's Grimsby collection, trawled off the Humber October 25, 1892. Average for preceding ½-dozen scales, all from same fish. |
| 7.8 | 3.07 | Oct. 25, 1892 | 39 | 37 | 35 | 11 | 1 | From Cunningham's Grimsby collection, s.s. Valeria trawled off Humber, October 25, 1892. Average for preceding ½-dozen scales, all from same fish. |
| | | | 60 | 31 | 32 | 11 | | Same locality as last. Average for preceding 4 scales, all from same fish. |
| 8.2 | 3.22 | Oct. 25, 1892 | 69 | 52 | 33 | 10 | 1 | From Cunningham's Grimsby collection, s.s. Valeria trawled off Humber, October 25, 1892. Average for preceding ½-dozen scales, all from same fish. |
| | | | 62 | 49 | 30 | 9 | | Same locality as last. Average for preceding 4 scales, all from same fish. |
| 9.8 | 3.85 | Oct. 25, 1892 | 56 | 41 | 30 | 9 | 1 | From Cunningham's Grimsby collection, s.s. Valeria. Average. |
| | | | 55 | 43 | 33 | 10 | | From Teignmouth Bay. Average. |
| 11 | 4.33 | Nov. 4-16, 1901 | 58 | 60 | 52 | 20 | 1 | From Teignmouth Bay. Average. |
TABULAR RESULTS OF EXAMINATION OF SCALES OF WHITING—continued.

<table>
<thead>
<tr>
<th>FISH.</th>
<th>SCALES.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length.</td>
<td>Weight in grams</td>
</tr>
<tr>
<td>11 1/2 cm.</td>
<td>4 3/2 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11 3/4 cm.</td>
<td>4 6/8 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>12 1/2 cm.</td>
<td>4 8/10 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>12 3/4 cm.</td>
<td>5 3/4 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>13 cm.</td>
<td>6 1/2 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>13 3/4 cm.</td>
<td>6 3/4 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>14 1/8 cm.</td>
<td>7 1/16 in.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>14 3/4 cm.</td>
<td>7 3/8 in.</td>
</tr>
</tbody>
</table>
Tabular Results of Examination of Scales of Whiting—continued.

FISH.

<table>
<thead>
<tr>
<th>Length</th>
<th>Weight in grns.</th>
<th>Date of capture.</th>
<th>Length in mm.</th>
<th>Maximum breadth in mm.</th>
<th>Length of A.B.</th>
<th>No. of lines of growth.</th>
<th>No. of annual rings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14'65 cm. = 5'76 in.</td>
<td>23'15</td>
<td>Sept. 28, 1901</td>
<td>1'27</td>
<td>0'60</td>
<td>0'80</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>14'75 cm. = 5'80 in.</td>
<td>26'90</td>
<td>Nov. 4-16, 1901</td>
<td>1'37</td>
<td>0'79</td>
<td>0'85</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>15'5 cm. = 6'10 in.</td>
<td>29'25</td>
<td>Sept. 28, 1901</td>
<td>1'23</td>
<td>0'63</td>
<td>0'70</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>15'75 cm. = 6'20 in.</td>
<td>28'8</td>
<td>Nov. 4-16, 1901</td>
<td>1'07</td>
<td>0'68</td>
<td>0'67</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>16'00 cm. = 6'29 in.</td>
<td>29'5</td>
<td>Nov. 4-16, 1901</td>
<td>1'52</td>
<td>1'00</td>
<td>0'86</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>16'25 cm. = 6'33 in.</td>
<td>32'9</td>
<td>Nov. 4-16, 1901</td>
<td>1'28</td>
<td>0'60</td>
<td>0'81</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>

SCALES.

<table>
<thead>
<tr>
<th>Notes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Cattewater, Plymouth.</td>
</tr>
<tr>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>From Teignmouth Bay.</td>
</tr>
<tr>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>From Cattewater, Plymouth.</td>
</tr>
<tr>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>From Teignmouth Bay.</td>
</tr>
<tr>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>From same locality.</td>
</tr>
<tr>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>From same locality.</td>
</tr>
<tr>
<td>Average for preceding 4 scales, all from same fish.</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>16.5 cm. = 6.49 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17 cm. = 6.69 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17.25 cm. = 6.79 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17.75 cm. = 6.98 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17.75 cm. = 6.98 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18.7 cm. = 7.36 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18.75 cm. = 7.38 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18.8 cm. = 7.40 in.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABULAR RESULTS OF EXAMINATION

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Weight (g)</th>
<th>Date of capture</th>
<th>Fish</th>
<th>Scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.25</td>
<td>134.30</td>
<td>May 11, 1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.6</td>
<td>1.98</td>
<td>1.42</td>
<td>47</td>
<td>1+</td>
</tr>
<tr>
<td>2.73</td>
<td>1.85</td>
<td>1.37</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2.93</td>
<td>2.05</td>
<td>1.47</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.88</td>
<td>2.07</td>
<td>1.35</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2.83</td>
<td>1.90</td>
<td>1.40</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>175</td>
<td>July 16, 1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.34</td>
<td>1.46</td>
<td>1.44</td>
<td>40</td>
<td>1+</td>
</tr>
<tr>
<td>2.53</td>
<td>1.40</td>
<td>1.27</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2.47</td>
<td>1.50</td>
<td>1.33</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2.37</td>
<td>1.52</td>
<td>1.45</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2.63</td>
<td>1.47</td>
<td>1.37</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>175</td>
<td>July 16, 1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>1.45</td>
<td>1.32</td>
<td>41</td>
<td>1+</td>
</tr>
<tr>
<td>2.42</td>
<td>1.40</td>
<td>1.19</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2.08</td>
<td>1.20</td>
<td>1.33</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>1.25</td>
<td>1.28</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2.28</td>
<td>1.33</td>
<td>1.28</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>29.65</td>
<td>205</td>
<td>Dec. 2, 1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.06</td>
<td>1.70</td>
<td>1.45</td>
<td>54</td>
<td>-2</td>
</tr>
<tr>
<td>1.55</td>
<td>1.37</td>
<td>1.21</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1.96</td>
<td>1.25</td>
<td>1.13</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.03</td>
<td>1.32</td>
<td>1.21</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>1.90</td>
<td>1.41</td>
<td>1.27</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>30.15</td>
<td>185</td>
<td>Dec. 2, 1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>1.65</td>
<td>1.28</td>
<td>42</td>
<td>-2</td>
</tr>
<tr>
<td>31.5</td>
<td>215</td>
<td>Dec. 2, 1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.49</td>
<td>1.65</td>
<td>1.48</td>
<td>53</td>
<td>-2</td>
</tr>
<tr>
<td>2.73</td>
<td>1.70</td>
<td>1.55</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2.61</td>
<td>1.68</td>
<td>1.52</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>
OF SCALES OF WHITING—continued.

<table>
<thead>
<tr>
<th>YEAR I</th>
<th>YEAR II</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Length of A in mm.</td>
<td>Length of B in mm.</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>2.03</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>2.18</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>2.14</td>
<td>.95</td>
</tr>
<tr>
<td></td>
<td>2.09</td>
<td>1.05</td>
</tr>
<tr>
<td>1.52</td>
<td>.97</td>
<td>27+</td>
</tr>
<tr>
<td>1.53</td>
<td>.82</td>
<td>30</td>
</tr>
<tr>
<td>1.45</td>
<td>.91</td>
<td>31</td>
</tr>
<tr>
<td>1.55</td>
<td>.95</td>
<td>29</td>
</tr>
<tr>
<td>1.51</td>
<td>.91</td>
<td>29</td>
</tr>
<tr>
<td>1.50</td>
<td>.82</td>
<td>27</td>
</tr>
<tr>
<td>1.50</td>
<td>.74</td>
<td>25</td>
</tr>
<tr>
<td>1.35</td>
<td>.85</td>
<td>21</td>
</tr>
<tr>
<td>1.34</td>
<td>.75</td>
<td>25</td>
</tr>
<tr>
<td>1.42</td>
<td>.79</td>
<td>27</td>
</tr>
<tr>
<td>1.18</td>
<td>.80</td>
<td>30</td>
</tr>
<tr>
<td>1.20</td>
<td>.77</td>
<td>30</td>
</tr>
<tr>
<td>1.18</td>
<td>.70</td>
<td>29</td>
</tr>
<tr>
<td>1.22</td>
<td>.75</td>
<td>26</td>
</tr>
<tr>
<td>1.20</td>
<td>.76</td>
<td>29</td>
</tr>
<tr>
<td>1.80</td>
<td>.98</td>
<td>32</td>
</tr>
<tr>
<td>1.85</td>
<td>1.05</td>
<td>40</td>
</tr>
<tr>
<td>1.34</td>
<td>.80</td>
<td>27</td>
</tr>
<tr>
<td>1.60</td>
<td>.93</td>
<td>34</td>
</tr>
</tbody>
</table>
TABULAR RESULTS OF EXAMINATION

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Weight (g)</th>
<th>Date of capture</th>
<th>Total length (mm)</th>
<th>Maximum breadth (mm)</th>
<th>Length of Alb (mm)</th>
<th>No. of lines of growth</th>
<th>No. of annual rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.3 cm.</td>
<td>257</td>
<td>Oct. 8, 1901</td>
<td>2.13</td>
<td>1.65</td>
<td>1.50</td>
<td>55</td>
<td>-3</td>
</tr>
<tr>
<td>12.71 in.</td>
<td></td>
<td></td>
<td>1.73</td>
<td>1.80</td>
<td>1.55</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>13.07 in.</td>
<td>290</td>
<td>Oct. 8, 1901</td>
<td>2.52</td>
<td>1.50</td>
<td>1.46</td>
<td>57</td>
<td>-3</td>
</tr>
<tr>
<td>13.18 in.</td>
<td>245</td>
<td>Dec. 2, 1901</td>
<td>2.59</td>
<td>1.80</td>
<td>1.62</td>
<td>50</td>
<td>-2</td>
</tr>
<tr>
<td>13.38 in.</td>
<td>340</td>
<td>Dec. 12, 1901</td>
<td>2.60</td>
<td>1.90</td>
<td>1.80</td>
<td>63</td>
<td>-3</td>
</tr>
<tr>
<td>13.46 in.</td>
<td>290</td>
<td>Oct. 8, 1901</td>
<td>2.48</td>
<td>1.60</td>
<td>1.51</td>
<td>56</td>
<td>-3</td>
</tr>
<tr>
<td>13.58 in.</td>
<td>335</td>
<td>Jan. 10, 1902</td>
<td>2.39</td>
<td>2.10</td>
<td>2.40</td>
<td>72</td>
<td>-3</td>
</tr>
<tr>
<td>13.75 in.</td>
<td>255</td>
<td>Dec. 2, 1901</td>
<td>2.96</td>
<td>2.15</td>
<td>1.79</td>
<td>70</td>
<td>-3</td>
</tr>
</tbody>
</table>
OF SCALES OF WHITING—continued.

<table>
<thead>
<tr>
<th>YEAR I.</th>
<th>YEAR II.</th>
<th>YEAR III.</th>
<th>REMARKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length in mm.</td>
<td>Length of A BP in mm.</td>
<td>No. of lines of growth</td>
<td>Length of B BP in mm.</td>
</tr>
<tr>
<td>1'20</td>
<td>87</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>1'50</td>
<td>1'00</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>1'55</td>
<td>1'00</td>
<td>37</td>
<td>25</td>
</tr>
<tr>
<td>1'70</td>
<td>98</td>
<td>37</td>
<td>25</td>
</tr>
<tr>
<td>1'68</td>
<td>1'10</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>1'78</td>
<td>1'00</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>1'57</td>
<td>99</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>1'70</td>
<td>90</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>1'65</td>
<td>1'07</td>
<td>43</td>
<td>14</td>
</tr>
<tr>
<td>2'90</td>
<td>1'36</td>
<td>46</td>
<td>33</td>
</tr>
<tr>
<td>1'63</td>
<td>1'39</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>1'58</td>
<td>1'37</td>
<td>38</td>
<td>26</td>
</tr>
<tr>
<td>1'54</td>
<td>1'25</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>1'68</td>
<td>1'04</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>1'60</td>
<td>1'05</td>
<td>34</td>
<td>57</td>
</tr>
<tr>
<td>1'55</td>
<td>1'00</td>
<td>34</td>
<td>62</td>
</tr>
<tr>
<td>1'58</td>
<td>1'03</td>
<td>34</td>
<td>60</td>
</tr>
<tr>
<td>1'70</td>
<td>1'15</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1'30</td>
<td>1'35</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>1'50</td>
<td>1'35</td>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>1'27</td>
<td>1'22</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td>1'44</td>
<td>1'07</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>75</td>
<td>43</td>
<td>16</td>
<td>55</td>
</tr>
<tr>
<td>85</td>
<td>45</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>90</td>
<td>50</td>
<td>18</td>
<td>73</td>
</tr>
<tr>
<td>85</td>
<td>45</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>85</td>
<td>44</td>
<td>18</td>
<td>57</td>
</tr>
<tr>
<td>90</td>
<td>38</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>78</td>
<td>43</td>
<td>16</td>
<td>57</td>
</tr>
<tr>
<td>1'80</td>
<td>1'10</td>
<td>32</td>
<td>65</td>
</tr>
<tr>
<td>1'55</td>
<td>94</td>
<td>33</td>
<td>45</td>
</tr>
</tbody>
</table>

A few scales showed disintegration; apparently a very small growth in 2nd year, especially winter growth.

Average for preceding 6 scales, all from same fish.

Average for preceding 4-dozen scales, all from same fish, Jan. 7, 1902.

Many scales on this fish were in a disintegrated condition.

Average.

Many disintegrated scales.

N.B.—Small growth of first year.

Average.

Few scales on this fish, as it came from the trawlers.
TABULAR RESULTS OF EXAMINATION

<table>
<thead>
<tr>
<th>FISH</th>
<th>SCALES</th>
<th>YEAR I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length of AIP</td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td>in mm.</td>
<td>in mm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>Weight</th>
<th>Date of capture</th>
<th>Total length</th>
<th>Maximum breath</th>
<th>Length of AIP</th>
<th>No. of annual rings</th>
<th>Total length</th>
<th>Length</th>
<th>No. of lines of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.02</td>
<td>13.75</td>
<td>Dec. 2, 1901</td>
<td>2.76</td>
<td>1.95</td>
<td>1.68</td>
<td>59 - 4</td>
<td>.50</td>
<td>.28</td>
<td>8*</td>
</tr>
<tr>
<td>35.56</td>
<td>14 in.</td>
<td>Dec. 2, 1901</td>
<td>2.55</td>
<td>1.95</td>
<td>1.51</td>
<td>58 - 3</td>
<td>1.35</td>
<td>.76</td>
<td>30</td>
</tr>
<tr>
<td>35.56</td>
<td>14 in.</td>
<td>Dec. 2, 1901</td>
<td>2.56</td>
<td>2.00</td>
<td>1.57</td>
<td>59 - 3</td>
<td>1.30</td>
<td>.75</td>
<td>30</td>
</tr>
<tr>
<td>36.195</td>
<td>14.25 in.</td>
<td>Dec. 2, 1901</td>
<td>2.40</td>
<td>1.88</td>
<td>1.42</td>
<td>53 - 3</td>
<td>1.25</td>
<td>.65</td>
<td>20</td>
</tr>
<tr>
<td>36.195</td>
<td>14.25 in.</td>
<td>Dec. 2, 1901</td>
<td>2.51</td>
<td>1.84</td>
<td>1.50</td>
<td>57 - 3</td>
<td>1.50</td>
<td>.81</td>
<td>25</td>
</tr>
<tr>
<td>36.83</td>
<td>14.50 in.</td>
<td>Dec. 2, 1901</td>
<td>2.76</td>
<td>1.80</td>
<td>1.58</td>
<td>49 - 3</td>
<td>1.55</td>
<td>.83</td>
<td>26</td>
</tr>
<tr>
<td>40.005</td>
<td>15.75 in.</td>
<td>Dec. 2, 1901</td>
<td>2.86</td>
<td>1.90</td>
<td>1.86</td>
<td>72 - 3</td>
<td>1.30</td>
<td>.80</td>
<td>31</td>
</tr>
<tr>
<td>41.275</td>
<td>16.25 in.</td>
<td>Dec. 2, 1901</td>
<td>3.14</td>
<td>2.30</td>
<td>2.14</td>
<td>74 - 3</td>
<td>1.66</td>
<td>.92</td>
<td>34</td>
</tr>
<tr>
<td>48.6</td>
<td>18.34 in.</td>
<td>Jan. 10, 1902</td>
<td>3.28</td>
<td>2.15</td>
<td>1.65</td>
<td>70 - 4</td>
<td>.70</td>
<td>.10</td>
<td>21</td>
</tr>
<tr>
<td>49</td>
<td>19.29 in.</td>
<td>May 14, 1901</td>
<td>3.54</td>
<td>2.90</td>
<td>2.15</td>
<td>78 4+</td>
<td>1.55</td>
<td>.85</td>
<td>27</td>
</tr>
</tbody>
</table>

* Some concentration of lines at this point.
OF SCALES OF WHITING—continued.

<table>
<thead>
<tr>
<th>YEAR II</th>
<th>YEAR III</th>
<th>YEAR IV</th>
<th>YEAR V</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of B'B' in mm.</td>
<td>No. of lines of growth</td>
<td>Length of B'B' in mm.</td>
<td>No. of lines of growth</td>
<td>Length of B'B' in mm.</td>
</tr>
<tr>
<td>'59 24</td>
<td>'35 11</td>
<td>'46 16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'63 25</td>
<td>'40 17</td>
<td>'47 14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'61 25</td>
<td>'38 14</td>
<td>'47 15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'40 16</td>
<td>'35 12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'42 14</td>
<td>'40 15</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'41 15</td>
<td>'38 14</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'40 17</td>
<td>'37 16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'36 20</td>
<td>'25 11</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'38 19</td>
<td>'31 14</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'35 14</td>
<td>'35 14</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'25 13</td>
<td>'35 10</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'30 14</td>
<td>'30 12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'28 13</td>
<td>'19 6</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'50 14</td>
<td>'25 9</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'63 24</td>
<td>'48 17</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'66 24</td>
<td>'48 16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'70 25</td>
<td>'40 13</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'55 22</td>
<td>'35 12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'59 24</td>
<td>'42 15</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'74 18</td>
<td>'48 22</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'35 23</td>
<td>'58 21</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'80 25</td>
<td>'65 20</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'80 24</td>
<td>'50 19</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'82 22</td>
<td>'55 21</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'65 22</td>
<td>'35 13</td>
<td>'35 14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'65 25</td>
<td>'35 14</td>
<td>'35 12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'60 23</td>
<td>'30 11</td>
<td>'30 11</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'50 19</td>
<td>'40 14</td>
<td>'30 14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'40 13</td>
<td>'29 12</td>
<td>'20 7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'47 16</td>
<td>'35 12</td>
<td>'35 14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'57 18</td>
<td>'33 13</td>
<td>'35 13</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>'49 17</td>
<td>'38 13</td>
<td>'30 12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Remarks:
- Remarkably small scale growth for first year; also marked disintegration of large number of scales. Year I and II should perhaps be Year I.
- Average.
- Average.
- Average.
- Average.
- Many of the scales from the last fish were in a disintegrated condition.
- Average.
- This is a corrected observation: in my previous observation I had evidently put Years III and IV together as one year.
- Average.
Examination of Scales of Whiting—Summary.

<table>
<thead>
<tr>
<th>Length of fish. cm.</th>
<th>Weight in grms.</th>
<th>Month of capture</th>
<th>Annual rings</th>
<th>Lines of growth</th>
<th>Locality</th>
<th>Approximate age</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>2.12</td>
<td>June</td>
<td>I. -1</td>
<td>3</td>
<td>From English Channel From North Sea</td>
<td>3-4 months.</td>
</tr>
<tr>
<td>7.8</td>
<td>3.07</td>
<td>Oct.</td>
<td>I. -1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>2.99</td>
<td>Oct.</td>
<td>II. -2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>3.30</td>
<td>Oct.</td>
<td>II. -2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>3.95</td>
<td>Nov.</td>
<td>II. -3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>9.33</td>
<td>Nov.</td>
<td>II. -3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>9.32</td>
<td>Nov.</td>
<td>II. -3</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.60</td>
<td>9.48</td>
<td>Nov.</td>
<td>II. -3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.20</td>
<td>9.80</td>
<td>Nov.</td>
<td>II. -3</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.10</td>
<td>9.88</td>
<td>Nov.</td>
<td>II. -3</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>9.11</td>
<td>Sept.</td>
<td>III. -4</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.65</td>
<td>7.37</td>
<td>Nov.</td>
<td>III. -4</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>9.51</td>
<td>Nov.</td>
<td>III. -4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.65</td>
<td>7.76</td>
<td>Sept.</td>
<td>III. -4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.75</td>
<td>7.89</td>
<td>Nov.</td>
<td>III. -4</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.85</td>
<td>8.84</td>
<td>not taken</td>
<td>III. -4</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>6.10</td>
<td>Sept.</td>
<td>III. -4</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.75</td>
<td>6.20</td>
<td>Oct.</td>
<td>III. -4</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.75</td>
<td>6.20</td>
<td>Oct.</td>
<td>III. -4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>6.29</td>
<td>Nov.</td>
<td>III. -4</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.65</td>
<td>7.36</td>
<td>Feb.</td>
<td>III. -4</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.75</td>
<td>7.38</td>
<td>Feb.</td>
<td>III. -4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>6.49</td>
<td>not taken</td>
<td>III. -4</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>6.68</td>
<td>March</td>
<td>III. -4</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.75</td>
<td>6.98</td>
<td>March</td>
<td>III. -4</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.75</td>
<td>6.98</td>
<td>April</td>
<td>III. -4</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>4.16</td>
<td>April</td>
<td>III. -4</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.65</td>
<td>4.16</td>
<td>April</td>
<td>III. -4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>3.75</td>
<td>April</td>
<td>III. -4</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>3.75</td>
<td>April</td>
<td>III. -4</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.25</td>
<td>10.35</td>
<td>May 1 +</td>
<td>III. -4</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.50</td>
<td>11.22</td>
<td>July</td>
<td>III. -4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.50</td>
<td>11.61</td>
<td>July</td>
<td>III. -4</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.50</td>
<td>11.67</td>
<td>June</td>
<td>III. -4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.15</td>
<td>11.87</td>
<td>Oct.</td>
<td>III. -4</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.50</td>
<td>12.10</td>
<td>Oct.</td>
<td>III. -4</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.50</td>
<td>12.71</td>
<td>Oct.</td>
<td>III. -4</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.2</td>
<td>13.87</td>
<td>Nov.</td>
<td>III. -4</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>13.18</td>
<td>Nov.</td>
<td>III. -4</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>13.38</td>
<td>Dec.</td>
<td>III. -4</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.2</td>
<td>13.46</td>
<td>Dec.</td>
<td>III. -4</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>13.58</td>
<td>Nov.</td>
<td>III. -4</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>13.75</td>
<td>Dec.</td>
<td>III. -4</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>13.75</td>
<td>Dec.</td>
<td>III. -4</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.35</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.19</td>
<td>14.25</td>
<td>Dec.</td>
<td>III. -4</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>15.75</td>
<td>May</td>
<td>III. -4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.25</td>
<td>16.25</td>
<td>May</td>
<td>III. -4</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.6</td>
<td>18.34</td>
<td>May</td>
<td>III. -4</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.0</td>
<td>19.29</td>
<td>May</td>
<td>III. -4</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See Pl. VI., Fig. 1. †See Pl. VI., Fig. 2. ‡See Pl. VII., Fig. 1.
GADUS MERLANGUS.

Summarised Table of Annual Rings.

<table>
<thead>
<tr>
<th>No. of fish.</th>
<th>Length of fish.</th>
<th>Month of capture</th>
<th>No. of annual rings</th>
<th>No. of lines of growth (excentric lines) in years.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in cm.</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5·4</td>
<td>June</td>
<td>-1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>7·8</td>
<td>October</td>
<td>"</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>8·0</td>
<td>"</td>
<td>"</td>
<td>9-10</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>9·8</td>
<td>3·85</td>
<td>"</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>11-12</td>
<td>4·33</td>
<td>"</td>
<td>15-21</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>12-13</td>
<td>4·80</td>
<td>"</td>
<td>19-20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>5·51</td>
<td>"</td>
<td>21-23</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>15-16</td>
<td>6·10</td>
<td>"</td>
<td>22-31</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>17·0</td>
<td>6·98</td>
<td>"</td>
<td>27-31</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>18·0</td>
<td>7·40</td>
<td>"</td>
<td>30-32</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>20·25</td>
<td>10·33</td>
<td>May</td>
<td>1+</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>28-29</td>
<td>11·22 L. 11·67</td>
<td>July to Dec.</td>
<td>1+ to -2</td>
<td>27-29</td>
</tr>
<tr>
<td>2</td>
<td>30·31</td>
<td>11·87 L. 12·40</td>
<td>Dec.</td>
<td>-2</td>
<td>32-34</td>
</tr>
<tr>
<td>1</td>
<td>32·3</td>
<td>12·7</td>
<td>October</td>
<td>-3</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>33·2</td>
<td>13·07</td>
<td>"</td>
<td>-3</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>33·5</td>
<td>13·18</td>
<td>December</td>
<td>-2</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>33-34</td>
<td>13·3 L. 13·97</td>
<td>Oct. to Jan.</td>
<td>-3</td>
<td>16-38</td>
</tr>
<tr>
<td>1</td>
<td>34·92</td>
<td>13·75</td>
<td>December</td>
<td>-3?</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>35·36</td>
<td>14·0</td>
<td>"</td>
<td>-3</td>
<td>21-35</td>
</tr>
<tr>
<td>2</td>
<td>40·11</td>
<td>15·75 L. 16·25</td>
<td>"</td>
<td>31</td>
<td>23-24</td>
</tr>
<tr>
<td>1</td>
<td>46·6</td>
<td>18·34</td>
<td>January</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>46·6</td>
<td>18·34</td>
<td>"</td>
<td>-4</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>49·0</td>
<td>19·29</td>
<td>May</td>
<td>4+</td>
<td>29</td>
</tr>
</tbody>
</table>

* Have here taken the smallest (s.) and largest (L.) fish.
Summarised Table showing Average Surface Size of Scales in Whiting at Various Stages.

<table>
<thead>
<tr>
<th>No. of fish</th>
<th>Range of length in cm</th>
<th>Range of weight in grms.</th>
<th>Month of capture</th>
<th>Average length of scale in mm.</th>
<th>Average breadth of scale in mm.</th>
<th>Average lines of growth (excentric lines) in years</th>
<th>Notes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.4</td>
<td>1.12</td>
<td>June</td>
<td>0.33</td>
<td>0.10</td>
<td>2.8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7.8-9.8</td>
<td>2.85-3.97</td>
<td>Oct.</td>
<td>0.60</td>
<td>0.35</td>
<td>2.12</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>11.0-18.80</td>
<td>9.0-56.10</td>
<td>Oct. to Nov.</td>
<td>1.16</td>
<td>0.70</td>
<td>2.77</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>26.25</td>
<td>131.30</td>
<td>May</td>
<td>2.83</td>
<td>1.40</td>
<td>2.90</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>28.5-29.5</td>
<td>175.0</td>
<td>July</td>
<td>2.45</td>
<td>1.32</td>
<td>1.40</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>29.55-31.5</td>
<td>205.215</td>
<td>Dec.</td>
<td>2.27</td>
<td>1.35</td>
<td>1.58</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>32.3-33.2</td>
<td>257.290</td>
<td>Oct.</td>
<td>2.54</td>
<td>1.36</td>
<td>1.85</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>35.56-44.27</td>
<td>280.500</td>
<td>Dec.</td>
<td>2.59</td>
<td>1.67</td>
<td>1.88</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>46.0</td>
<td>700</td>
<td>Jan.</td>
<td>3.41</td>
<td>2.71</td>
<td>2.04</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>49.0</td>
<td>763.42</td>
<td>May</td>
<td>3.65</td>
<td>2.71</td>
<td>2.97</td>
<td>29</td>
</tr>
</tbody>
</table>

Gadus Merlangus (Whiting).

<table>
<thead>
<tr>
<th>Length of fish in cm.</th>
<th>Age of fish.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>First summer.</td>
</tr>
<tr>
<td>7.18</td>
<td>, winter.</td>
</tr>
<tr>
<td>26-29</td>
<td>Second summer.</td>
</tr>
<tr>
<td>29-31</td>
<td>,, winter.</td>
</tr>
<tr>
<td>32-42</td>
<td>Third ,,</td>
</tr>
<tr>
<td>(33.5)</td>
<td>Second ,,</td>
</tr>
<tr>
<td>(34.0)</td>
<td>Fourth ,,</td>
</tr>
<tr>
<td>46.6</td>
<td>,,</td>
</tr>
<tr>
<td>49.0</td>
<td>Fifth spring.</td>
</tr>
</tbody>
</table>

For purposes of comparison I submit two tables of ages for the Whiting, the first table from Fulton's paper on "The Rate of Growth of the Cod, Haddock, Whiting, and Norway Pont" (Fishery Board for Scotland, 1900); the second table from Cunningham's paper on "The Rate of Growth of some Sea Fishes and their Distribution at Different Ages" (Journal Marine Biological Association, vol. ii., n.s., 1891-2).
Table showing the Rate of Growth of the Whiting (*Gadus merlangus*),
after Fulton.

<table>
<thead>
<tr>
<th>Size</th>
<th>Approximate age</th>
<th>Apparent growth in a year from previous series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smallest</td>
<td>Average</td>
</tr>
<tr>
<td>A Series (6,203 fish)</td>
<td>69</td>
<td>124.4</td>
</tr>
<tr>
<td>B Series (1,168 fish)</td>
<td>183</td>
<td>237.9</td>
</tr>
<tr>
<td>*C Series (1,110 fish)</td>
<td>257</td>
<td>313.5</td>
</tr>
<tr>
<td>*D Series (30 fish)</td>
<td>410</td>
<td>460.4</td>
</tr>
</tbody>
</table>

* Deep water hauls.

Table showing the Rate of Growth of the Whiting (*Gadus merlangus*),
after Cunningham.

<table>
<thead>
<tr>
<th>Date of collection</th>
<th>No. of specimens</th>
<th>Length in cm.</th>
<th>Length in in.</th>
<th>Calculated age</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 13, 1889</td>
<td>2</td>
<td>5.7</td>
<td>2.2</td>
<td>3 or 4 months old.</td>
</tr>
<tr>
<td>July 16, 1891</td>
<td>13</td>
<td>5.4-9.9</td>
<td>2.1-3.5</td>
<td>4 or 5 months old.</td>
</tr>
</tbody>
</table>

I must notice here the case of a whiting which I kept living under observation in one of the small tanks of the laboratory, from a month or so after hatching until it was one year and four or five months old. When first placed in the tank, in early May, 1902, this whiting measured 10–20 mm. in length (according to Cunningham the larval whiting when first hatched is 3-6 mm. in length). The whiting in question was fed regularly from the hand until July 4th, 1903, when it leapt from the tank. At the latter date it measured 8½ inches in length, and was 3½ oz. in weight. On examining its scales I found
them much more regular in their arrangement than the scales of whiting captured at sea. The lines of growth appeared almost uniformly separated from one another, and because of this I could not observe any distinction into summer and winter areas such as are marked out in my plates.

Another noteworthy point about the lines of growth in the scales of this whiting was that they appeared throughout to be closer to one another than is the case in captured fish. This would probably indicate a uniformly slower growth of the scale.

The temperature of the water in the Plymouth tanks remains fairly constant; but there is naturally a distinct difference between the summer and winter temperature, and the whiting in question may be taken as having been fairly regularly supplied with food. From these facts, and also from the fact that fish from deep water, where the temperature of the sea does not show marked variation in summer and winter, show annual rings as clearly as those from shallow water where there is a marked difference between the summer and winter temperature, inclines me to believe that it is a question of variation in the food-supply rather than variation in temperature which influences the metabolism of the fish, and indirectly brings about the formation of annual rings in scales.

The scales of this aquarium whiting showed, however, some interesting points, firstly as to the number of lines of growth: the total number of these lines was on an average 50, and whiting from the sea which I determined to be of about the same age, though of a larger size (see tables), showed on an average 43 lines of growth. It appears to me, if I had not already known the real age of this captive whiting, that from my tables of calculated ages for captured whiting I would at least have arrived at the approximate age by counting the number of lines of growth in the scales.

In regard to the sizes of scales in this captive whiting, they were on an average the following: Total length of scale, 2·00 mm.; maximum breadth of scale, 1·50 mm.; long axis AB, 1·10 mm. On comparing the figures above with those given in my tables, it seems that the size of the scale is small for the number of growth lines present, and this one might expect from my previous observation that the growth lines are all uniformly closely adjacent to one another.
Table of Results of Examination of Scales of Haddock

<table>
<thead>
<tr>
<th>Year</th>
<th>Remarks</th>
<th>Length of fish in mm.</th>
<th>No. of rings</th>
<th>Growth in mm. from rings</th>
<th>No. of years of growth from rings</th>
<th>No. of years of growth from rings</th>
<th>Average for preceding scales, all from same fish.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: 1914</td>
<td>1300</td>
<td>154</td>
<td>88</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1400</td>
</tr>
<tr>
<td>II: 1915</td>
<td>150</td>
<td>186</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1450</td>
</tr>
<tr>
<td>III: 1916</td>
<td>494</td>
<td>45</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1460</td>
</tr>
<tr>
<td>IV: 1917</td>
<td>394</td>
<td>45</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1470</td>
</tr>
</tbody>
</table>

Total length in mm.

- 2832
- 2782
- 2792
- 2792

Maximum length in mm.

- 4.5
- 4.5
- 4.5
- 4.5

Total weight in lbs.

- 10.35 lbs
- 10.35 lbs
- 10.35 lbs
- 10.35 lbs

Date of capture.

- May 15, 1901
- May 15, 1901
- May 15, 1901
- May 15, 1901

Weight in oz.

- 61 oz
- 61 oz
- 61 oz
- 61 oz

Length in inches.

- 11.4
- 11.4
- 11.4
- 11.4

Average for preceding scales, all from same fish.

- 150
- 150
- 150
- 150

Average for preceding scales, all from same fish.

- 3
- 3
- 3
- 3

Notes:

- **AS AN INDEX OF AGE.**
- **The Haddock (Gadus aeglefinus).**
THE PERIODIC GROWTH OF SCALES IN GADIDÆ

HADDOCK, from the North Sea.

<table>
<thead>
<tr>
<th>Length of fish</th>
<th>Weight.</th>
<th>No. of annual rings in scale</th>
<th>Date of capture</th>
<th>Approximate age</th>
<th>Notes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ½ in. 26.67 cm. 6½ oz.</td>
<td>2</td>
<td>May 15, 1901</td>
<td>2 years.</td>
<td>No clearly marked growth for spring of 1901.</td>
<td></td>
</tr>
<tr>
<td>11½ 29.52 cm. 9½ oz.</td>
<td>2+</td>
<td>, ,</td>
<td>2 years 1 month</td>
<td>Clearly marked growth for spring of 1901.</td>
<td></td>
</tr>
<tr>
<td>12 1/4 32.38 cm. 12 oz.</td>
<td>, ,</td>
<td>, ,</td>
<td>2 yrs. 1-2 mths.</td>
<td>Ditto.</td>
<td></td>
</tr>
<tr>
<td>13 1/4 33.33 cm. 12 oz.</td>
<td>, ,</td>
<td>, ,</td>
<td>1st year's growth small; 2nd year normal; much growth for spring of 1901.</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>13 1/2 33.33 cm. 12½ oz.</td>
<td>, ,</td>
<td>, ,</td>
<td>2 years 1 month</td>
<td>Spring growth of 1901 apparent.</td>
<td></td>
</tr>
<tr>
<td>14 36.19 cm. 15½ oz.</td>
<td>, ,</td>
<td>, ,</td>
<td>3 years</td>
<td>Very little, if any growth for spring of 1901.</td>
<td></td>
</tr>
<tr>
<td>15½ 39.37 cm. 1 lb. 5½ oz. 3</td>
<td>3</td>
<td>3 years 1 month</td>
<td>Spring growth of 1901 more clearly marked than in last.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16½ 41.27 cm. 1 lb. 12½ oz. 3+</td>
<td>, ,</td>
<td>, ,</td>
<td>4 years 1 month</td>
<td>Spring growth of 1901 apparent.</td>
<td></td>
</tr>
<tr>
<td>20½ 51.43 cm. 2 lbs. 9½ oz. 4+</td>
<td>, ,</td>
<td>, ,</td>
<td>5 years 1 month</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>21½ 54.61 cm. 4 lbs.</td>
<td>, ,</td>
<td>, ,</td>
<td>5 years 1 month</td>
<td>,</td>
<td></td>
</tr>
</tbody>
</table>

N.B.—These haddocks were probably hatched in May. According to Fulton the majority of larval haddocks are probably hatched in early April, and it may be later, as spawning fish can be obtained as far on as the beginning of May.

AGE OF HADDOCK AS DETERMINED BY FULTON.

<table>
<thead>
<tr>
<th>Length.</th>
<th>Age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series A. Range from 4½ to 8½ in.</td>
<td>Average length, 6½ inches</td>
</tr>
<tr>
<td>Series B. Range up to 13½ inches</td>
<td>Average length, 11½ inches</td>
</tr>
<tr>
<td>Series C. Range up to 17½ inches</td>
<td>Average length, 13½ to 14 in.</td>
</tr>
</tbody>
</table>
The Cod (*Gadus callarias, L.*).

<table>
<thead>
<tr>
<th>Length of fish.</th>
<th>Date of capture.</th>
<th>No. of annual rings in scale.</th>
<th>No. of lines of growth.</th>
<th>Approximate age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.87 in. = 25·08 cm.</td>
<td>August 26, 1902</td>
<td>1+</td>
<td>10 9</td>
<td>1 year 4–5 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19 10</td>
<td>Average of scales, all from same fish.</td>
</tr>
<tr>
<td>8.25 in. = 20·96 cm.</td>
<td>August 26, 1902</td>
<td>1+</td>
<td>15 8</td>
<td>1 year 4–5 months.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8</td>
<td>Average of scales, all from same fish.</td>
</tr>
</tbody>
</table>

Note.—The ages thus determined agree with Fulton's results. According to Fulton, the majority of Cod probably hatch about the end of March and early part of April, and this may be taken as the period from which to date the average age of the season's brood, and Haddock 8' to 11' inches long are 1 year and 5 months in September.

The Scales of Eels.

This paper commenced with the scales of the eel, and towards my conclusion I must again refer to them.

I have recently obtained eels from the Isle of May, Firth of Forth, in order to examine their scales to see if by this means I could throw any light on their interesting life-history. I endeavoured to obtain eels from the lighthouse-keeper of the isle during the past winter (1902–1903), but was informed by him that they were never seen there during winter. He thought they must bury themselves in the mud at the bottom of the loch during winter-time, and it seems probable that at this season they indulge in a winter sleep. In the following August, however, the lighthouse-keeper was kind enough to send me three eels, measuring 28, 33, and 35 inches respectively. The eels of the Isle of May have previously attracted the attention of the biologist on account of their supposed history. They were supposed to have been introduced there by the monks some centuries ago, and to have lived in the land-locked loch on the isle since that time. It had been held for sometime that eels could only breed in salt water, and that those eels prevented from reaching salt water by their land-locked habitat were the identical eels brought over by the
monks, being therefore of great age. Sandeman has contributed a paper to the Linnean Society showing that the eyes and other organs show symptoms of senile decay.

Lately, in the Field, it has been held that eels can breed in fresh water. The lighthouse-keeper on the isle tells me that the eels found by him are much smaller than those found formerly, that instead of being five feet or so, they are only three feet or so in length.

The scales of eels are well buried in the skin, and from this position one would naturally suppose that they could not easily be shed or rubbed off. The scales show rings very clearly; but whether these are annual or not I would not at present certainly determine, as I have not a complete series of the fish. If the rings are annual, and from the fact that these animals seem to have a winter sleep, it would be natural to suppose that such is the case, then the eels on the Isle of May are of no great age, and the largest of the specimens (35 inches in length) examined by me, may not be more than fourteen years old, but on this determination I do not place any exact reliance.

The scales were thick, well preserved, and showed no signs of disintegration such as are found in scales from aged pollack. This may be partly accounted for by the fact that scales in the eel do not overlap one another.

IV. Conclusion.

My present paper, firstly, rests on the foundation of Dr. Hoffbauer's work for fresh-water fish, which no authority has as yet proved false. Dr. Hoffbauer showed that scales gave a direct index of age in carp, etc., for all of which he had exact and direct knowledge as to their age and history. It is surely opposed to the principle of the unity of science to believe that a law which holds true for some fresh-water fish would not also be found applicable to some marine fish.

After reading the preceding statistics, I think that it must be granted that, even after allowing for variation, they afford strong cumulative proof that in these species of Gadidae the growth of scales is cyclical or periodic, and that the rings formed thereby are annual. To believe that these are not annual rings, but are rings formed in some more irregular manner, seems quite opposed to the facts in regard to the growth of the scale, and the arrangement of the lines which mark that growth, as brought out by my statistics and plates.

That scales of those Gadidae show a larger surface growth, and a wider separation of the lines of growth in summer as contrasted with winter, appears to me to be indisputable. This divergence in the growth of scales during summer and winter is probably due to changes in the general metabolism of the body, which are in their turn, in all proba-
bility, the result of seasonal variation in the temperature and food-supply. Of these two causes I am more inclined to give preponderance to the latter.

After an examination of thousands of scales from these Gadidae I hold that in ninety-eight cases out of a hundred one would arrive at a very closely approximate idea of the age of the fish from an examination of three or four well-developed scales taken from the median region of the flanks near the lateral line. Other areas of the body show annual rings in the scales, but in the area mentioned they are more easily determined than elsewhere. The percentage given would be less in the case of fish more than four or five years of age, for reasons already stated in a previous part of this paper. In this connection, however, it has to be remembered that the determination of age for younger is of more practical importance than for older fish.

Corroboration of the truth of this hypothesis, that the ages of certain marine fishes may be determined by means of annual rings on the scales is afforded by the fact that the ages ascertained by my method agree in the main with the results calculated out by other workers who have worked at the subject of the age of fish from a different standpoint. In this connection I have quoted repeatedly from Cunningham and Fulton, the latter of whom has worked out the subject in a very complete manner after Petersen's method (Scottish Fishery Board, 1900 and 1901).

Allowing for difference of locality of capture, my results agree in the main with those of Fulton, and they also afford many points of agreement with Cunningham's results for fish of the English Channel. As I have already stated, I had little previous knowledge of Mr. Cunningham's and Dr. Fulton's results on the probable ages of fish, and it was only after I compiled my own statistics on age-determination that I compared them with those of other workers.

It is almost impossible to acquire direct proof of this hypothesis, the conditions of life in tank and aquarium being so unlike the natural haunts, yet even with this, I have already mentioned that in the case of a whiting which lived from shortly after hatching for thirteen and a quarter months in a tank, the number of growth-lines formed on the scale during that period roughly agreed (after allowing for a slower scale growth under captive conditions) with the number of growth-lines in the scales from sea whiting calculated to be about the same age.

The labelling of Gadidae as adopted for other fish by the International Sea Fisheries Scheme along with an examination of their scales would, I believe, furnish a direct proof of this hypothesis.
LITERATURE.

1716. Leuwenhoek, Antonius.—Epistole physiologicae super compluribus naturae arcanis, Delphis, 1719, epistola xxiv., p. 213. 1716.

1787. Bouissonnet.—Observations sur les écailles de plusieurs espèces de poissons qu'on croit communément dépourvues de ces parties (Journal de physique, 1787, t. xxxi., p. 12.

1824. Kuntzman.—Bemerkungen über die Schuppen der Fische (Verhandlungen der Gesellschaft naturforschender Freunde in Berlin, p. 269, pl. xii., xiii.)

1829. Ibid., p. 369, pl. xvi.

1834. Agassiz.—Recherches sur les poissons fossiles, 2e livraison, Neuchâtel, vol. i., p. 26, etc.

1839. Mandl.—Recherches sur la structure intime des écailles des poissons (Annales des sciences naturelles, 2e série, t. ii.

1840. Agassiz.—Observations sur la structure et le mode d'accroissement des écailles des poissons ; réfutation des objections de M. Mandl (Annales des sciences naturelles, 2e série, t. xiv., 1840).

1843. Müller.—Wiegmann's Archiv.

1850. Dareste.—Examen de la place que doit occuper dans la classification le poisson fossile décrit par S. Volta sous le nom de Blochius longirostris (Annales des sciences naturelles, 3e série, t. xiv.).

1851. Leydig.—Über die Haut einiger Stüswasserfische (Zeitschrift für wissenschaftliche Zoologie).

1854. Leydig.—Historiologische Bemerkungen über den Polypterus Bichir (Zeitschrift für wissenschaftliche Zoologie. Taf. ii. and iii.).

1855. Hollard.—Monographie des Ostraconides (Annales des sciences naturelles, 4e série, t. vii., pp. 125-36, 147, etc.).

1868. Salbey.—Über die Struktur und die Wachsthum der Fischschuppen. (Archiv für anatomische Physiologie und wissenschaftliche Medicin, 1868, pp. 720-49, pl. xviii.).

1892. Ryder.—On the Mechanical Genesis of the Scales of Fishes; Proc. Acad. of Nat. Sciences, Philadelphia.

EXPLANATION OF PLATES.

Plates I. to IV., Photo-micrographs of Scales of Pollack.
Plates V. and VI., Scales of Poor Cod.
Plate VII., Scale of Whiting ; Fig. 2, Scale of Coal Fish (Gadus rivicus).
Plate VIII., Fig. 1, Scale of Haddock ; Fig. 2, Scale of Norwegian Whiting Pollack (Gadus Esmarkii).

The lettering is taken in each case from the posterior area of the scale.

\[\begin{align*}
C - W 1 &= \text{Growth of first year.} \\
C - S 1 &= \text{Growth of first summer.} \\
S 1 - W 1 &= \text{Growth of first winter.} \\
W 1 - S 2 &= \text{Growth of second summer.} \\
W 1 - W 2 &= \text{Growth of second year.} \\
W 2 - W 3 &= \text{Growth of third year.} \\
L.G. &= \text{Lines of growth.} \\
S.L.G. &= \text{Summer lines of growth.} \\
W.L.G. &= \text{Winter lines of growth.}
\end{align*} \]

PLATE I.

Fig. 1.—Scale of young Pollack, 3 to 4 months old, magnified about 140 diameters. Length of fish, 5\'4 cm. (2'12 in.) ; date of capture, July, 1901. Scale shows three lines of growth. The figure was drawn with the aid of the camera.

Fig. 2.—Scale of Pollack, 7 to 8 months old, magnified about 45 diameters. Length of fish, 10'15 cm. (3'99 in.) ; date of capture, December 4th, 1889 ; number of lines of growth, 18. The later lines are closer to one another than the earlier, indicating winter growth as distinguished from summer growth. The distance between two consecutive summer lines of growth is seen, from the Figures 2, 3, and 4, to be in some cases half as much again as the distance between two consecutive lines of winter growth ; in other cases it may be twice as great.

Fig. 3.—Scale of Pollack, 7 to 8 months old, magnified 45 diameters. Length of fish, 10'0 cm. (3'93 in.) ; date of capture, December, 1889. Shows 20 lines of growth.

Fig. 4.—Scale of Pollack, 7 to 8 months old, magnified 45 diameters. Length of fish, 11'75 cm. (4'62 in.) ; date of capture, December 4th, 1889 ; number of lines of growth, 20. The later lines are closer to one another than the earlier lines, indicating winter growth as distinguished from summer growth.

Fig. 5.—Scale of Pollack, 1 year 2 to 3 months old, magnified 37\(\frac{1}{2}\) diameters. Length of fish, 24'76 cm. (9'75 in.) ; date of capture, May, 1902 ; number of lines of growth first year, 26, 8 lines the early growth of the second year.

PLATE II.

Fig. 1.—Pollack scale at end of second summer, magnified 45 diameters. Length of fish, 28'5 cm. (11'22 in.) ; date of capture, October, 1900 ; age determined, 1 year 6 to 7 months.

Fig. 2.—Pollack scale at end of second year. Length of fish, 33'65 cm. (13'25 in.) ; date of capture, May, 1902. This photo-micrograph has, owing to the larger size of the scale, been magnified much less than preceding scale.
PLATE III.

Fig. 1.—Scale of Pollack at end of second year. Length of fish, 33.65 cm. (13.25 in.); date of capture, May, 1902. This scale has been photographed because it shows extremely little growth for first year, namely, only 18 lines of growth, while that of the preceding scale, for example, shows 28 during this period.

Fig. 2.—Scale of Pollack at commencement of fourth summer, magnified 28 diameters. Length of fish, 44.40 cm. (17.50 in.); date of capture, April 30th, 1901; age determined, 3 years 6 weeks.

PLATE IV.

Scale of Pollack at commencement of ninth year. Length of fish, 78.74 cm. (31 in.); date of capture, April or May, 1902. This photo-micrograph shows, firstly, how it becomes a much harder task to distinguish the annual rings in the scales of older and larger fish, and, secondly, that the scales of such tend naturally to become broken and disintegrated. Age determined, 8 years 6 weeks.

PLATE V.

Fig. 1.—Scale of Gadus minutus in its second summer. Length of fish, 14.30 cm. (5.62 in.); date of capture, July 9th, 1901. This scale shows very clearly the earlier growth of second summer. First year, 37 lines of growth; second year (early summer), 9 lines of growth. Age determined, 1 year 3 to 4 months.

Fig. 2.—Scale of Gadus minutus at end of third winter. Length of fish, 19.05 cm. (7.50 in.) age determined, about 3 years.

PLATE VI.

Fig. 1.—Scale of Whiting in its second summer. Length of fish, 28.50 cm. (11.22 in.); date of capture, July 16th, 1901. This scale shows 29 lines of growth for the first year, and 14 lines of growth for the second summer up to July 16th. Age determined, 1 year 4 to 5 months.

Fig. 2.—Scale of Whiting towards end of the fourth year. Length of fish, 34 cm. (13.38 in.); date of capture, January 10th, 1902. This scale shows the following lines of growth: first year, 31; second year, 21; third year, 10; fourth year, 9. Age determined, 3 years 10 months.

PLATE VII.

Fig. 1.—Scale of Whiting at commencement of fifth summer. Length of fish, 49 cm. (19.29 in.); date of capture, May 14th, 1901. Age determined, 4 years 2 months.

Fig. 2.—Scale of Coal Fish (Gadus virens) in the early summer of second year. Length of fish, 29.22 cm. (8 inches). This scale shows very clearly the early growth of second summer.

PLATE VIII.

Fig. 1.—Scale of Haddock at commencement of third summer. Length of fish, 26.25 cm. (10.33 in.); date of capture, May 10th to 15th, 1901. This scale shows 21 lines of growth for the first year, and 20 lines of growth for the second year. Age determined, 2 years.

Fig. 2.—Scale of Norwegian Whiting Pollack (Gadus Esmarkii) in its third summer. Length of fish, 19.05 cm. (7.50 in.); date of capture, August 27th, 1900. Age determined, 2 years 3 to 4 months.

As to the photo-micrographs, Figures 2, 3 and 4, Plate I., were taken by myself; the remainder are the work of Mr. I. E. Sexton, Plymouth, and Mr. A. Flatters, Manchester.
Notes on the Copepoda of the North Atlantic Sea and the Faroe Channel.

By

R. Norris Wolfenden, M.D., F.Z.S.

(With Plate IX., and one Figure in the text.)

In a previous notice in this Journal, vol. vi., p. 344, January, 1902, a brief description of the plan of work undertaken by the writer was given. This comprised cruises across the cold-water area of the Faroe Channel during 1900, 1901, and 1902, during the course of which tow-nettings were made at each station with Garstang's net, or Fowler's net, down to 500 to 600 fathoms, simultaneously with hydrographical observations (temperature, collection of water, etc.), which have already been partly reported upon by Mr. H. N. Dickson (Geographical Journal, April, 1903).

The exploration of the Faroe Channel being now, under the International Investigation Scheme, handed over to the Scottish Fishery Board, I have, during 1903, endeavoured to supplement this work by a cruise from Valentia, in Ireland, to the Faroe Banks, crossing in the route the deep Atlantic trough, and keeping almost entirely within the "warm area" of the Atlantic. The first station was located at lat. 51° 66' N., long. 11° 21' W., 120 fathoms, and successive stations at:

<table>
<thead>
<tr>
<th>Lat. 51° 46' N., long. 12° 15' W., 560 fms.</th>
<th>Lat. 55° 47' N., long. 12° 28' W., 1,561 fms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>" 51° 34' N. 12° 30' W., 725 "</td>
<td>" 55° 47' N. 10° 12' W., 1,325 "</td>
</tr>
<tr>
<td>" 51° 0' N. 11° 32' W., 375 "</td>
<td>" 56° 11' N. 9° 50' W., 875 "</td>
</tr>
<tr>
<td>" 51° 0' N. 12° 0' W., 980 "</td>
<td>" 56° 37' N. 9° 48' W., 912 "</td>
</tr>
<tr>
<td>" 50° 56' N. 12° 6' W., 1,000 "</td>
<td>" 55° 24' N. 8° 30' W., 110 "</td>
</tr>
<tr>
<td>" 51° 30' N. 12° 0' W., 600 "</td>
<td>" 55° 45' N. 8° 35' W., 342 "</td>
</tr>
<tr>
<td>" 52° 0' N. 12° 0' W., 255 "</td>
<td>" 59° 18' N. 8° 30' W., 841 "</td>
</tr>
<tr>
<td>" 52° 30' N. 12° 0' W., 130 "</td>
<td>" 55° 54' N. 8° 42' W., 720 "</td>
</tr>
<tr>
<td>" 53° 0' N. 11° 56' W., 100 "</td>
<td>" 60° 20' N. 8° 30' W., 194 "</td>
</tr>
<tr>
<td>" 53° 30' N. 12° 0' W., 150 "</td>
<td>" 60° 41' N. 8° 50' W., 75 "</td>
</tr>
<tr>
<td>" 54° 0' N. 12° 0' W., 205 "</td>
<td>" 61° 1' N. 7° 42' W., 475 "</td>
</tr>
<tr>
<td>" 54° 30' N. 12° 0' W., 1,608 "</td>
<td>" 60° 0' N. 7° 47' W., 547 "</td>
</tr>
<tr>
<td>" 55° 0' N. 12° 0' W., 1,577 "</td>
<td>" 60° 1' N. 6° 4' W., 580 "</td>
</tr>
</tbody>
</table>

During this cruise was used a new tow-net, devised by the writer and his skipper, Buchan Henry, which has already been exhibited
by the writer at the "Challenger" Society, and which has been found
to work with much greater certainty than either Garstang's net or
Fowler's net. The former is too light for very deep-water work, and
the latter has frequently been a source of annoyance, but the new
net, partly owing to its superior weight and to the extreme neatness
and accuracy of the workmanship (manufacturers, Messrs. Bullivant
and Co.), was found to work with absolute certainty in the deepest
water explored, viz. 1,200 fathoms, until one of the side springs gave
way towards the end of the cruise. This was, however, soon replaced.

Altogether on these cruises 216 hauls have been made with closing
nets from 0-1,200 fathoms, 125 vertical hauls, and 89 surface hauls,
a total number of 430 hauls. The hydrographical observations made
during 1903 have been entrusted to Mr. H. N. Dickson, and will be
reported on in due course.

The Pelagic Copepoda collected between lat. 51° N. and 60° N. and
long. 6° 4' and 12° 30', i.e. west of Valentia and the Faroe Banks,
comprise 70 species; those collected in the Faroe Channel, i.e. the
cold area, number about 50 species. These therefore give a very fairly
complete list of the Copepoda which inhabit the area lying between
51° N. and 60° N., lat.

1. Species occurring in the warm area of the Atlantic (51°-60° N.).

<table>
<thead>
<tr>
<th>Species</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>Gunner.</td>
</tr>
<tr>
<td>Euchaeta acuta</td>
<td>Giesb.</td>
</tr>
<tr>
<td>Scolecithrix minor</td>
<td>Brady.</td>
</tr>
<tr>
<td>similis</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>atlantica</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Amalloghora magna</td>
<td>Scott.</td>
</tr>
<tr>
<td>Lophothrix frontalis</td>
<td>Giesb.</td>
</tr>
<tr>
<td>secundus</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Phaenna spinifera</td>
<td>Claus.</td>
</tr>
<tr>
<td>Xanthocalanus subagilis</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>atlantica</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>crassus</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Pseudoetideus armatus</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Faroella multiserrata</td>
<td>nov. gen. et sp.</td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>Boeck.</td>
</tr>
<tr>
<td>Normani</td>
<td>Giesb.</td>
</tr>
<tr>
<td>brevicanda</td>
<td>Giesb.</td>
</tr>
<tr>
<td>Pleuromamma robusta</td>
<td>Dahl.</td>
</tr>
<tr>
<td>abdominalis</td>
<td>Lubbock.</td>
</tr>
<tr>
<td>Loricutia grandis</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>flavicornis</td>
<td>Claus.</td>
</tr>
<tr>
<td>atlantica</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Phyllopus bidentatus</td>
<td>Brady.</td>
</tr>
<tr>
<td>Haloptilus acutifrons</td>
<td>Giesb.</td>
</tr>
<tr>
<td>longicornis</td>
<td>Claus.</td>
</tr>
<tr>
<td>Angaptillus magnus</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>gibbus</td>
<td>nov. sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus tenuicornis</td>
<td>Dana.</td>
</tr>
<tr>
<td>Ctenocalanus</td>
<td>gen.</td>
</tr>
<tr>
<td>Paracalanus</td>
<td>parvus</td>
</tr>
<tr>
<td>Pseudocalanus</td>
<td>elongatus</td>
</tr>
<tr>
<td>Spinocalanus</td>
<td>abyssalis</td>
</tr>
<tr>
<td>magnus</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Calocalanus</td>
<td>pavo</td>
</tr>
<tr>
<td>Ctenocalanus</td>
<td>vanus</td>
</tr>
<tr>
<td>Phyllopus</td>
<td>nasutus</td>
</tr>
<tr>
<td>Eucheta</td>
<td>acuta</td>
</tr>
<tr>
<td>Scolecithrix</td>
<td>minor</td>
</tr>
<tr>
<td>atlantica</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Phaenna</td>
<td>spinifera</td>
</tr>
<tr>
<td>Xanthocalanus</td>
<td>subagilis</td>
</tr>
<tr>
<td>atlantica</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>crassus</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Pseudoetideus</td>
<td>armatus</td>
</tr>
<tr>
<td>Faroella</td>
<td>multiserrata</td>
</tr>
<tr>
<td>Metridia</td>
<td>lucens</td>
</tr>
<tr>
<td>Normani</td>
<td>Giesb.</td>
</tr>
<tr>
<td>brevicanda</td>
<td>Giesb.</td>
</tr>
<tr>
<td>Pleuromamma</td>
<td>robusta</td>
</tr>
<tr>
<td>abdominalis</td>
<td>Lubbock.</td>
</tr>
<tr>
<td>Loricutia</td>
<td>grandis</td>
</tr>
<tr>
<td>flavicornis</td>
<td>Claus.</td>
</tr>
<tr>
<td>atlantica</td>
<td>nov. sp.</td>
</tr>
<tr>
<td>Phyllopus</td>
<td>bidentatus</td>
</tr>
<tr>
<td>Haloptilus</td>
<td>acutifrons</td>
</tr>
<tr>
<td>longicornis</td>
<td>Claus.</td>
</tr>
<tr>
<td>Angaptillus</td>
<td>magnus</td>
</tr>
<tr>
<td>gibbus</td>
<td>nov. sp.</td>
</tr>
</tbody>
</table>
Notes on the Copepoda of the Augaptilus loiigioaudatns (Clan.).

Hetoroihabclus norvegicus (Boeck).

" loiigicoruis (Giesb.).

" vipera (Giesb.).

" grandis (nov. sp.).

" abyssalis.

Anomalocera Patersoni (Templeton).

Ægisthus atlanticus (nov. sp.).

\[112\]

2. Species occurring in the Faroe Channel, cold area.

Calanus finnarchicus.

" hyperborens.

Eucalanus elongatus.

" atlanticus.

" crassus.

Paracalanus parvus.

Ctenocalanus vanus.

Rhincalanus nasutus.

Bradydias armatus.

Bryaxis brevicornis.

Gaidius pungens.

" major.

Gaetanus major.

Chiridius obtusifrons.

" Vanhöffeni.

Pseudetidens armatus.

Faroea multi-errata.

Ælidens tennirostris.

Scolecitrix minor.

" similis.

Heterorhabdus norvegicus.

" longicornis.

Augaptilus zetesios.

Eucheta norvegica.

" glacialis.

Ectinosoma atlantica (Brady and Robertson).

Acartia Clausii (Giesb.).

Caudace norvegica (Boeck).

" rotunda (nov. sp.).

Oncea sp.

Oithona sp.

Longipedia coronata (Clan.).

Paraugaptilus Buchani (nov. gen. et sp.).

A brief description of the new genera and species.*

1. Megocalanus princeps (nov. gen. et sp.). A huge Copepod was twice taken in the deep water of the Atlantic area, measuring 10 mm. in length, and externally much resembling a Calanus, but differing absolutely in the fact of the last segment of the exopodite of the second, third, and fourth pairs of feet having three marginal spines as well as the terminal saw. The inner margins of the fifth pair have neither denticulations nor hairs. The head is separate from the first segment, and the last two thoracic segments are also separate, the posterior one produced laterally into wing-like ex-

* A full description, with figures of the Copepoda mentioned here, is reserved for a larger work which the writer has had in preparation for the past two years.
pansions like *C. hyperboreus*. The anterior antennæ of twenty-five joints are much longer than the whole body. The first pair of feet have an extraordinary double-hooked process on the dorsal surface of the second basal joint, an upper and lower hook placed vertically, the latter very strong and prominent. (Pl. IX., figs. 1 and 2.) The structure of the mouth organs is very similar to *Calanus*. In both cases it was an adult female, with well-developed symmetrical genital segment. The only described Copepod at all resembling it is the *C. princeps* of Brady (*Challenger Report*, "Copepoda"), in which the feet are very similar, but there are no such setæ on the anterior foot-jaws as Brady figures, the maxilla is totally different as regards its bristles, and the segmentation of the anterior antennæ and abdomen is also different. It is therefore certainly not Brady's species. The latter cannot be a *Calanus*, as is evident from the presence of three external spines on the last segment of the exopodite of the swimming feet.

2. *Eucalanus atlanticus* (nov. sp.). In the course of dissecting many examples of the well-known *E. elongatus* ♂, I have come across a good many specimens which to all outward appearance resemble *E. elongatus*, except that the larger furcal segment, and longest tail setæ, are on the left side instead of the right side (Giesbrecht had already noted the irregularity in this respect of the females). But together with this condition the oral organs are not retrograded, as in the ♂ *elongatus*, and resemble entirely those of the female. The exopodite of the posterior antenna is longer; the first joint of the endopodite is not twice as long as the second joint, and is only two and a half times as long as broad; the mandible palp is longer (three times as long as broad), and divided by the origin of the exopodite into two nearly equal parts, and a normal masticatory plate is retained with the usual teeth. (Plate IX., fig. 4.) In the maxilla all the inner lobes are retained as in the ♂, while in *E. elongatus* ♂ they have disappeared. The anterior and posterior foot-jaws are also normal as in the ♂. The left fifth foot is only a little longer than the right, the first segment of the exopodite of each foot has a short marginal bristle, the last joint of the left side two distal bristles, the right foot three distal bristles. (Pl. IX., fig. 3.) In size (4:45 mm. to 4:50 mm.) the animal is equal to the adult ♂ of *E. elongatus*.

In various species of *Alidiiinae*, while in the last adult stage many males possess fully developed fifth feet together with retrograded oral organs, the stage antecedent to the last is one in which the fifth feet are imperfectly developed, while the oral organs are retained as in the female. This I have proved to be the case in many instances, and the fact accounts for many discrepancies of authors in the description of males with immature fifth feet. I do not know, however, if the
peculiarity exists outside of the family *Etiidiinae* and extends to the *Eucalanidae*. Meanwhile, until this is proved to be the case, in which instance the ♂ described above would be only the ♂ of *E. elongatus* in the last stage but one, I prefer to regard it as a new species.

3. *Gactanus major* (sp. nov.). This has been referred to by the writer in *Proc. Zool. Soc.*, February 3rd, 1903.* It has much resemblance to *G. armiger* (Gb.t.), but is much larger, reaching a size of over 5 mm.; the anterior antenna are as long, or longer than the body; the lamellar appendage of the posterior foot-jaw is absent, and the exopodites of the first pair of feet are distinctly three-segmented.

The ♂ 4-65 mm. long; cephalic spine short; spines of last thoracic segment short; abdomen of five segments; anterior antennae twenty-two-jointed (24-25, 8-9, 1-2), nineteenth joint long; oral organs much retrograded; fifth feet very like those of *Gaidius major* ♂. The dorsal spine of the head at once distinguishes it as a *Gactanus*. (Pl. IX., figs. 7 and 8.)

4. *Gactanus caudani* (Canu, vel nov.). A *Gactanus* somewhat resembling *G. miles* (Gb.t.), but the anterior antenna only one and a half times as long as the body; the lamella of the posterior foot-jaw, as in *G. miles*, not different, as stated by Canu, and the exopodites of the first feet distinctly two-jointed (not three, as in Canu's species); the basal of the fourth feet, like *G. armiger*, i.e. with tubal bristles, and not with spines, as in *G. miles* (Gb.t.). (Pl. IX., figs. 20, 21, and 22.)

This may be identical with Canu's *sp. G. caudani* (*Ann. Univ. Lyon*, v. 26), but if so, the species is subject to variation. His description referred only to a young ♂. My specimens, of which there are several, are adult females of a size of 5 mm. and over.

5. *Gaidius major* † (Wolfenden). A large *Gaidius*, 4-65 mm. long (and over), more robust than *G. pungens* (Gb.t.), with longer anterior antennae, shorter spines of the last thoracic segment, three-jointed exopodites of the first feet, and endopodites of the second feet clearly of two joints. It is identical probably with the *Chiridius brevipinum* of Sars, and his *Ch. tenuispinus* is almost identical with Giesbrecht's species *G. pungens*, with which the writer carefully compared it at Naples in April, 1902.‡ Neither of Sars' species is a *Chiridius*.

The ♂ averages 3-1 mm. long; the head is united with the first segment, there is a one-pointed rostrum; the spines of the last segment are slender; the abdomen, of five segments, only little more than a third of the length of the cephalothorax; anterior antennae shorter than the thorax, and of twenty-two segments, with long nineteenth

joint; the oral parts are retrograded; the first to fourth feet as in the female, the fifth pair rather like *Pseudacetides armatus*, each of two basal joints, and a two-jointed exopodite, right foot the largest, with last segment a curved thin joint ending in recurved spiny process, last joint of the left exopodite spatulate; rudimentary endopodites on each side, the left simple, long, thin, the right short and club-shaped. (Pl. IX., figs. 7 and 8.)

6. *Pseudacetides armatus* (nov. gen. et sp.). Resembling *Altidus* in many features. Strongly bifurcate rostrum in both sexes, last thoracic segments united and produced into short spines. Cephalothorax three times as long as the abdomen; second basal of the posterior foot-jaw three times as long as the endopodite; endopodite of second feet two-jointed; simple hairs on the margins of the basals of the fourth feet; anterior antennæ in the ♀ twenty-three-jointed (8—9, 24—25); mandibles with exopodite twice as long as endopodite; posterior antennæ with both rami nearly equal. ♀ with rostrum; anterior antennæ twenty-two-jointed; oral parts retrograded; a pair of fifth feet, the right foot ending in a curved, spine-like process, the left foot shorter, with broad-haired terminal segment; rudimentary endopodite on each side. Size, ♀ 3-68 mm.; ♀ a little less. (Pl. IX., figs. 29, 30, and 31.)

This Copepod is identical with Sars' *Chiridius armatus* and Boeck's *Eucheta armata*. It is, however, neither a *Chiridius* nor a *Eucheta*, and from its general resemblance to *Altidus* I have named the genus *Pseudacetides* and the species *armatus*.

7. *Euchirella carinata* (Wolfenden). I have previously referred to the ♀ of this species found by me in the Farœe Channel (this Journal, vol. vi., p. 366, January, 1902). I have since found adult females in the Atlantic, which confirm the correctness of the previous diagnosis. The female is distinguished by the presence of a median cephalic crest and helmet, a short, strong, one-pointed rostrum, in the proportions of the posterior antennæ (endopodite about half as long as the exopodite and with 8 + 6 bristles on the second joint), and the absence of any spinulation of the basals of the fourth feet. In size, 5 mm. (cephalothorax nearly five times as long as the abdomen), this is one of the largest *Euchirellas*. The bristles of the maxilla are, second basal = 5, endopodite = 15.

* Subsequently referred to.

† The genus *Chiridius*, described by Sars (*Crustacea of Norway*), contains only one true *Chiridius*, viz. *Ch. obtusifrons*. His *Ch. tenispinus* and *brevispinus* are true *Gaidius* (Giesbrecht), and his *Ch. armatus* a new genus *Pseudacetides*. The modified bristles, large and almost like tubal processes, of the fourth pair of feet, so characteristic of the genus *Gaidius*, are found in the *G. major* and *pungens* (*Ch. brevispinus* and *tenispinus*, Sars) in all my examples and in those kindly sent to me in April, 1902, by Professor Sars, to whom I then pointed out the nature of his species.
The endopodite of the posterior foot-jaw is only one-third as long as the second basal, which again is very much longer than the first basal (proportions $11:19:6$). The anterior antennae are a little longer than the thorax, with the twenty-fifth joint partially divided from the twenty-fourth (eighth coalesced with ninth), and the head is separated by a dorsal line from the first thoracic segment. This Copepod is entirely different from *E. pulchra, galatea, or curticauda*, especially in the proportions and number of bristles of the posterior antennae, and the absence of any spines on the first basal of the fourth feet. It occurred at a depth of 400 fathoms, lat. $55^\circ 47'\ N$, and also in the Faröe Channel.

7a. *Euchirella curticauda, var. Atlantica*. Head with strong crest and helmet, but no rostrum; genital segment very protuberant, and abdomen very short (about one-sixth the length of the cephalothorax); endopodite of posterior foot-jaw only one-half the length of the second basal, the three joints proportionate respectively $10:13:6$; posterior antennae with very slender endopodite, only one-quarter the length of the exopodite, and end joint of the former with only $3+2$ bristles; head separate from the first thoracic segment; maxilla with bristles of second basal and endopodite much reduced ($=6$). The basal of the fourth feet have only six rather broad-based and long spines, instead of twelve to thirteen, as in *E. curticauda* (Gbt.), and also they differ in some minor particulars. The latter is also a Pacific Ocean species, the Atlantic variety being a little larger ($380\ mm.$) than the Pacific. The Atlantic form is a distinct variety if not a true species, and the widely different habitats suggest specific differences. In the warm area of the Atlantic, lat. $54^\circ 30'\ N$, it occurred at 300 fathoms. Probably the *E. curticauda* of the "Oceana" collections (nine stations from 809–1,710 fathoms) is this, or the previous species.

8. *Etides tenuirostris* (nov. sp.). It is certain that the *Etides armatus* of the Faröe Channel and North Atlantic is not identical with that described by Giesbrecht from the Mediterranean, with which I have compared it at Naples. The former has a much less pronounced dorsal cephalic curve; the rostrum is not nearly so strong or so greatly produced, nor does it possess (as Sars has pointed out already) any secondary knobs of chitin at the base of the rostral processes as in the Mediterranean species. In addition the spines of the last thoracic segment are not so long or strong, and the endopodite of the second pair of feet is biarticulate. It therefore seems desirable to distinguish it as a distinct species. Brady's Indian Ocean species (*Chall. Report*) has not again been met with. I do not find any *Etides* in Mr.
Gardiner’s Maldive collection, nor does Scott mention its occurrence in Professor Herdman’s collection of Ceylon Copepoda.

9. *Faroella multiserrata* (nov. gen. et sp.).* Slender two-pointed rostrum; head fused with first segment, but last two segments of the thorax more or less completely divided, the posterior segment with long lateral spines. Anterior antennae with eighth and ninth joints fused, but the twenty-fourth distinctly separate from the twenty-fifth. Mandibles with exopodite shorter than the endopodite; posterior foot-jaws with endopodites not more than half the length of the exopodites; first feet with one-jointed endopodites, second pair two-jointed, the terminal saws of the feet distinguished by an extraordinary number of fine and closely-set teeth (69–70). Size of the ♂ 3.54 mm. and over, the ♀ about the same. (Pl. IX., figs. 26, 27, 28.)

It is not uncommon in the deep water of the Faroe Channel, and has been traced by the writer as far south as Valentia in Ireland.

10. *Chiridius Vanhöffeni* (nov. sp.). One example only of a ♀, which I think to be identical with the *Pseudocalanus armatus* described by Vanhöffen (Grönland Exped., 1891, II. Bd., Berlin, 1897), was taken in the Faroe Channel. Length 3.1 mm.; head without rostrum, and last thoracic segment produced into short spines; anterior antennae of twenty-three joints; posterior antennae with the outer ramus twice as long as the inner; mandibles with endopodite only half the length of the exopodite, the masticatory plate wanting; anterior foot-jaw almost obsolete, the posterior foot-jaw with the endopodite more than half the length of the second basal; maxilla retrograded, inner lobes nearly obsolete, exopodite large and with ten bristles; first pair of feet with one-jointed endopodite, second pair with two-jointed endopodite; fifth pair of one ramus on each side, each of five segments, the right foot the longest; two short basal and three slender terminal joints, the last ending in a delicate curved stylet process; the left foot with larger basal joints, of the three distal the proximal the largest, the distal short, spatulate, and haired on the inner margin. (Pl. IX., fig. 3.)

In the different segmentation of the feet and in other particulars this Copepod differs from *Ch. obtusifrons*, of which it might be the hitherto unknown ♀. It is certainly not a *Pseudocalanus*, and though there must always be hesitation about giving an unknown ♀ specific rank, it does not agree with any genus except *Chiridius*, and provisionally, at any rate, must be distinguished from other species.

* This is probably identical with the species described by Sars as *Æthidiopsis*. His description is, however, rather meagre, and as the writer’s descriptions and lithographed plates were prepared for publication two years ago, but have been held over for completion of his monograph, he retains the name originally given to this genus and species.
11. *Candacia rotunda* (nov. sp.). This is distinguished from all other *Candacie* species by the fact that the last thoracic segment is rounded on each side instead of being produced into points; the proximal part of the anterior antennae is of seven joints, the last joint (twenty-fourth) nearly as long as the two preceding joints; the two middle hooks of the anterior foot-jaw of the same length, but shorter than the two end claw bristles. The maxilla, with the second inner lobe, second basal, and endopodite, of about equal length; the third feet with the last exopodite segment denticulated and short end spine slightly bent; fifth feet of three joints, terminal the longest, with three outer short marginal spines, and one inner apical spine long. (Pl. IX., figs. 10, 11.)

Size of female, 3·2 mm. This is a deep-water species, taken in 300 fathoms in the North Atlantic.

12. *Spinocalanus magnus* (nov. sp.). Head partially separate from the first segment; genital segment as large as the next two; furcal segments a little longer than the anal; last thoracic segment produced on each side; exopodite of first feet with four inner marginal bristles on the last segment; exopodites of second to fourth pairs with five bristles on the last segment; no fifth feet; joints of the feet very spinulose; anterior antennae of twenty-four segments, the eighth and ninth fused, the twenty-fourth separate from the twenty-fifth. The characters of the feet clearly distinguish this species as a *Spinocalanus*, of which it is the largest known species, attaining a size of 2·75 mm. in the ♀. It was very common in deep water in the Atlantic off the west coast of Ireland.

13. *Xanthocalanus subagilis* (nov. sp.). Several examples of a *Xanthocalanus*, taken off the Mull of Galloway by scraping the sandy bottom, resembled *X. agilis* very closely, but the fifth feet of the ♀ differed in length and proportions of the segments and of the three terminal spines from Giesbrecht's species, and the ♂ possessed a pair of fifth feet instead of only one as in the Mediterranean species. The right foot of four segments is only a little longer than the left of five segments and a terminal stylet process. The exopodite of the female maxilla has only nine bristles; the endopodite of the anterior foot-jaw has six or seven brush sensory processes and two vermiform processes. A brush process also exists on the first basal of the posterior foot-jaw. The fifth foot of the female has the basal joint the longest and broadest, the margin beset with strong teeth, the second joint with a bunch of hairs at the distal margin, the last joint spinulose on the surface, longer than broad, and the inner marginal spine the largest of the three. ♀ 2·6 mm., ♂ 2·3 mm. The abdomen is not at all setose, as in Giesbrecht's species. (Pl. IX., figs. 17, 32.)
14. Xanthocalanus atlanticus (nov. sp.) Differ from X. agilis and borealis in the characters of the anterior antennae: very thick basally, tapered distally, and much shorter than the cephalothorax. The first joint of the fifth feet in the ♀ broader than long, with the inner margin armed with closely set spines, the second joint short, the third joint twice as long as broad, with short strong spines marginally, and distally with four broad-based long spines, the inner the longest, the surfaces of all three segments covered with short spines. Size 2.50 mm. Taken on a sandy bottom, at 375 fathoms west of Valentia. Distinguished from X. agilis and borealis by the very short anterior antennae, the fifth feet, and other minor characters. The swimming feet have the segments densely covered with short spines. (Pl. IX., figs. 24, 25, 33.)

15. Xanthocalanus cristatus (nov. sp.) ♀ very large, 5.0 mm.; head triangular and with prominent crest; anterior antennae extending to the end of the furca; anterior foot-jaw with very strong curved hook on the fifth lobe, endopodite of the same with seven short thick brush processes and a long thin curved verniform process; posterior foot-jaw with brush sensory process on first basal. Feet as in Xanthocalanus, but fifth pair each of three joints, the first as broad as long, the second longer than broad, the third two and a half times as long as broad, all densely spinulose, with long and short spines intermixed on the surfaces, the last segment with a row of long stout spines on the external surface, and ending distally in two short, rather stout, spiny processes (not articulating spines, as in other species), the innermost a little longer than the outer, and a third similarly formed outer spiny process. (Pl. IX., figs. 18, 19.)

No other Xanthocalanus has a crest. Sheaf-like sensory processes as in Amallopheora are absent; the segmentation of the feet and of the anterior antennae, the spinulation of the feet, the separation of the head from the first segment indicate it clearly to be a Xanthocalanus. Taken off the west of Ireland at a depth of 300 fathoms.

16. Scolecithric similis (nov. sp.) Much resembling S. minor, but the head rounded and oval, the last thoracic segment rounded with rounded flap-like projections; fifth feet one-jointed, twice as long as broad, with very short inner marginal spine inside the apex, and longer spine arising from just below the middle of the inner margin, not as long as the distance between its origin and the apex of the segment. The different shape of the head and corners of the last thoracic segment, and the fifth feet, at once distinguish it from S. minor. (Pl. IX., fig. 5, 6.) Size 1.50 mm. Several examples have been taken in the Faroe Channel and the Atlantic.
17. *Scolecithrix atlanticus* (nov. sp.). ♀ very large, 3·95 mm. long. Anterior antennae twenty-three-jointed and longer than the whole body; rami of posterior antennae nearly equal; sensory processes of the anterior foot-jaw both brush and vermiform, a brush process on the posterior foot-jaw; fifth pair of feet of two segments, distal the longest, with rounded extremity, and one short stout bristle at the apex, and a thick bristle twice as long arising from the inner margin. Feet like *Scolecithrix*. There may be doubt whether this species should be considered a *Scolecithrix* or a *Xanthocalanus*; the twenty-three-jointed antennae and coalesced head and first segment are more characteristic of the former genus. It is a very large species, and was taken in 300 fathoms depth off the west coast of Ireland.

18. *Lophothrix securifrons* (nov. sp.). Head with a strong crest, and strongly pointed wing-like expansions of the last thoracic segment; very short abdomen, with large genital segment, with a downward projecting process in front and strong bunches of lateral hairs. Helmet-shaped appendage of head produced anteriorly into a thick rostrum, each ramus ending in a short point. Analliform (sheaf-like) sensory processes on the anterior foot-jaw, and a similar process on the posterior foot-jaw. Anterior antennae of twenty-four segments reaching the end of the furca. (Pl. IX., figs. 12, 13, 14, 15.) The animal closely resembles the *Scolecithrix securifrons* described by Scott (Trans. Linn. Soc.), but differs in the segmentation of the anterior antennae and in the possession of analliform sensory processes apparently absent in Scott's species. Size of ♂ 4·2 mm. Occurred in the warm area of the north Atlantic.

Note.—The sub-family *Scolecithrichina* is conveniently subdivided into the genera *Scolecithrix*, *Ammallophora*, and *Lophothrix*. The characters distinguishing each are as follows:—

1. *Scolecithrix*. Head usually without crest (only in *S. securifrons*, Scott); anterior antennae nineteen to twenty-four jointed; sensory processes of anterior and posterior foot-jaws of one kind only (vermiform); fifth feet generally present in the ♀ but always small and of one to three segments; type species *S. minor* (Brady) and *S. danae* (Brady).

2. *Ammallophora* (Scott). Head with crest and helmet-shaped projection; no epistome; anterior antennæ of twenty-two joints; foot-jaws with three kinds of sensory appendages, maxilla, brush processes, and vermiform; maxilla with seven bristles on the exopodite, nine on the endopodite, second basal with four only; fifth feet of two or three segments, with very long inner bristle; type species *Ammallophora magna* (Scott).

3. *Lophothrix* (Giesb.). Head with a crest and helmet appendage, produced into rostrum ending in short spines and not filaments; anterior antennae twenty-four-jointed; maxilla with five bristles on the second basal, eight on the endopodite, nine on the exopodite; sensory processes of the foot-jaws maxilla and vermiform; fifth feet of two or three segments with one to three terminal spines apical and inner, usually strong epistomial projection; type species *L. formiulus* (Giesb.). (Pl. IX., figs. 41, 42.)

19. *Heterorhabdus grandis* (nov. sp.) (?). The largest known species of *Heterorhabdus*, attaining a size of 6·60 mm. in length; the anterior
antennae longer than the whole body; the mandibles without long curved teeth; posterior foot-jaw without the long spine; the fifth feet of the ♀ with two stout spines on the surface of the second joint of the exopodite, in the same position as the spines of the same segment in *H. longicornis* (Gbt.). (Pl. IX., fig. 36.) This may possibly be the same species as the *H. major* of Dahl, of which, however, no description has been published. Only two specimens were captured in deep water in the Atlantic off the west coast of Ireland.

20. *Lucicutia grandis* (nov. sp.) (?). A ♀ 6·5 mm. long, the largest known species of *Lucicutia* from the deep water of the Atlantic; the anterior antennae about four joints longer than the whole body; the genital segment asymmetrical; the first pair of feet with tubular process on the first basal; all the swimming feet, including the fifth pair, with three-jointed exopodites and endopodites. (Pl. IX., figs. 37, 38.) Very pigmented, with deep orange pigment about the mouth, and all organs of the mouth and the feet coloured a shade of burnt sienna. This may be the ♀ of the species described by Giesbrecht from the Pacific, *L. grandis*, of which, however, he only knew the ♂ (6 mm. long).

21. *Lucicutia magna* (Wolfenden). A single specimen, a ♀ 3·54 mm. long, was found by me in Fowler's Collection from the Faroe Channel. Anterior antenna longer by one and a half joints than the whole body; the endopodites of the first feet two-jointed; the right fifth foot with a strong spiny process on the inner side of the second basal, and an exopodite of two segments; the rami of the left foot each of three segments. (Pl. IX., fig. 35, 35a.)

21a. *Lucicutia atlantica* (nov. sp.). ♀ 3·5 mm. long (cephalothorax 21, abdomen 1·4 mm.). Head separate from first segment, last two segments fused, and as long as the two preceding. Furcal segments nearly five times as long as broad and as long as the two last abdominal segments. Anterior antennae longer than the whole body by four segments; rami of the posterior antennae about equal; the basals and endopodite of the posterior foot-jaws about equal lengths; maxilla resembling *L. flavigurnis*, but exopodite larger. First feet with endopodite clearly only two-jointed, the second basal with a marginal tubular process. Second feet with the end saw only one-third of the length of the exopodite last joint. Fifth feet with the end spine only one-half the length of the last exopodite segment, the margin not crenated as in *L. flavigurnis*, the inner marginal thick bristle rather long (nearly two-thirds as long as the last joint of the exopodite) slightly serrated at the distal end. The only *Lucicutias* with a two-jointed endopodite of the first foot are *L. Clausi* and *longiserrata*. The shape of the head alone distinguishes this species from the former, the
size and proportions of the saws of the feet from the latter. One example only occurred at a depth of 400 fathoms at station 55° 47' N. It may perhaps be the ♀ of *L. magna*, but is better described, provisionally at least, as a new species.

22. *Augaptilus zetesios*, Wolfenden. A ♀ which has already been described in this Journal (January, 1902).

23. *Augaptilus magnus* (nov. sp.). ♀ 7 mm. long and over. Anterior antennae reaching to the end of furca; genital segment larger than the rest of the abdomen; second abdominal segment as long, or a little longer, than the anal segment; furcal segments very short; mandible two-branched; maxilla with seven strong hooks, outer lobe with five, exopodite with only two, second inner lobe with one long hook bristle; both basal joints of the posterior foot-jaw of similar length; endopodite much shorter. Branches of the posterior antenna subequal. Rami of the fifth feet three-segmented.

It has most general resemblance to *A. megalurus* (Gbt.), a Pacific Ocean form, while the furcal segments and shape of the abdomen somewhat resemble *A. filigerus*, but it is nearly twice the size of the latter, and differs in the anatomy of the anterior and posterior antennae, maxilla, etc. It is a purely deep-water form, found only in the warm area of the Atlantic.

24. *Augaptilus gibbus* (nov. sp.). The back of the head has a remarkably gibbons swelling. The anterior antennae are not quite as long as the whole animal. The exopodite of the posterior antenna is not half the length of the endopodite; mandible with two-branched palp; basals and endopodite of posterior foot-jaw equal in length; genital segment longer than the rest of the abdomen; anal longer than the second, and furcal longer than the anal segment; maxilla with outer lobe with three, inner first lobe with six hooks; exopodite with four bristles. Size, 2-75 mm.

25. *Pseudocyclus Giesbrechti*, Wolfenden. This was described in this Journal (January, 1902).

This striking and beautiful little Copepod bears a very close resemblance to *Ægithus mucronatus* (Gbt.), but differs in the following points: there is no spine on the third segment of the anterior antennæ; there is a long sensory process on the last joint resembling the sensory process on the third segment (this is the only one present in *Ægith. mucronat.)*; the first feet are clearly three-segmented (two-segmented in *Ægith. muc.;*) the terminal lance bristle of the fifth foot is only about half the
length of the foot, and this foot is very clearly three-segmented (in *Eg. mucron* one-segmented).

On these grounds I hesitate to regard it as identical with Giesbrecht's species. One specimen was taken in the Faroe Channel (Fowler's Collection), and a second was captured in lat. 50° 56' at 300 fathoms in June, 1903. Giesbrecht's species was a Pacific Ocean one. The *Eg. mucronatus* recorded from eight stations of the *Ocean* given by J. C. Thompson is probably identical with my species.

26a. *Parangaptilus Buchani* (nor. gen. et sp.). ♀ 3-25 mm. long (cephalothorax 2-55, abdomen 0-7). The head very much narrowed in front and general shape like an *Augaptilus*; two slender rostral filaments very divergent; the abdomen of four distinct segments, the genital very protuberant ventrally and twice as long as the next, which with the middle and anal segment are each of the same size (Pl. IX., fig. 44); the furcal segments not quite twice as long as broad, each with four tail setae (the longest about as long as the abdomen) and a short dorsal accessory bristle; the last thoracic segment on each side dorsally ends in a short stumpy spine; anterior antennae of twenty-one joints, the first and second comparatively long, the next nine very short and compressed, the eleventh partly divided from the twelfth, the twentieth from the twenty-first; the left antenna is a little longer than the right, neither of them as long as the whole body; the posterior antenna has the endopodite about twice as long as the exopodite; the mandible is one-branched only, the masticatory plate like *Arietellus*; the maxilla has the inner lobes much reduced, the second basal and endopodite fused with only three distal bristles, the first inner lobes with five, and exopodite short with two bristles; the anterior foot-jaw is very like that of *Arietellus* divided into three segments, the first two with small lobes and short bristles, the endopodite short and with very long bristles (eight) provided with angaptiloid cups; posterior foot-jaws with the endopodite as long as the second basal, its segments, five in number, progressively diminishing in size, the first two large; many of its bristles have the angaptiloid cups; the first four pairs of feet have endopodites and exopodites of three segments each; the fifth feet are peculiar, consisting only of a foliaceous plate on each side, imperfectly segmented into two, and carrying each one long marginal and a longer apical bristle. (Pl. IX., fig. 45.)

The animal is an adult with well-formed genital segment; the four-jointed abdomen removes it from the genus *Augaptilus*; the shape is angaptiloid and not like *Arietellus*, and the fifth feet are quite peculiar. It seems to partake of some of the characters of each of these genera, but cannot, I think, be referred to either; I attach to it the name of
my sailing master, to whose constant labour in the management of instruments I owe a great deal.

In addition to the before described new species the following are new:—

27. Heterorhabdus longicornis (Giesb.) ♂. This was described by me in this Journal (vol. vi., 1902) under the name of H. zetesios. Since that time I have taken many specimens in the Farœ Channel and the Atlantic, and have come to the conclusion that it is the ♂ of H. longicornis, the ♀ of which is of common occurrence in the north Atlantic, and occurs not infrequently in the Farœ Channel. The anterior antennæ are longer than the whole body by four joints, the left a clasping organ of six segments beyond the geniculation; the left furcal segment is much longer and broader than the right. The anterior foot-jaw has one thick hooked bristle on the fifth lobe, but no toothcomb bristles, and the fifth feet have on the right side an upright and stiff process of the second basal armed with stiff bristles on the inner margin, and the proximal inner margin of the first joint of the exopodite with a protuberance armed with four teeth, and a second smaller protuberance above with a bunch of short hairs. The second basal joint of the foot of the opposite side is armed with short, stiff bristles, the end joint of the exopodite produced into a long curved spine with a shorter marginal spine on the inner side. (Pl. IX., fig. 34.) The mandibles with three teeth on the left side, four teeth on the right masticatory plate.

In the report by I. C. Thompson upon the "Oceana" Copepoda* is figured on Plate VI. a pair of fifth feet of Metridia venusta, which are unlike any known Metridia feet, and resemble those of Heterorhabdus longicornis ♀. The general appearance of the whole animal and the description in the letterpress probably refer to a Heterorhabdus, which the writer had wrongly thought to be a Metridia.

28. Phyllopus bidentatus (Brady). The female of this species is of not uncommon occurrence in the Atlantic west of Ireland. It has been fully described by Giesbrecht. But much uncertainty has existed about the ♀. Brady's example was undoubtedly a male. The ♀ is 2·25 mm. in length, and closely resembles the ♂ except in the structure of the anterior antennæ and fifth pair of feet. The margins of the last thoracic segment are not in any specimens produced like the figures of Brady (Chall. Rep., "Copepoda"). The abdomen is of five segments, which, with the furcal segments, are of about equal length. The left anterior antenna is of twenty joints, and between the seventeenth and eighteenth is a geniculating joint. Ästhetasks are numerous,

and paired at the basal joints. The fifth feet have each a two-jointed basopodite and three-jointed exopodite; the foot of the right side has a rudimentary endopodite, broad and without spines. The second exopodite segment carries two distal hooks; the foot of the other side has a much simpler exopodite, the last joint long and broad distally, without spines. The second basopodite of each side has a long, thin, feathered bristle. (Pl. IX., fig. 16.) The Phyllopus bidentatus, figured by I. C. Thompson, is certainly not identical with my species, if the former is correctly drawn. My Atlantic specimens are, I think, without a doubt the \(\mathcal{S} \) of the species described by Giesbrecht; and the females captured at the same time by me agree entirely with the description and figures of the last-named authority, and not with Brady's. The "bidentate process" does not exist in the Atlantic specimens, and as I have minutely examined quite a dozen, it is not likely that it has been broken off in all of them.

29. Clenoculanus vanus \(\mathcal{S} \) (nec). On two occasions, once in the Faröe Channel and once in the Atlantic, off the west coast of Ireland, this Copepod has been taken, the \(\mathcal{Z} \) only (described by Giesbrecht) of which is known.

The \(\mathcal{S} \) is 1:25 mm. long; the anterior antennæ of twenty-one joints, the posterior antenna, with the exopodite, nearly twice as long as the endopodite; the exopodite of the mandible longer than the endopodite, a chitinous remnant of a masticatory plate remaining, but without teeth; anterior foot-jaws retrograded, posterior foot-jaws with the two basal joints of about the same length, the endopodite longer than either; first feet with a one-jointed endopodite, second pair with a two-jointed endopodite, the marginal spines especially of the fourth pair modified, as Giesbrecht has described as characteristic of the species, having peculiarly crenated edges; fifth feet, one long (left) foot of five segments, basal two joints largest and broadest, the distal three joints small, the end one spatulate with bundles of short, stiff bristles on the inner margin; the right side carries a very short stump only, representing the foot. (Pl. IX., fig. 9.)

30. Metridia Normani \(\mathcal{Z} \) (nec). The \(\mathcal{Z} \) only of this species has been described by Giesbrecht; the \(\mathcal{F} \) has hitherto remained unknown. It is of common occurrence in the Atlantic, west of Ireland.

Length of the \(\mathcal{Z} \) 2:5 mm.; anterior antennæ of twenty-five joints, a little longer than the whole body, the first, second, and third with prominent but not recurved spines on the upper margin, that of the third segment the longest, the fifth and sixth segments with shorter spines; both second feet with the usual notch and hook; fifth pair

of feet, the left longer than the right, of three segments, with three apical bristles, of which the middle is the longest, and a long outer marginal bristle on the second segment; right foot smaller, indistinctly three-segmented, with only two apical bristles of similar length. (Pl. IX., figs. 39, 40.)

The genital segment is not so long as the next two; the furca is longer than the anal, nearly four times as long as broad, and asymmetrical, that of the right side shorter than the left. This Copépod was frequently found in company with undoubted ♂ examples of Met. Normani.

Dichotomous branching of tail seta. A curious condition was first observed by me in many instances amongst the Copépoda (referred to me by my friend Mr. Stanley Gardiner) from the Maldive Islands of the Indian Ocean. This consisted of a branching and sub-branching of the seta of the tail, an attempt at dichotomous division, so that in many instances the whole of the tail seta were converted into a sort of brush. I had never observed this in any Copépoda from our more northern regions, and looked upon it as a condition probably peculiar to the Copépoda of the Maldive region; but I have lately observed exactly the same in two examples from the Atlantic taken west of Valentia, in Ireland, viz. once in Undeuchaeta major and once in Euchaeta norvegica. In the Maldive seas it has occurred with great frequency in Calanus vulgaris, and also in Calocalanus, Paracalanus aculeatus, Scollaitherix Danae, Euchirella bella. It will be observed that it is always in the Amphuskandria that this condition occurs. In the Maldive Collection it is of such frequent occurrence that it suggests a special variety in each instance. What the precise significance may be I do not know, possibly a device to assist flotation, but it is curious that it should occur also in examples from the North Atlantic. The dichotomous branching is very irregular, sometimes of one seta only, or two, or all the setae of one side only, or of both sides.

Remarks on the Horizontal Distribution of the Copépoda.

Calanus finmarchicus. Sars (Crustacea of Norway) has recently endeavoured to distinguish the Northern and Polar form under the name of C. finmarchicus from a southern form C. helgolandicus, basing his opinion upon the size, length of the antennæ, shape of the head, and structure of the fifth feet. I have very carefully compared examples from Thorshaven, the cold area of the Farœ Channel, the warm area of the Atlantic, and the English Channel, and I am of opinion that the factors upon which Sars bases this distinction are too inconstant to admit such a separation into specific forms. Examples from the
southern waters are met with in which the shape of the head and the size of the animal, length of antennæ, etc., are in no wise different from the northern species. The structure of the fifth feet of the σ is known to vary very considerably, as Giesbrecht long ago pointed out for examples from Hong Kong. Even in Faröe examples (and those from more southerly latitudes) this is also the case, and the fact is that the species is very variable. Being also the most prolific Copepod known, at any rate in northern waters, and constantly present in various stages of development, is it not more natural to regard these variations as only different stages of growth? At any rate, the very careful measurements and study which I have made of this Copepod between the lat. 51°-62° N. convince me that the points stated by Sars are not sufficiently reliable to justify such a differentiation of the species. The horizontal distribution of this Copepod is known to be very wide. In the Faröe Channel it is extraordinarily abundant, but south of the Wyville-Thompson ridge it appears to get less frequent the further south we go, and though taken throughout the Atlantic traverse, it does not occur in great numbers at about lat. 51° (at any rate in 1903). It is, however, known to reach the deep water under the Sargasso Sea (Dahl).

Eucalanus. In a former list (this Journal, January, 1902) I included *Euc. attenuatus* in the list of Copepoda found in the Faröe Channel. It is true that I found it once in a sample from Station A 1 in the Faröe Channel, but I am of opinion now that this sample had become contaminated with some material from the Indian Ocean, and as I have never found it in any other samples from the Faröe Channel, including those collected by Fowler, which were afterwards referred to me, I must conclude that it does not occur in the Faröe Channel. In a subsequent paper by Dr. Fowler in *Proc. Zool. Soc.*, February 3rd, 1903, it is spoken of as forming 22 per cent. of the Epipankton and 41 per cent. of the Mesopankton of this region. This, however, is an error, and it should be eliminated from the list. The species referred to is undoubtedly *E. elongatus*. This species is very abundant in the Faröe Channel, not uncommon in the fiords of Shetland, and occurs throughout the Atlantic stations as far south as 51°, but less abundantly than in the Faröe Channel, where it is apparently indifferent to temperature, occurring at all depths. It is, however, curious that it does not extend further north to the Norwegian Sea, and is not mentioned by Sars as having been seen off the Norwegian coast. Its northern limitation appears to be very well defined.

Euc. crassus is frequently met with in the Faröe Channel, and has occurred in great abundance in some hauls with the "midwater open net" at 45 to 50 fathoms. It is also met with throughout the Atlantic.
stations, and is very common in Mr. Gardiner’s Maldive Collections, thus appearing to thrive under widely differing conditions as to temperature, etc. Its northward and eastern extension appears to be as well defined as that of the previous species, as it is not mentioned by Sars.

Rhincalanus. The *Rhincalanus cornutus*, also included in the list before mentioned, must be removed for the same reasons as *E. attenuatus*. It never occurs in the Faröe Channel, and I have never yet found it in the Atlantic north of 51° Lat. In Fowler’s list (P.Z.S., June 21st, 1898) it is recorded as frequent, especially in the Mesoplankton. In Fowler’s collection it was certainly absent, but *Rhinc. nasutus* was common, and, in fact, is scarcely ever absent from the Epi- or Mesoplankton of this region, and it is evident that the two species have been confused. *R. cornutus* is distinctly a southern ocean form, and all records of its occurrence beyond 30° N. must be looked upon with suspicion. *Rhinc. nasutus* occurs often in great abundance in the Faröe Channel, and frequently throughout the Atlantic traverse. I have found it in the Maldive Collection, but very sparingly, and Scott mentions it among the Ceylon Copepods. Like *Eucalanus*, its northern distribution is apparently well defined, having occurred only at two stations of the cruise of the Michael Sars, in deep water off the coast of Iceland, and once in the North Sea between Scotland and Norway.

Pleuromamma. *Pl. abdominalis* is not common in the Faröe Channel, while *Pl. robusta* (Dahl) occurs with great frequency. Consequently the records of *Pl. abdominalis* in Fowler’s list (loc. cit.), and the figures (5 per cent. Epiplankton and 58 per cent. Mesoplankton) in his second paper (February 3rd, 1903) must be doubted. *Pleur. robusta* occurred abundantly in Fowler’s collection, and in my own Faröe collections it is the common *Pleuromamma* of the Faröe Channel and North Atlantic (51° to 62° N.). Though *Pl. abdominalis* does occur in the North Atlantic, it is comparatively rare in my collections.

The distribution of this Copepod (*Pl. robusta*) is not unlike that of *Eucalanus* and *Rhincalanus*. Sars mentions the occurrence of a few specimens “somewhat north of the Faröe Islands,” and two specimens only from Norway. It occurred throughout my Atlantic traverse in 1903, and for four years successively has been always abundant in the Faröe Channel, but north and east of Shetland it appears to have a fairly well defined limit, though apparently reaching, in small numbers, the coast of Norway. *Pl. abdominalis* was not common in the Atlantic traverse. *Pl. abyssalis* has occurred in my experience only once in the Faröe Channel.

Euchirella. Only two species of *Euchirella* occur in the Faröe Channel, viz. *E. rostrata* and *E. carinata*. The former is of frequent
occurrence. What was meant by *E. pulchra* (frequent at 450 to 320 fathoms) in Fowler’s list (*P.Z.S.*, June 21st, 1898) I do not know, but I am pretty confident that it was not *E. pulchra*, and probably was *E. rostrata*. I found the latter species in Fowler’s collection, and I have taken it several times since, but it has not occurred in my collections in the Atlantic south of the Wyville-Thompson ridge, being there replaced by a variety of *E. euriticauda*. *E. rostrata* does not apparently occur in the Norwegian Sea, but it is recorded by Scott in the Ceylon Copepoda. In the neighbouring Maldivian Islands, however, I have not met with it, but only *E. bella*. That it should occur at such widely different localities is not a little curious. The limitation previously given by Giesbrecht (*F. u. Fl. N.*) was 44° N. to 41° S.

Paracalanus parvus. Found plentifully in Christiana Fjord by Sars, and South Norway, though not apparently further north, none having been observed at Bergen by Nordgaard, nor in the Plankton samples from the Northern Ocean examined by G. O. Sars (*Crust. Norwya, p. 18*), and common round the British coasts. It occurs in the Faroe Channel, and as far south, at any rate, as lat. 51° (Valentia in Ireland); occasional in deep-water samples, it is not common in the open ocean. It has probably not such a wide southern distribution as has been imagined. Met with in the Indian Ocean and Mediterranean, I think there is reason to differentiate the two forms, boreal and Mediterranean (and Indian Ocean), as at least distinct varieties. A careful examination of the figures of this species given by Sars (*Crust. Norwya*) and Giesbrecht (*F. u. F. Golfes Neapel*) discloses differences, and I have made a detailed examination of examples from the Faroe Channel and from the Indian Ocean (Maldives) for the purpose of comparison.

The Southern Ocean examples are found constantly to be rather smaller than the northern, the basal joints of the feet are more densely armed with short spines (in the northern variety these are almost entirely absent, especially on the fourth pair), the basal joints and the last segment of the exopodites (fourth pair) are broader in proportion to the length (exopodite 3 is five times as long as broad in the boreal variety, only four as long as broad in the Indian variety), and the anterior antennae are rather longer in proportion to the body in the southern variety. On the whole the southern variety may be said to be constantly smaller, more spiny, and with less attenuated segments of the feet (in which the marginal teeth are also stronger and coarser) than the northern. This difference is also noted in comparing the figures of Giesbrecht’s *P. parvus* from the Mediterranean with those of Sars’ *P. parvus* from Norway. They are not distinct species, but undoubted varieties, and the northern form, though extending as far south as lat. 51° (Valentia), does not prob-
ably reach the Mediterranean, from which point southwards the southern variety extends. The species described by Scott as *P. parvus* from the Gulf of Guinea must, I think, be designated *P. aculeatus* (Gbt.).

Calocalanus parvo. The occurrence of this species north of 50° N. is unusual, its previous limitation being 30° N. Two undoubted examples occurred in hauls made west of Valentia, but in this case it was probably an accidental wandering beyond its proper limitations.

Oncocalanus vanus and *Calanus tenuicornis* must probably be regarded as having wandered far out of their usual habitat when found, the former in the Faroe Channel, the latter off the west coast of Ireland. The former is recorded, however, by Giesbrecht as rather common in the Antarctic Ocean (*Voy. du Belgica*).

Heterorhabdus. The species which I had previously named *H. Clausii* (this *Journal*, January, 1902) should be *H. norvegicus*. Until the publication of Sars' recent work (*Crust. of Norway*) no full account, and no figures of the original species of Boeck were available. I am now convinced that the Faroe examples are really Boeck's species, *H. norvegicus*, which extends southwards at any rate to 52° N.

The *H. zetesios* recorded in that list I now think to be the male of *H. longicornis*, previously unknown, and I have taken it on many occasions since that date, both in the Faroe Channel and the Atlantic.

H. norvegicus is distinctly a boreal species, while *H. longicornis* (vel *zetesios*) belongs just as certainly to the warm area, occurring with considerable frequency in the warm Atlantic area. The *σ* is of such frequent occurrence in this region that it is curious that it should have been overlooked in previous records. *H. vipera* and *H. abyssalis* occurred only in the warm area, and have never been seen north of the Wyville-Thompson ridge. *H. grandis* is certainly only a very deep water species.

The *Heterorhabdidae* are species which seek deep water and do not approach the coasts, at any rate in the North Atlantic. *H. norvegicus* is capable of existence within a very extreme range of temperature, from the polar water of the Faroe Channel to the warm Atlantic. *H. longicornis* can apparently endure greater extremes than *H. vipera*, but is not so robust as the first-named species. Amongst Epiplankton I have found only quite young and undeveloped examples of *Heterorhabdus*.

Candace. What is meant by Candace *truncata* in Fowler's list (*P.Z.S., June, 1898*) it is impossible to say. It is a Pacific Ocean species. Probably Thompson meant *C. norvegica* (Boeck), which has received a full description from Sars (in *Crustacea of Norway*) and extends southwards, at any rate as far as 51° N., where I took it at a depth of 300 fathoms.
Chiridius. In 1892 Giesbrecht established this genus for a Copepod (Ch. poppei) of small size (1-8 mm.), which was characterised by the absence of rostrum and the very short endopodites of posterior antennae and mandible.

Sars has extended the genus by the inclusion of four species—Ch. armatus, Ch. brevispinus, Ch. tenuispinus, and Ch. obtusifrons. There can, however, be no doubt that brevispinus and tenuispinus are really examples of Giesbrecht's genus Gaidius. In both occur the modified tubal bristles of the basal joint of the fourth feet, which Giesbrecht remarked long ago to be midway between the ordinary bristles of Ætideus and the spines and teeth of Euchirella. Chiridius tenuispinus (Sars) is identical with Gaidius borealis (described by me in this Journal, January, 1902), and Chiridius brevispinus (Sars) is identical with the species which I had previously named Gaidius major.

Chiridius armatus (Sars), owing to its possession of a two-pointed rostrum, is clearly not a Chiridius, and from its close resemblance to Ætideus was, two years ago, placed by me in another genus to which I gave the name Pseudactideus. (See Report of the Brit. Assoc., the Zoological Station at Naples, 1902.)

Consequently only one of Sars' species, viz. Chiridius obtusifrons remains to be included in the genus Chiridius, which now includes only Ch. poppei (Gbt.) and Ch. obtusifrons (Sars). The latter form, which appears to have been abundant in the Polar basin in Nansen's Expedition (Sars, loc. cit.), occurs also, though not commonly, in the Faroe Channel, and my examples agree entirely with the description given by Sars.

It may be doubted if the Gaidius pungens of Giesbrecht is really identical with the Faroe Channel and North Atlantic forms, for in the former the second pair of feet have a one-jointed endopodite, while in the latter it is distinctly two-jointed, added to which must be considered the widely different localities of habitat, which would at once lead to a supposition of non-identity. (Pl. IX., fig. 43.)

G. pungens (Giesbrecht).
Exopodite of first foot two segments.
Endopodite of second foot one segment.
Spiny prolongation of last segment shorter than in borealis.
Size, ♂ 3-2 mm. (Pacific Ocean).

G. borealis (Wolfenden), Ch. tenuispinus and G. tenuispinus (Sars).
Exopodite of first foot indistinctly three segments.
Endopodite of second foot two segments.
Spiny prolongation of last segment longer than pungens.
Size, ♂ 3-8 mm. (North Atlantic).
In addition there are minor differences in the relative proportions of the segments of the feet, number of teeth on the terminal saws, hooked bristles of the anterior foot-jaws, proportions and length of the segments of the posterior foot-jaws (first and second basals shorter and broader).

The differences, though small, along with the widely different habitats, cause me to hesitate before regarding them as identical, and probably they are varieties.

Gaetanus. Of the two species of Gaetanus (armiger and major) which I find common in the Atlantic, and somewhat more uncommon in the Faröe Channel, the doubt may be expressed (as in the case of Gaidius) whether the species G. armiger is really identical with Giesbrecht's Pacific Ocean examples. Specimens from the Atlantic clearly have the modified tubal bristles on the basal of the fourth feet (apparently absent in Giesbrecht's species), and are larger than Giesbrecht's species (viz. 4.4 mm., as compared with 3.2 mm.), but otherwise the resemblance is very great. However, combined with such widely different habitat, it might be considered advisable to regard them as different species, in which case our northern species might be distinguished as G. atlanticus. No doubt can be entertained in the case of Gaetanus caudani that it is not identical with G. miles (Gbt.), though doubt may be felt whether the specimen described by Canu (Ann. Univ. Lyon, vol. xxvi.) is identical with the North Atlantic examples; but as this appears to have been an immature male, a proper comparison can scarcely be made.

With regard to the horizontal distribution of the genera Gaidius and Gaetanus, Gaidius is of constant occurrence in the deep water only of the Faröe Channel, and though it wanders south into the warm Atlantic, it is by no means of such frequent occurrence as further north. Gaidius major, and to a less degree G. pungens, are in the North Atlantic distinctly boreal species, occurring with frequency in the Polar seas (Sars). Chiridius obtusifrons seems at present to be still more markedly a Polar species, occurring sparingly in the cold under-water of the Faröe Channel, and Pseudocetes armatus has the same distribution as Gaidius. Both can be traced down as far as lat. 51° N., possibly further south.

Gaetanus species, on the contrary, appear to be of more a warm Atlantic area habitat. Their frequency diminishes going northwards, and Gaetanus is not mentioned in Sars' lists. G. major alone passes into the Faröe Channel, G. armiger and caudani not appearing north of the Wyville-Thompson ridge, though on one occasion I took an undeveloped example (? G. miles vel caudani) just south of this locality.

Enacheta. E. marina, described in Fowler's paper as common at various depths, is erroneous.* It does not occur in the Faröe Channel, nor have I found it in the North Atlantic, at any rate as far south as

* Its inclusion in my list (this Journal, January, 1902) was also an error.
51° N. Two species, *E. norwegica* and *barbata*, are common; the third, *E. glacialis*, is rather rare. The first species occurs in so many stages of development that Thompson, who reported upon Fowler's Copepoda, was probably misled. Though doubt has been expressed upon the accuracy of the diagnosis of *E. barbata*, there is no doubt that this is a good species. Each of the three differs, especially in the form of the genital segment of the female, the length of the appendicular tail seta, the structure of the first and second feet, and the anatomy of the last segment of the fifth foot of the ʃ, especially in its "scissors" arrangement. What is meant in Thompson's list by *E. hessii* and *E. gigas* (Brady) it is difficult to say. At any rate only the three *Euchetias* mentioned are as yet known to occur in the Faröe Channel.

E. norwegica extends southwards into the warm Atlantic area, at any rate, as far south as 51° N. It is fairly common in the warm area, but not so much so as in the deep water of the Faröe Channel, where it is seldom absent from deep hauls; it is thus capable of ranging through wide differences of temperature. Though, as I am informed by Sir J. Murray, it is of common occurrence in the surface waters of some of the Western Scotch lochs, I have never seen an adult in the surface area of the Faröe Channel or Atlantic. Young and undeveloped specimens are not uncommon near the surface, but the adult animal appears to prefer the deep water down to 500 to 600 fathoms, and to extend northwards to the Polar basin.

E. glacialis, observed abundantly in the Polar basin (Hansen), but seldom in the Norwegian Sea, is of rare occurrence in the Faröe Channel, and once only it occurred in the warm Atlantic area.

E. acuta, of which a few undoubted examples were met with in lat. 50° 56' and 12° 6' W. long. at 300 fathoms depth, has hitherto had a northern limit of only 41° N. It has lately been recorded by Scott from the Indian Ocean.

E. barbata, first described by Brady from the South Atlantic (Rio Janeiro), and lately by Scott from Ceylon, occurring with frequency in the Faröe Channel, has thus a very wide range. In the Atlantic it is purely a deep-water species, occurring once at 500 fathoms in lat. 55° 47' N.

These three species (*E. norwegica, glacialis, barbata*) may be distinguished from each other by the following points (cf. Fig. 1 in text):

E. norwegica, ? The last thoracic segment on each side ending in a blunt spine. The genital segment with genital swelling occupying the lower part of the segment, the opening nearly round, guarded on each side by a prominent blunt tubercle. Second foot: the external spine of exopodite 2 does not reach the end of the first marginal spine of exopodite 3, the second spine of exopodite 3 does not nearly reach the
end of the segment. First foot: exopodite 1, with partial division into two segments, margin very concave above and convex below, with a marginal bristle not reaching the end of the segment. Appendicular bristle of the tail very long. Colour greenish yellow; about 8 mm. long.

E. glacialis. The last thoracic segment rounded and without tip. Genital segment very prominent with conical swelling; genital orifice guarded on each side by an upper and lower tubercle, and opening oval

![Fig. 1. Comparison of three species of Euchaeta.](image)

1. _Euchaeta glacialis_.
2. _""_ Genital segment, ventral surface.
3. _""_ norvegica.
4. _""_ Genital segment, ventral surface.
5. _""_ barbata.
6. _""_ Genital segment, ventral surface.
7. Last two segments of exopodite of second feet of _Euch. glacialis_.
8. _""_ _Euch. norvegica_.
9. _""_ _Euch. barbata_.

(broader than long); the genital swelling occupies more the middle of the segment, which is much swollen laterally. Second foot, with the marginal spine of exopodite 1 very large, reaching the tip of the first spine of exopodite 2; the second marginal spine of exopodite 3 larger than in _E. norvegica_ and reaching the end of the segment. First foot without trace of segmentation in the exopodite 1 and its marginal seta very small. Appendicular bristle very short. Colour greenish yellow,
with a quantity of red pigment diffused, especially about the mouth organs; size, about 10 mm.

E. barbata. Last thoracic segment rounded on each side. Genital segment not so swollen as the other two species, swelling occupying the middle of the segment, more protuberant above than below; genital orifice oval, broader than long, guarded by lateral lamellar swelling on each side. Second foot, with marginal spine of exopodite 1 stout and reaching the end of the first spine of exopodite 3; second spine of exopodite 3 not reaching the end of the segment. First foot, with exopodite distinctively segmented into 3. Appendicular bristle long. Colour always bright red, feet and mouth organs coloured red; size, 10–11 mm.; very hirsute.

Haloptilus. _H. acutifrons_ (Gbt.), recorded by Sars once from the Polar Sea and once from the Norwegian Sea, occurred twice only in the Atlantic townnettings. _H. longicornis_, recorded by Sars once only from a station between Finmark and Bear Island, was captured several times in the North Atlantic, and once only in the Faroe Channel cold area.

Neither of these species can be regarded as indigenous to the north cold ocean. Their distribution is pronouncedly southern, and _H. longicornis_ extends from the Mediterranean to the Indian Ocean, where it is very common round the Maldive Islands.

Augaptilus. The occurrence of several members of this genus in the North Atlantic is interesting. Only one of them am I able to thoroughly identify with any species described in the list of Giesbrecht and Schneil (Das Tierreich, "Copepoda"), only three of which, by the way, are European, four being Pacific Ocean species, and one recorded only from the Gulf of Guinea.

The description of _Augaptilus glacialis_ (Sars), said by this authority to be a Polar species, is not at the moment of writing available to me. The 3 briefly described by I. C. Thompson is in all probability not this species at all, the size given by Thompson,* 4 mm., being greatly in excess of that of _A. palamboi_ (Gbt.), viz. 2-25 mm. 2, and no truly Pacific Ocean† forms have yet been recorded from the North Atlantic. While the three species taken by Scott in the Gulf of Guinea appear to be as much epiplanktonic as mesoplanktonic (25–360 fathoms), in the "Oceana" report the _Augaptilus_ species appear to be only mesoplanktonic, all being captured at 1,000 fathoms or under. In the North Atlantic none of my species appeared above 300 fathoms. Two of them are new, and only one, _A. longicornatus_ (Clans) has a wide range (Mediterranean, Gulf of Guinea, and Pacific Ocean).

† _Augap. palamboi, bullifer, megaturus._
Lucicutia species show a distribution similar to other warm-water species, and may be regarded as wandering into the Faröe Channel by accident. *L. flavicornis* is not often found there, but increases in frequency further south of the Wyville-Thompson ridge. It has a very extensive range, occurring with frequency about the Maldivian Islands of the Indian Ocean.

Metridia species. *M. longa* is clearly a distinctly northern form, occurring with great frequency in the deep water of the Faröe Channel, and at very low temperatures, and is traced down the North Atlantic, where it occurs with much less frequency and in deep water. *M. lucens*, on the contrary, is apparently very common in the warm area of the Atlantic; equally with the cold area of the Faröe Channel, at any rate as far south as lat. 50° N., south of which, however, it appears only doubtfully to reach.

M. Normani, which was described by Giesbrecht from the Faröe Channel, has not occurred in any of my collections in that region for the last four years, but was common in the North Atlantic during the summer of 1903, especially between lat. 50° and 55°; its presence in the Faröe Channel at any time is therefore probably accidental.

M. brevicauda, of which several examples occurred off the Irish coast in 1903, has hitherto been regarded entirely as a Pacific Ocean species (Giesbrecht). *M. longa*, and especially *M. lucens*, may be regarded as typical northern cold-area forms.

Onca species (especially *O. conifera*) are rarely absent from any tow-netting in the Faröe Channel or North Atlantic in deep water; they are very rarely, however, found at the surface. The genus is cosmopolitan and has representatives in the Indian Ocean nearly as abundantly as the northern seas. The same may be said of *Oithona*, especially *O. plumifera* and *similis*, and both *Onca conifera* and *Oithona similis* are recorded by Giesbrecht from the Antarctic Ocean (*Voyage du S.Y. Belgica*, 1902). The same may be said of *Microsetella atlantica*, common throughout the Faröe Channel, the North Atlantic, less common in the Indian Ocean (Maldives, Wolfenden), Ceylon (Scott), and in the Antarctic Ocean (Giesbrecht loc. cit.). *Bradyiulius armatus* is similarly cosmopolitan, frequent in the Faröe Channel, round the British Isles, occurring also in the Mediterranean, and round the Maldivian Islands of the Indian Ocean. *Acartia Clausii* is similarly cosmopolitan, and along with *Onca conifera*, *Oithona plumifera* and *similis*, and *Ectinosoma (Microsetella) atlantica*, indifferent to depth and temperature. *Ecolethric minor* is also widely distributed, very common in the Faröe Channel, but less common in the North Atlantic.

Anadophora magna occurred with frequency in the warm Atlantic area, especially about lat. 51° to 52° N., in the summer of 1903. Scott
has described it from the Gulf of Guinea, and Sars states that it was abundant in the Polar basin crossed by Nansen; it is recorded by Giesbrecht from the Pacific, near Bergen (Nordgaard), and "at some distance north of the Shetland Isles" (Sars). I have never once found it in the Faroe Channel. Considering its widely differing habitats, it is not easy to see why it should be described by Sars (Crust. Norway, p. 53) as of "undoubtedly Arctic origin." An allied species, A. brevicornis, is recorded by Scott once from a locality east of the Shetland Isles. The same Copepod occurred in the cold area in July, 1902, but differs from Sars' description in the entire absence of amalliformus sensory processes, which are replaced by strong brush processes on both maxillipeds. The head is broad and entirely without crest, and in every other respect it agrees with Sars' A. brevicornis, but cannot be an Amallopohra.

In considering the horizontal distribution of the Copepoda of this region, the following occur with frequency, and may be said to be indigenous to the Faroe Channel:

Calanus finmarchicus, Eucalanus elongatus and crassus, Rhincalanus nasutus, Paracalanus parvus, Pseudocalanus elongatus, Ætideus tenuirostris, Gaidius pungens and major, Gaetanus major, Eucheta norvegica, barbata, and glacialis, Pseudetideus armatus, Faroea multiserrata, Metridia lucens and longa, Pleuromamma robusta, Heterorhabdus norvegicus, Ectinosoma atlantica, Acartia Clausii, Candace pectinata, Oneea conifera, Oithona similis, Centropages typicus and hamatus, Euchirella rostrata, Bryaxis brevicornis, Scoleithrix minor and similis, Bradyidius armatus.

Others in the foregoing list, which occur only occasionally, are visitors brought from the Norwegian Sea or from the Atlantic south of the Wyville-Thompson ridge, such as Phaenna, Haloptilus, Chiridius obtusifrons, Ctenocalanus, Augaptillus, Pleuromamma abdominalis, Lucicutia, Anomalocera, Ægisthus.

I have not been able to state any essential differences as to abundance of these individual species during the years 1899–1903, though the hydrographical conditions of the Channel have been widely different.* Thus in 1900 the whole Channel was occupied by water coming from the south, strong earlier in the season, but in July with little movement, but indications of intrusion of northern water at a depth of 300 fathoms on the east side. In 1901 most of the Channel was occupied by water from the south, with feeble southward movement in the depth. In 1902, at all depths below 150 fathoms, the Channel was filled with unusually cold fresher water, the southward movement increasing both

* See Mr. H. N. Dickson's report ("Hydrography of the Faroe-Shetland Channel," Geographical Journal, April, 1903) upon the hydrographical results of the author's cruises in this region.
at the surface and deep as the season progressed, driving out the waters of southern origin. This was an exceptional year.

The physical conditions in the Faroe Channel are, as is well known, widely different from those existing in the neighbouring Atlantic, and in this area we have a very mixed fauna, but it is not difficult to determine which species of Copepoda are, so to say, indigenous to this area. In the tables appended the species captured at each station in the 1903 cruise are tabulated. I purposely leave out the consideration of the observations made exclusively in the Faroe Channel in the three preceding years for future consideration. Only three stations in the "cold-water area" (F. vii., viii., ix.) were visited in 1903, but they serve for comparison with those on the southern side of the Wyville-Thompson ridge.

Throughout the cruise there was a remarkable paucity of Copepoda at the surface as far as species are concerned, and the well-known fact is again established that the nearer the cold ocean is approached the smaller the number of species, but the greater the abundance of individuals of the same species. Thus between 51° and 52° N., thirteen species occurred at the surface; at no station north of this were there more than six species found.

<table>
<thead>
<tr>
<th>Between lat. 51° and 52° N. there occurred at</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 fathoms, 13 species.</td>
</tr>
<tr>
<td>100 " 14 "</td>
</tr>
<tr>
<td>200 " 22 "</td>
</tr>
<tr>
<td>300 " 28 "</td>
</tr>
<tr>
<td>400 " 24 "</td>
</tr>
<tr>
<td>500 " 18 "</td>
</tr>
<tr>
<td>1,000 " 5 "</td>
</tr>
<tr>
<td>800 " 15 "</td>
</tr>
<tr>
<td>700 " 10 "</td>
</tr>
<tr>
<td>600 " 13 "</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between 52° and 54° N. there occurred at</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 fathoms, 8 species.</td>
</tr>
<tr>
<td>100 " 15 "</td>
</tr>
<tr>
<td>150 fathoms, 12 species.</td>
</tr>
<tr>
<td>250 " 6 "</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between 54° and 55° N. there occurred at</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 fathoms, 1 species.</td>
</tr>
<tr>
<td>100 " 13 "</td>
</tr>
<tr>
<td>200 " 14 "</td>
</tr>
<tr>
<td>300 " 20 "</td>
</tr>
<tr>
<td>400 " 22 "</td>
</tr>
<tr>
<td>500 " 7 "</td>
</tr>
<tr>
<td>600 fathoms, 12 species.</td>
</tr>
<tr>
<td>700 " 9 "</td>
</tr>
<tr>
<td>800 " 10 "</td>
</tr>
<tr>
<td>1,000 " 9 "</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between 55° and 56° N. there occurred at</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 fathoms, 4 species.</td>
</tr>
<tr>
<td>100 " 6 "</td>
</tr>
<tr>
<td>200 " 10 "</td>
</tr>
<tr>
<td>400 " 12 "</td>
</tr>
<tr>
<td>500 " 18 "</td>
</tr>
<tr>
<td>600 fathoms, 8 species.</td>
</tr>
<tr>
<td>700 " 8 "</td>
</tr>
<tr>
<td>800 " 6 "</td>
</tr>
<tr>
<td>1,000 " 8 "</td>
</tr>
</tbody>
</table>
Between 56° and 57° N. there occurred at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0-100</td>
<td>5</td>
</tr>
<tr>
<td>0-200</td>
<td>4</td>
</tr>
<tr>
<td>0-400</td>
<td>6</td>
</tr>
<tr>
<td>500</td>
<td>11</td>
</tr>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>700</td>
<td>5</td>
</tr>
<tr>
<td>800</td>
<td>6</td>
</tr>
</tbody>
</table>

Between 58° and 59° N. there occurred at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0-100</td>
<td>11</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>600</td>
<td>5</td>
</tr>
<tr>
<td>800</td>
<td>4</td>
</tr>
</tbody>
</table>

Between 59° and 60° N. there occurred at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0-100</td>
<td>8</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>800</td>
<td>4</td>
</tr>
</tbody>
</table>

Between 60° and 61° N. there occurred in the warm area (F. v., F. vi.) at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0-100</td>
<td>4</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>11</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
</tr>
<tr>
<td>600</td>
<td>4</td>
</tr>
<tr>
<td>800</td>
<td>14</td>
</tr>
</tbody>
</table>

Between 60° and 61° N. there occurred in the cold area (F. vi., F. vii., F. viii.) at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0-100</td>
<td>9</td>
</tr>
<tr>
<td>200</td>
<td>11</td>
</tr>
<tr>
<td>300</td>
<td>11</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>600</td>
<td>14</td>
</tr>
</tbody>
</table>

It is not unfair to conclude from these data that the greater number of species of Copepoda in the North Atlantic prefer a mesoplanktonic existence between 200-500 or 600 fathoms depth; and that this is also the case in the "cold area" of the Faroe Channel.

At Station A 2, June, 1901, there were taken at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0-100</td>
<td>5</td>
</tr>
<tr>
<td>300</td>
<td>11</td>
</tr>
<tr>
<td>500</td>
<td>9</td>
</tr>
</tbody>
</table>

At Station A 2, July, 1901, there were taken at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0-100</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>11</td>
</tr>
<tr>
<td>400</td>
<td>7</td>
</tr>
</tbody>
</table>

At 400 and 500 fathoms there was an abundance of Copepoda, much more than from 200 fathoms to the surface.

At Station A 2, June, 1902, there were taken at

<table>
<thead>
<tr>
<th>Depth</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
</tr>
</tbody>
</table>
When the Copepod species of the warm area of the North Atlantic are examined it is seen that there is not a single species which is purely epipelagial. For long it has been considered that *Anomalocera Patersoni* was a purely surface species, but the capture of an adult male example in a bottom scraping at 400 fathoms, in perfect condition, shows that it can sometimes descend to considerable depths.

Longipedia coronata, an Harpacticid of supposed purely littoral habit, is shown also to exist at great depths, having been taken in scrapings of the bottom at 400 and 500 fathoms respectively.

The Vertical Range of Species in the North Atlantic (excluding the Faroe Channel cold area).

<table>
<thead>
<tr>
<th>Species</th>
<th>Fathoms.</th>
<th>Species</th>
<th>Fathoms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>0–1,200</td>
<td>Oithona species</td>
<td>0–1,200</td>
</tr>
<tr>
<td>" tenicornis</td>
<td>500</td>
<td>Gaetanus sp.</td>
<td>200– 400</td>
</tr>
<tr>
<td>Eucalanus elongatus</td>
<td>0– 500</td>
<td>Gaidius sp.</td>
<td>300– 400</td>
</tr>
<tr>
<td>" crassus</td>
<td>100– 500</td>
<td>Spinocalanus sp.</td>
<td>300–1,000</td>
</tr>
<tr>
<td>Rhincalanus nasutus</td>
<td>0–1,000</td>
<td>Pseudetides armatus</td>
<td>200– 600</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>0–1,000</td>
<td>Phyllopus bidentatus</td>
<td>200– 700</td>
</tr>
<tr>
<td>Pseudocalanus elongatus</td>
<td>0– 100</td>
<td>Ægithlus</td>
<td>300</td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td>0–1,000</td>
<td>Bradyidus armatus</td>
<td>400– 500</td>
</tr>
<tr>
<td>Oncea sp.</td>
<td>0–1,200</td>
<td>Scolecithrix minor</td>
<td>100– 300</td>
</tr>
<tr>
<td>Ectinosoma atlantica</td>
<td>0–1,200</td>
<td>" similis"</td>
<td>100– 200</td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>0–1,200</td>
<td>" atlanticus"</td>
<td>300</td>
</tr>
<tr>
<td>" Nornani</td>
<td>300– 800</td>
<td>Amallopoda magna</td>
<td>300</td>
</tr>
<tr>
<td>" longa</td>
<td>300– 400</td>
<td>Lophothrix securifrons</td>
<td>300</td>
</tr>
<tr>
<td>Euchaeta norvegica</td>
<td>100–1,000</td>
<td>" frontalis"</td>
<td></td>
</tr>
<tr>
<td>" acuta</td>
<td>300</td>
<td>Faroella multiscratta</td>
<td>200–1,000</td>
</tr>
<tr>
<td>Ætidens armatus</td>
<td>100– 700</td>
<td>Undenechaeta major and minor</td>
<td>300</td>
</tr>
<tr>
<td>Pleuropannea robusta</td>
<td>200–1,200</td>
<td>Eulophsonia</td>
<td></td>
</tr>
<tr>
<td>" abdominale</td>
<td>200</td>
<td>" rotundula"</td>
<td>300</td>
</tr>
<tr>
<td>Heterocheta vipera</td>
<td>200</td>
<td>Megacalanus</td>
<td>600</td>
</tr>
<tr>
<td>" longicornis</td>
<td>300</td>
<td>Xanthocalanus sp.</td>
<td>300– 400</td>
</tr>
<tr>
<td>" norvegica</td>
<td>100–1,200</td>
<td>Euchirella carinata +</td>
<td>100– 400</td>
</tr>
<tr>
<td>" hibernica</td>
<td>400</td>
<td>" curticauda"</td>
<td>300</td>
</tr>
<tr>
<td>" grandis</td>
<td>700</td>
<td>Paranopogon</td>
<td>300</td>
</tr>
<tr>
<td>Haloptilus longicornis</td>
<td>100– 200</td>
<td>Longipedia coronata</td>
<td>300– 500</td>
</tr>
<tr>
<td>" acutifrons</td>
<td>200– 300</td>
<td>Anomalocera Patersoni</td>
<td>0– 375</td>
</tr>
<tr>
<td>Lucicutia flavicornis</td>
<td>200– 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" grandis</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaenna spinifera</td>
<td>100– 400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The depth in fathoms here given is only the extreme range above and below at which the species were taken.

† Young examples only at 200 fathoms.

‡ Young examples only at 100 fathoms.
Tables showing the depths at which the different species of Copepoda were taken in the Closing Net.

In the following tables j signifies young specimen. The temperatures at each of these stations will be published subsequently along with the salinities.

TABLE I.

<table>
<thead>
<tr>
<th>Faroe Channel Cold Area.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station F VII. 61° 1' N., 7° 42' W., -169 f.; August 13, 1903.</td>
</tr>
<tr>
<td>" F VIII. 60° 30' N., 7° 47' W., -547 f.; " 14 "</td>
</tr>
<tr>
<td>" F IX. 60° 1' N., 6° 4' W., -550 f.; " 17 "</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth in fathoms.</th>
<th>Closing net.</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>.</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>" hyperborens</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>Eucalanus elongatus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudocalanus elongatus</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhineclausus nasutus</td>
<td>.</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>" longa</td>
<td>.</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Åtideus armatus</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eucheta norvegica</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>Galidus pangen</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Temora longicornis</td>
<td>.</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pleuronema robusta</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calanus candidi</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lepothrix securifrons</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heterorhabdus norvegicus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scolecithrix minor</td>
<td>.</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Betinosoma atlantica</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oithona sp.</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oceoa sp.</td>
<td>.</td>
<td>×</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE II.

Between 60°-61° N. Stations F V, and F VI.

<table>
<thead>
<tr>
<th>Depth in fathoms.</th>
<th>Closing net.</th>
<th>0</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>.</td>
<td>-</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>" hyperborens</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>.</td>
<td>-</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>" longa</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
</tr>
<tr>
<td>Eucheta norvegica</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>× j</td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Candace norvegica</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>×</td>
</tr>
<tr>
<td>Oithona sp.</td>
<td>.</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
TABLE III.

Between 59°-60° N. Stations F III. and F IV.

<table>
<thead>
<tr>
<th>Depth in fathoms</th>
<th>Closing net.</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhincalanus nasutus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Megacalanus princeps</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ectinosoma atlantica</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pseudlectidius armatus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Faroea multiserrata</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"" longa</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"" Normani</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"" brevicanda</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heterorchabdis norvegicus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"" longicornis</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pleurodema robusta</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lucicellia flavicornis</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eucalana norvegica</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gaetanus armiger</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Candace norvegica</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anallophora magnus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Augaptus longicaudatus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"" magnus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parangaptus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spinocalanus magnus</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oithona sp.</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oncea sp.</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

TABLE IV.

Between 55° and 56°—Stations F I. and F II.

<table>
<thead>
<tr>
<th>Depth in fathoms</th>
<th>Closing net.</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Eucalanus elongatus</td>
<td>.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhincalanus nasutus</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ætidius armatus</td>
<td>.</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scolochlirix minor</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eucalana norvegica</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>j</td>
<td>x</td>
</tr>
<tr>
<td>Pleurodema robusta</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"" brevicanda</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Augaptus magnus</td>
<td>.</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oithona sp.</td>
<td>.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oncea sp.</td>
<td>.</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
TABLE V.

<table>
<thead>
<tr>
<th>Depth in fathoms</th>
<th>Closing net</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Eucalanus elongatus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rhinocalanus nasutus</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pseudocalanus parvus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pseudocalanus elongatus</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td><i>Ætidens armatus</i></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Scoloplos minutus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Spinocalanus magnus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Metridia heeueus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pseudoeuticidus armatus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Encheta norvegica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Heterorhabdus grandis</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ectinosoma atlantica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cudace norvegica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lucicentia flavidnors</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oithona sp.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oncea sp.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

TABLE VI.

<table>
<thead>
<tr>
<th>Depth in fathoms</th>
<th>Closing net</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mesocalanus tunica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rhinocalanus nasutus</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Eucalanus elongatus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pseudoeuticidus armatus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Encheta norvegica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Heterorhabdus grandis</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ectinosoma atlantica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cudace norvegica</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lucicentia flavidnors</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oithona sp.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Oncea sp.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Heterorhabdus norvegicus</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
TABLE VII.

<table>
<thead>
<tr>
<th>Depth in fathoms</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>54°-55° N.</td>
<td></td>
</tr>
<tr>
<td>E 12. 54° 00’ N., 12° 00’ W.</td>
<td></td>
</tr>
<tr>
<td>E 13. 54° 30’ N., 12° 00’ W.</td>
<td></td>
</tr>
</tbody>
</table>

Between 53°-54°:

<table>
<thead>
<tr>
<th>Stations E 10 and 11.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 10. 53° 00’ N., 11° 00’ W.</td>
</tr>
<tr>
<td>E 11. 53° 30’ N., 12° 00’ W.</td>
</tr>
</tbody>
</table>

Between 52°-53°:

<table>
<thead>
<tr>
<th>Stations E 8 and 9.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 8. 52° 00’ N., 12° 00’ W.</td>
</tr>
<tr>
<td>E 9. 52° 30’ N., 12° 00’ W.</td>
</tr>
</tbody>
</table>

Species

- Calanus finmarchicus
- Eucalanus elongatus
- Paracalanus parvus
- Metridia lucens
- Pseudonephrops norvegicus
- Longipedia coronata
- Euchirella curticauda
- Ctenocalanus vanus
- Calocalanus pavo
- Longipedia coronata

Notes

- Between 54°-55° N., Stations E 12 and 13.
- E 12. 54° 00’ N., 12° 00’ W. - 205 f.; July 9, 1903.
- E 13. 54° 30’ N., 12° 00’ W. - 1,608 f.; July 9, 1903.
<table>
<thead>
<tr>
<th>Table VIII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 51° and 52°—Stations E1, E2, E3, E4, E5, E6, E7.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth in fathoms.</th>
<th>Closing net,</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>700</th>
<th>800</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalanus elongatus</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erasus</td>
<td>x j x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhincalanus nasutus</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartia Clausii</td>
<td>x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectinosoma atlantica</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metridia lucens</td>
<td>x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>breviceps</td>
<td>x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normani</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterorhabdus vipera</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>loxicopterus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>norvegicus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abyssalis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucicutia flavicornis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradytidus armatus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllopus bidentatus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucicutia grandis</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomalocera Patersoni</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectides armatus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudedides armatus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faroella</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucheta norvegica</td>
<td>x j x j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acuta</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaeoidea spinifera</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloptilus longicornis</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acutifrons</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spondocalanus elongatus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophothrix frontalis</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinocalanus magnus</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abyssalis</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augaptilus gibbus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>loxicoptera</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>magnus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolocithrix minor</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undeucheta major</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minor</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaetanus armiger</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caudata</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaltheorhina magna</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthocalanus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atlanticus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ægithus atlanticus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candace norvegica</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaltheorhina securifrons</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurorhina robusta</td>
<td>x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthoecalanus cristatus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megacalanus</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncea sp.</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oithona sp.</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longipedia coronata</td>
<td>x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW SERIES.—VOL. VII. NO 1.
EXPLANATION OF PLATE IX.

1. Megacalanus, first foot, basal joints.
2. " third foot.
3. Eucalanus atlanticus, ♂, fifth feet.
4. " ♂, mandible.
5. Scolecithrix similis, ♀, fifth foot.
7. Gaetanus major, ♀, abdomen and last thoracic segment.
8. " ♀, first foot.
9. Ctenocalanus vanus, ♂, fifth feet.
10. Candace rotunda, ♀, dorsal view.
11. " ♀, fifth foot.
12. Lophothrix securifrons, ♀, dorsal view.
15. " ♀, head.
16. Phyllopus bidentatus, ♂, fifth feet.
17. Xanthocalanus subagilis, ♀, fifth foot.
18. " cristatus, ♀, fifth foot.
20. Gaetanus caudani, ♀, dorsal view.
22. " ♀, first foot.
23. Chiridius Vanhöffeni, ♂, lateral view.
24. Xanthocalanus atlanticus, ♀, fifth foot.
26. Faroella multiserrata, ♀, dorsal view.
27. " ♀, posterior foot-jaw.
28. " ♀, terminal view of one of the feet.
29. Pseudasetideus armatus, ♀, dorsal view.
30. " ♀, first foot.
31. " ♂, fifth feet.
32. Xanthocalanus subagilis, ♂, fifth feet. 32a. Terminal segment.
33. " atlanticus, ♀, lateral view.
34. Heterorhabdus longicornis, ♂, fifth feet.
35 and 35a. Lucicutia magna, ♂, fifth feet.
36. Heterorhabdus grandis, ♀, fifth foot.
37. Lucicutia grandis, ♀, first foot.
38. " ♀, fifth foot.
40. " ♀, portion of anterior antenna.
41. Lophothrix frontalis, ♀, head.
42. " ♀, fifth foot.
43. Gaidius pungens, ♂, fifth feet.
44. Paraugaptilus Buchani, ♀, abdomen.
45. " ♀, fifth feet.
Marine Biological Association of the United Kingdom.

LIST OF Governors, Founders, and Members.

1st MARCH, 1904.

I.—Governors.

The British Association for the Advancement of Science, Burlington House, W. ... £500
The University of Cambridge .. £500
The Worshipful Company of Clothworkers, 41, Mincing Lane, E.C. £500
The Worshipful Company of Fishmongers, London Bridge £600
The University of Oxford .. £500
Bayly, Robert (the late) ... £1000
Bayly, John (the late) ... £900
Thomasson, J. P., Woodside, near Bolton £970

II.—Founders.

* Member of Council. † Vice-President. ‡ President.

1884 The Corporation of the City of London £210
1884 The Worshipful Company of Mercers, Mercers’ Hall, Cheapside £241 5s.
1884 The Worshipful Company of Goldsmiths, Goldsmiths’ Hall, E.C. £100
1884 The Royal Microscopical Society, 20, Hanover Square, W. £100
1884 The Royal Society, Burlington House, Piccadilly, W. £350
1884 The Zoological Society, 3, Hanover Square, W. £100
1884 Bulteel, Thos., Radford, Plymouth £100
1884 Burdett-Coutts, W. L. A. Bartlett, 1, Stralton Street, Piccadilly, W. ... £100
1884 Crisp, Frank, L.L.B., B.A., Treas. Linn. Soc., 17, Throgmorton Avenue, E.C. ... £100
1884 Daubeney, Captain Giles A., Les Colonades, Montreux, Switzerland £100
1884 Eddy, J. Ray, The Grange, Carlton, Skipton £100
1884 Gassiot, John P. (the late) ... £100
£1884 Lankester, Prof. E. Ray, F.R.S., British Museum (Natural History), South Kensington, S.W. ... £100
1884 The Rt. Hon. Lord Masham, Swinton Park, Masham, Yorkshire £100
1884 Moseley, Prof. H. N., F.R.S. (the late) £100
List of Governors, Founders, and Members.

1884 The Rt. Hon. Lord Avebury, F.R.S., *High Elms, Bromley, Kent* £100
1884 Poulton, Prof. Edward B., M.A., F.R.S., *Wykeham House, Oxford* £100
1884 Rommues, G. J., LL.D., F.R.S. (the late) £100
1884 Worthington, James (the late) £100
1885 Derby, the late Earl of £100

*1887 Wealden, Prof. W. F. R., F.R.S., *Merton Lex, Oxford* £100
1888 Bury, Henry, M.A., *Mayfield House, Furnham, Surrey* £100
1888 The Worshipful Company of Drapers, *Drapers’ Hall, E.C.* £315
1889 The Worshipful Company of Grocers, *Poultry, E.C.* £120

†1889 Thompson, Sir Henry, Bart., *35, Wimpole Street, W.* £110
1889 Revelstoke, The late Lord £100
1900 Riches, T. H., B.A., *Kitwells, Shoeburyness, Essex* £230
*1900 Bidder, G. P., *Cavendish Corner, Hills Road, Cambridge* £300
1902 Gurney, R., *Longmoor Point, Catfield, Great Yarmouth* £100

III.—Members.

Ann. signifies that the Member is liable to an Annual Subscription of One Guinea.

C. signifies that he has paid a Composition Fee of Fifteen Guineas in lieu of Annual Subscription.

1884 Alger, W. H., *8, The Esplanade, Plymouth* C.

1892 Assheton, R., M.A., *Riversdale, Granchester, Cambridge* £20

1884 Balfour, Prof. Bayley, F.R.S., *Royal Botanic Gardens, Edinburgh* C.
1884 Bayliss, W. Maddock, D.Sc., *St. Cuthberts, West Heath Road, Hampstead* Ann.
1884 Bayly, Miss, *Seven Trees, Plymouth* £50
1884 Bayly, Miss Anna, *Seven Trees, Plymouth* £50
1885 Beck, Conrad, 68, *Cornhill, E.C.* C.

1884 Beddington, Alfred H., 8, *Cornwall Terrace, Regent’s Park, N.W.* C.
1897 Bedford, Mrs., *326, Camden Road, London, N.* Ann.
1895 Bridge, Prof. T. W., D.Sc., *University of Birmingham* Ann.
1886 Brookshank, Mrs. M., *Leigh Place, Gaitstone, Surrey* C.
1884 Brown, Arthur W. W., *62, Carlisle Mansions, Carlisle Place, London, S.W.* C.

1887 Caldwell, W. H. ... C.
1884 Clay, Dr. R. H., *Windsor Villas, Plymouth* ... Ann.
1885 Clerk, Major-General H., F.R.S., *"Mountfield," 5, Upper Maze Hill, St. Leonards-on-Sea, Sussex* ... £21
1886 Coates and Co., *Southside Street, Plymouth* ... C.
1885 Collier Bros., *Old Town Street, Plymouth* ... C.

*1885 Darwin, Francis, F.R.S., *Wychfield, Cambridge* C.
1885 Darwin, W. E., *Rednmount, Bessett, Southampton* £20
1890 Driesch, Hans, Ph.D., *Philosophenweg 3, Heidelberg, Germany* C.
1884 Dunning, J. W., *4, Talbot Square, W.* ... £26 5s.

1891 Ellis, Hon. Evelyn, *Rosenais, Datchet, Windsor* C.
1884 Evans, Sir John, D.C.L., F.R.S., *Nash Mills, Hemel Hempstead* £20
1885 Ewart, Prof. J. Cossar, M.D., *University, Edinburgh* £25

1884 Fison, Frederick W., M.P., *61, Pont Street, London, S.W.* C.

1884 Fox, George H., *Wodehouse Place, Falmouth* ... Ann.
1886 Freeman, F. F., *Abbotsfield, Twinstead, S. Devon* C.
1884 Fry, George, F.R.S., *Carlow Brua, Berwick-on-Tweed* £21
1884 Fryer, Charles E., *Board of Trade, S.W.* ... Ann.

LIST OF GOVERNORS, FOUNDERS, AND MEMBERS.

1885 Gaskell, W. H., F.R.S., The Uplands, Shelford, Cambridge C.
1899 Gardiner, Dr. Edw. G., Woods Hole, Mass., U.S.A. C.
1901 Giles, Col. G. M., Rugby, Mainwaring, Plymouth C.
1884 Grove, E., Norlington, Preston, Brighton Ann.
1899 Guinness, Hon. Rupert, Eldeden, Thetford £25 15s.
1884 Günther, Dr. Albert, F.R.S., 2, Lichfield Road, Kew Gardens Ann.
1900 Garnsey, E., Sprowston Hall, Norwich Ann.

1884 Halliburton, Prof. W. D., M.D., F.R.S., Church Cottage, 17, Marylebone Road, London, W. Ann.
1884 Hannah, Robert, 82, Addison Road, Kensington, W. C.
*1885 Harmer, S. F., D.Sc., F.R.S., King's College, Cambridge C.
1889 Harvey, T. H., Cattedown, Plymouth Ann.
1888 Haseldown, J. E., 3, Lennox Place, Brighton C.
1884 Haslam, Miss E. Rosa, Ravenswood, Bolton £20
1884 Heape, Walter, Heywood, Chaucer Road, Cambridge C.
*1884 Herdman, Prof. W. A., F.R.S., University College, Liverpool. Ann.
1884 Herschel, Col. J., R.E., F.R.S., Observatory House, Slough, Berks. C.
1889 Heywood, Mrs. E. S., Light Oaks, Manchester C.
*1887 Howes, Prof. G. Bond, F.R.S., F.L.S., Royal College of Science, South Kensington Ann.

1891 Indian Museum, Calcutta .. Ann.
1893 Jago, Edward, Coldrenick, Liskeard, Cornwall Ann.
1887 Jago-Trelawny, Major-Gen., F.R.G.S., Coldrenick, Liskeard C.
1900 Johnsen, Hans, Norwegian Fisheries Commissioner, Hull Ann.
1897 Lanchester, W. F., B.A., The Knott, Lady Margaret Road, Cambridge C.
1885 Langley, Prof. J. N., F.R.S., Trinity College, Cambridge C.
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Title</th>
<th>Address</th>
<th>City</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1885</td>
<td>Macalister, Prof. A., F.R.S.</td>
<td>St. John's College</td>
<td>Cambridge</td>
<td></td>
<td>Ann.</td>
</tr>
<tr>
<td>1885</td>
<td>MacAndrew, James J.</td>
<td>Lukefield, Icybridge, South Devon</td>
<td></td>
<td></td>
<td>Ann.</td>
</tr>
<tr>
<td>1900</td>
<td>Macfie, J. W. Scott</td>
<td>Roxton Hall, Chester</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Mackrell, John</td>
<td>High Trees, Clapham Common, S.W.</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td>Major, Surgeon H. G. T.</td>
<td>Beech House Road, Croydon</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Makovski, Stanislaus</td>
<td>Fairhwaern, Redhill</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Marr, J. E., M.A., F.R.S.</td>
<td>St. John's College</td>
<td>Cambridge</td>
<td></td>
<td>C.</td>
</tr>
<tr>
<td>1884</td>
<td>McIntosh, Prof. W. C., F.R.S.</td>
<td>2, Abbotsford Crescent, St. Andrews, N.B.</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Michael, Albert D.</td>
<td>Cadogan Mansions, Sloane Square, S.W.</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td>Minchin, Prof. E. A.</td>
<td>University College, London</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Mocatta, F. H., 9</td>
<td>Connaught Place, W.</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>Mond, Ludwig, F.R.S.</td>
<td>20, Avenue Road, Regent's Park, N.W.</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Morgan, Prof. C. Lloyd</td>
<td>University College, Bristol</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Newton, Prof. Alfred, M.A., F.R.S.</td>
<td>Magdalen College, Cambridge</td>
<td>£20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Phillips, Chas. D. F., M.D.</td>
<td>10, Henrietta Street, Carendish Square, W. C.</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Phipson, Mrs. Dunak Bungalow, Nasik Road, Deccan, India</td>
<td>Ann.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Pritchard, Prof. Urban</td>
<td>26, Wimpole Street, W.</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Pye-Smith, P. H., M.D.</td>
<td>48, Brook Street, W.</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td>Quintin, St. W. H., Scampstone Hall, Rillington, Yorks</td>
<td>Ann.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Ralli, Mrs. Stephen</td>
<td></td>
<td>£30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Ransom, W. B.</td>
<td>The Pavement, Nottingham</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>Robinson, Miss M.</td>
<td>University College, London, W.C.</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>Rüffer, M. A., M.D., Consul Sanitaire, Maritime et Quarantenaire, Alexandria, Egypt</td>
<td>Ann.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>Sandeman, H. D., 4</td>
<td>Elliot Terrace, Plymouth</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>Scharff, Robert F., Ph.D.</td>
<td>Science and Art Museum, Dublin</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Scater, W. L.</td>
<td>The Museum, Cape Town</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Scott, D. H., M.A., Ph.D., F.R.S.</td>
<td>Old Palace, Richmond, Surrey</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>Scott, S. D.</td>
<td>2, St. Luke's Villas, College Road, Cheltenham</td>
<td>Ann.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Sedgwick, A., M.A., F.R.S.</td>
<td>Trinity College, Cambridge</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>Serpell, E. W., 19</td>
<td>Hill Park Crescent, Plymouth</td>
<td>£50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Address</td>
<td>Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Shipley, Arthur E., M.A.</td>
<td>Christ's College, Cambridge</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>Sinclair, F. C.</td>
<td>Friday Hill, Chingford, Essex</td>
<td>C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td>Sinclair, William F., 102, Cheyne Walk, Chelsea, S.W.</td>
<td>C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>Sykes, W. R., 4, 1897, Grey's Inn Place, Gray's Inn, London</td>
<td>C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>Vaughan, Henry, 325, High Holborn, London</td>
<td>C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td>Worth, R. H., 42, George Street, Plymouth</td>
<td>Ann.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV.—Associate Members.

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Address</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>Bignell, G. C., F.E.S.</td>
<td>The Fens, Home Park Road, Saltash, Cornwall</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Caux, J. W., de</td>
<td>Great Yarmouth</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Dannevig, Capt. G. M.</td>
<td>Arendal, Norway</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>Donnison, F.</td>
<td>Deep Sea Fishing Co., Boston</td>
<td></td>
</tr>
<tr>
<td>1904</td>
<td>Edwards, W. C., Mercantile Marine Office, St. Andrew's Dock, Hull</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1904</td>
<td>Freeth, A. J.</td>
<td>Fish Quay, North Shields</td>
<td></td>
</tr>
</tbody>
</table>
1904 Hurrell, H. E., 25, Regent Street, Yarmouth.
1889 Olsen, O. T., F.L.S., F.R.G.S., Fish Dock Road, Great Grimsby.
1904 Patterson, Arthur, Ibis House, Great Yarmouth.
1889 Ridge, B. J., Newlyn, Penzance.
1901 Sanders, W. J., St. Elmo, Brixham.
1889 Shrubsole, W. H., 19, Vancouver Road, Catford, London.
1889 Sinel, Joseph, 2, Peel Villas, Cleveland Road, Jersey.
1890 Spencer, R. L., L. and N.W. Depot, Guernsey.
1890 Wells, W., The Aquarium, Brighton.
PUBLICATIONS OF THE ASSOCIATION.

Old Series.
No. 1, August, 1887 (only a few copies left, reserved for Libraries).
No. 2, August, 1888. Price 1s.

New Series (Royal 8vo).
Volume I., 1889-90, 472 pp., 28 plates.
Volume II., 1891-2, 410 pp., 14 plates.
Volume III., 1893-4, xxxviii. and 458 pp., 5 plates and 25 woodcuts.
Volume V., 1897-9, 550 pp. and 16 plates.
Volume VI., 1899-1903, 676 pp., 3 charts and 7 plates.
Volume VII., No. 1.
Separate numbers (generally 4 to one volume), in wrappers, 3s. 6d.; to Members, 2s. 8d.

London Agents: Messrs. Dulau & Co., 37, Soho Square, W.

Cloth 4to, 150 pp., 18 plates (12 coloured).

A TREATISE ON THE COMMON SOLE.

by
J. T. CUNNINGHAM, M.A., F.R.S.E.,
Late Fellow of University College, Oxford; Naturalist to the Association.

Price to Members, 20s.; to Non-Members, 25s.

Medium 8vo, 368 pages. 159 Illustrations and two Maps. Price 7s. 6d. net.
(Macmillan and Co., London.)

THE NATURAL HISTORY OF THE MARKETABLE MARINE FISHES OF THE BRITISH ISLANDS.

Prepared expressly for the use of those interested in the Sea-fishing Industries,

by
J. T. CUNNINGHAM, M.A.,
FORMERLY FELLOW OF UNIVERSITY COLLEGE, OXFORD;
NATURALIST ON THE STAFF OF THE MARINE BIOLOGICAL ASSOCIATION.

With Preface by
E. RAY LANKESTER, M.A., LL.D., F.R.S.,
PROFESSOR OF COMPARATIVE ANATOMY IN THE UNIVERSITY OF OXFORD.
PUBLICATIONS OF THE INTERNATIONAL COUNCIL FOR THE STUDY OF THE SEA.

BULLETIN DES RÉSULTATS ACQUIS PENDANT LES COURSES PÉRIODIQUES.

Published Quarterly. Price per Volume of Four Numbers, 18 Kroner (£1).

RAPPORTS ET PROCÈS-VERBAUX DES RÉUNIONS.

PUBLICATIONS DE CIRCONSTANCE.

No. 3. "Die Literatur der zehn wichtigsten Nutzfische der Nordsee." In monographischer Darstellung. 112 s., 10 T; August, 1903. Kr. 3.

"The Literature of the Ten Principal Food Fishes of the North Sea." In the form of compendious monographs. 108 pp., 10 Pl.; August, 1903. Kr. 3.

No. 6. **Harry M. Kyle**: "On a New Form of Trawl Net, designed to fish in midwater as well as on the ground." Preliminary notice. 8 pp.; November, 1903. Kr. 0.50.

—— —— "A New Mark for Fish."

Published on behalf of the International Council

by

ANDR. FRED. HöST ET FILS, COPENHAGEN.
OBJECTS

OF THE

Marine Biological Association of the United Kingdom.

THE ASSOCIATION was founded at a Meeting called for the purpose in March, 1881, and held in the Rooms of the Royal Society of London.

The late Professor Huxley, at that time President of the Royal Society, took the chair, and amongst the speakers in support of the project were the late Duke of Argyll, the late Sir Lyon Playfair, Lord Averbury, Sir John Hooker, the late Dr. Carpenter, Dr. Günther, the late Lord Dalhousie, the late Professor Moseley, the late Mr. Romanes, and Professor Lankester.

The Association owes its existence and its present satisfactory condition to a combination of scientific naturalists, and of gentlemen who, from philanthropic or practical reasons, are specially interested in the great sea fisheries of the United Kingdom. It is universally admitted that our knowledge of the habits and conditions of life of sea fishes is very small, and insufficient to enable either the practical fisherman or the Legislature to take measures calculated to ensure to the country the greatest return from the "harvest of the sea." Naturalists are, on the other hand, anxious to push further our knowledge of marine life and its conditions. Hence the Association has erected at Plymouth a thoroughly efficient Laboratory, where naturalists may study the history of marine animals and plants in general, and where, in particular, researches on food-fishes and molluscs may be carried out with the best appliances.

The Laboratory and its fittings were completed in June, 1888, at a cost of some £12,000. Since that time investigations, practical and scientific, have been constantly pursued at Plymouth. Practical investigations upon matters connected with sea-fishing are carried on under the direction of the Council; in addition, naturalists from England and from abroad have come to the Laboratory, to carry on their own independent researches, and have made valuable additions to zoological and botanical science, at the expense of a small rent for the use of a working table in the Laboratory and other appliances. The number of naturalists who can be employed by the Association in special investigations on fishery questions, and definitely retained for the purpose of carrying on those researches throughout the year, must depend on the funds subscribed by private individuals and public bodies for the purpose. The first charges on the revenue of the Association are the working of the sea-water circulation in the tanks, stocking the tanks with fish and feeding the latter, the payment of servants and fishermen, the hire and maintenance of fishing-boats, and the salary of the Resident Director and Staff. At the commencement of this number will be found the names of the gentlemen on the staff.

In the summer of 1902 the Association was commissioned by His Majesty's Government to carry out in the southern British area the scheme of International Fishery Investigations adopted by the Conference of European Powers which met at Christiania in 1901. In connection with this work a laboratory has been opened at Lowestoft.

The purpose of the Association is to aid at the same time both science and industry. It is national in character and constitution, and its affairs are conducted by a representative Council, by an Honorary Secretary and an Honorary Treasurer, without any charge upon its funds, so that the whole of the subscriptions and donations received are devoted absolutely to the support of the Laboratory and the prosecution of researches by aid of its appliances. The reader is referred to page 4 of the Cover for information as to membership of the Association.
CONTENTS OF NEW SERIES, Vol. VII., No. 1.

1. THE PERIODIC GROWTH OF SCALES IN GADIDÆ AS AN INDEX OF AGE.
By J. STUART THOMSON, F.L.S. With Plates I.-VIII., and one
Figure in the Text 1

2. NOTES ON THE COPEPODA OF THE NORTH ATLANTIC SEA AND THE
FAROE CHANNEL. By R. NORRIS WOLFDEN, M.D., F.Z.S. With
Plate IX., and one Figure in the Text 110

3. LIST OF GOVERNORS, FOUNDERS, AND MEMBERS. 1st March, 1904 . 147

NOTICE.

The Council of the Marine Biological Association wish it to be understood that
they do not accept responsibility for statements published in this Journal,
excepting when those statements are contained in an official report of the Council.

TERMS OF MEMBERSHIP.

<table>
<thead>
<tr>
<th></th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Members</td>
<td></td>
<td></td>
<td>per annum.</td>
</tr>
<tr>
<td>Life Members</td>
<td></td>
<td></td>
<td>Composition Fee.</td>
</tr>
<tr>
<td>Founders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Members of the Association have the following rights and privileges: they elect
annually the Officers and Council; they receive the Journal of the Association free
by post; they are admitted to view the Laboratory at Plymouth, and may introduce
friends with them; they have the first claim to rent a place in the Laboratory for
research, with use of tanks, boats, &c.; and have access to the books in the Library
at Plymouth.

All correspondence should be addressed to the Director, The Laboratory,
Plymouth.
Journal of the Marine Biological Association of the United Kingdom.

The Plymouth Laboratory.

Printed for the Marine Biological Association by W. Brendon & Son, and Published by the Association at its Offices on the Citadel Hill.

Sent free by post to all members of the Marine Biological Association:
Annual subscription for membership, one guinea.

Agents in London:—Messrs. Dulau & Co., 37, Soho Square, W.
PATRON.
HIS MAJESTY THE KING.

OFFICERS AND COUNCIL

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.
The Duke of Abercorn, K.G., C.B.
The Earl of St. Germans.
The Earl of Morley.
The Earl of Ducie, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth, P.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.
The Right Hon. Joseph Chamberlain, M.P.

Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., M.P., F.R.S.
A. C. L. Günther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.
Admiral Sir Erasmus Ommeney, K.C.B., F.R.S.
Rear-Admiral Sir W. J. L. Wharton, K.C.B., F.R.S.

COUNCIL.

Elected Members.
G. L. Alward, Esq.
G. P. Bidder, Esq.
G. C. Bourne, Esq.
F. Darwin, Esq., F.R.S.
G. Herbert Fowler, Esq.
S. F. Harmer, Esq., F.R.S.
Prof. W. A. Herdman, F.R.S.
Prof. G. B. Howes, F.R.S.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq.
Prof. E. A. Minchin.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Governors.
The Prime Warden of the Fishmongers' Company.
E. L. Beckwith, Esq. (Fishmongers' Company).
Prof. Sir J. Burdon Sanderson, Bart., F.R.S. (Oxford University).
Prof. W. F. R. Weldon, F.R.S.
(British Association for the Advancement of Science).

Hon. Treasurer.
J. A. Travers, Esq., Tortington, Arundel.

Hon. Secretary.
E. J. Allen, Esq., The Laboratory, Citadel Hill, Plymouth.

PERMANENT STAFF.

Director—E. J. Allen, Esq., B.Sc.
Naturalist in charge of Fishery Investigations.
W. Garstang, Esq., M.A.
Assistant Naturalist—S. Pace, Esq.

Assistant Naturalists for the International Investigations—
W. Wallace, Esq., B.Sc.
J. O. Borkley, Esq., M.A.
R. A. Todd, Esq., B.Sc.
L. H. Gough, Esq., P.D.

Hydrographer (International Investigations)—D. J. Matthews, Esq.
Plymouth Marine Invertebrate Fauna

Being Notes of the Local Distribution of Species occurring in the Neighbourhood.

(With one Chart.)

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction .</td>
</tr>
<tr>
<td>Description of Grounds .</td>
</tr>
<tr>
<td>Alphabetical Index to Grounds</td>
</tr>
<tr>
<td>Explanation of Abbreviations, etc.</td>
</tr>
<tr>
<td>List of the Species:—</td>
</tr>
<tr>
<td>Foraminifera .</td>
</tr>
<tr>
<td>Foram. .</td>
</tr>
<tr>
<td>Anthomedusa .</td>
</tr>
<tr>
<td>Leptomedusa .</td>
</tr>
<tr>
<td>Trachymedusa .</td>
</tr>
<tr>
<td>Siphonophora .</td>
</tr>
<tr>
<td>Stauromedusa .</td>
</tr>
<tr>
<td>Discomedusa .</td>
</tr>
<tr>
<td>Alcyonaria .</td>
</tr>
<tr>
<td>Zoantharia .</td>
</tr>
<tr>
<td>Ctenophora .</td>
</tr>
<tr>
<td>Echinodermata .</td>
</tr>
<tr>
<td>Turbellaria .</td>
</tr>
<tr>
<td>Nemertini .</td>
</tr>
<tr>
<td>Archiannelida .</td>
</tr>
<tr>
<td>Polyemebata .</td>
</tr>
<tr>
<td>Myzostomaria .</td>
</tr>
<tr>
<td>Oligochaeta .</td>
</tr>
<tr>
<td>Gephyrea .</td>
</tr>
<tr>
<td>Hirudinea .</td>
</tr>
<tr>
<td>233</td>
</tr>
</tbody>
</table>

INTRODUCTION.

AFTER the publication in this Journal in 1899 of the paper "On the Fauna and Bottom-Deposits near the Thirty-Fathom Line from the Eddystone Grounds to Start Point" (Journ. Mar. Biol. Assoc., vol. v. pp. 365–542), observations were undertaken for the purpose of pre-

* It is hoped that main references to this paper may be made under "Marine Biological Association," and not under an author's name.—Ed.

NEW SERIES.—VOL. VII. NO. 2. DEC. 1901.
paring a similar account of the fauna of the inshore grounds in the neighbourhood of Plymouth. As the work proceeded, however, it was realised that, owing to the great damage which has been caused to the grounds within easy reach of the harbour by the constant discharge of mud and refuse from barges working in connection with the new dockyard extension at Devonport and other harbour works, any attempt to prepare a consecutive account of the fauna and bottom-deposits over the whole area, such as was given for the grounds from Eddystone to Start, would be a matter of extreme difficulty and of little use.

The present report has therefore been arranged in a somewhat different way. A general account is first given of certain typical areas, their physical conditions are briefly described, and a short list is added of the more common and characteristic species which are found in them. This description of the grounds is followed by a general list of the species which have been recorded in the whole area investigated, and the local distribution of each, so far as it is shown from the Laboratory records, is given. The information supplied in the two sections of the report when combined furnishes for each species a general idea of the conditions under which it lives.

Some explanation is necessary as to the scope of the general list. It is not intended to be a complete list of all species which have been recorded from the Plymouth district,* but only of such as have been found in recent years as a result of the work carried on at the Plymouth Laboratory and for which the exact locality of capture is known. All records which appeared to be in any way questionable have been deliberately omitted. Omissions, which in some groups especially are known to be exceedingly numerous, are easily made good at a later date, whilst false records are less readily corrected.

In all cases the initials of the person or persons responsible for a record have been given, but it must not be supposed that the persons so indicated were the first or only ones to find the species in the locality indicated. During the course of preparing this paper for the press it has been frequently necessary, especially in the case of the common and widely distributed species, to frame a general note expressing facts which have for long been well known in the Laboratory, but in order to fix responsibility such notes have been followed by the initials of the person by whom they were framed. In editing the notes, care has been taken that the collection of records for each species shall, as far as possible, give a not incorrect indication of the abundance and distribution of the species in the Plymouth district.

Many of the records have already been printed in the Journal of the Association and elsewhere. It has not, however, been thought necessary in such cases to give detailed references, as a classified list of papers dealing with work done in the Laboratory has already been published (\textit{Journ. Mar. Biol. Assoc.}, vol. vi. p. 115).

As regards the question of nomenclature, whilst the names used are in general those which it is thought will be finally adopted by zoologists, we have not attached undue importance to this aspect of the matter, but by supplying in each case one reference to a good description (preference being given to one accompanied by a figure or to one in a recognised monograph of the group), we have endeavoured to leave no room for doubt as to the precise species which the name is intended to indicate.

The vast amount of detailed work which the preparation of this paper has entailed has been carried out chiefly by Mr. R. A. Todd and by Mr. S. Pace. A large amount of preliminary work in bringing the records together was carried out by Mr. Todd. The whole, excepting Foraminifera and Worms, has been critically reviewed, extended, and prepared for the press by Mr. Pace, who has also paid special attention to the nomenclature and references employed.

Each group when completed has been submitted for critical examination to one or more specialists, to whom, as well as to the authors of the records, the best thanks of the Association are due for the help given.

Taking the groups in the order in which they are printed, the following notes as to the relative completeness of the lists, and as to those who have chiefly assisted in their preparation, may be of service.

\textbf{Foraminifera.} Our records for this group are almost all due to Mr. R. H. Worth, who has also arranged the list for publication. It has been submitted to Mr. J. J. Lister, who has made some valuable additions.

\textbf{Porifera.} The list is a very imperfect one, many common species not having been identified and recorded. The records that we have are chiefly due to Prof. E. A. Minchin and Mr. G. P. Bidder, both of whom have assisted in the revision.

\textbf{Hydrozoa.} Most of the species which occur at all frequently are believed to have been included. The lists have all been revised by Mr. E. T. Browne, to whom we are indebted for many additions and suggestions.

\textbf{Alcyonaria.} Probably gives all the local species.

\textbf{Zoantharia.} An incomplete list, no specialist on the group having worked at Plymouth.

\textbf{Ctenophora.} The only frequent species are included, but the number of records is not large.
Echinoderma. Mr. Pace has devoted particular attention to this group, and the list given is an almost complete one, except for the Holothuria.

Turbellaria. The records are almost all derived from Dr. F. W. Gamble’s list published in this Journal (vol. iii. p. 30), and has been submitted to Dr. Gamble and Dr. E. G. Gardiner.

Nemertini. The list is based on that published in this Journal (vol. iii. p. 1) by Mr. T. H. Riches. It has been revised and added to by Mr. Riches, Mr. R. C. Punnett, and Mr. W. I. Beaumont.

Polychaeta, Archiannelida. The majority of the records are by Dr. E. J. Allen, by whom the list has been prepared. It is believed to be fairly complete for species which occur at all frequently, excepting in the families Syllidae and Maldanidae.

The list of Polynoidae is based on that published by Mr. T. V. Hodgson in this Journal (vol. vi. p. 218).

Myzostomaria, Gephyrea, Hirudinea, Oligochaeta, Chaetognatha. The lists of these groups are known to be incomplete.

Crustacea. The list of Branchiopoda is probably complete, that of the Ostracoda contains only a few records kindly supplied by the Rev. Dr. A. M. Norman, of which no account of the local distribution can be given, whilst that of the Copepoda is confined to species for which Plymouth records have already been published by Mr. G. C. Bourne (Journ. Mar. Biol. Assoc., N.S., i. p. 144) and by Prof. P. T. Cleve (Svenska Akad. Handl., vol. xxxiv., No. 2; Stockholm, 1900, etc.). The parasitic Copepoda recorded by Dr. Bassett-Smith as occurring at Plymouth have been omitted, as they were probably not found upon fish caught within the area dealt with in this paper. The list of Cirripedia is fairly complete.

The Amphipoda and Isopoda are incomplete as regards the smaller forms, and do not contain records by anyone who has worked exhaustively at the groups in this district. Cumacea are also incomplete. The Schizopoda, the account of which has been prepared by Mr. W. I. Beaumont, probably includes all the species which occur in any abundance.

The Macrura and Brachiura are fairly complete.

Pycnogonida have not been revised by a specialist, and the list is imperfect.

Bryozoa. The list has been submitted to Dr. S. F. Harmer, who has added many records.

Mollusca. The lists, which are chiefly based on the work of Mr. Todd and Mr. Pace, include all the more prominent forms, but are incomplete as regards the smaller and more critical species. The Tectibranchiata have been revised by Mr. W. I. Beaumont.
Tunicata. The account is chiefly based upon the work of Mr. W. Garstang, but is by no means complete, as many of his records could not be made available in time for publication.

The description of the grounds has been prepared by Dr. E. J. Allen, with the assistance of Mr. S. Pace.

An alphabetical index of the grounds will be found below, and a list of all those zoologists by whom records have been made on p. 172.

E. J. A.

DESCRIPTION OF GROUNDS.

ALPHABETICAL INDEX.

<table>
<thead>
<tr>
<th>Grounds</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia Shoal</td>
<td>164</td>
</tr>
<tr>
<td>Batten (shore)</td>
<td>162</td>
</tr>
<tr>
<td>Breakwater</td>
<td>163</td>
</tr>
<tr>
<td>Cattewater</td>
<td>165</td>
</tr>
<tr>
<td>Cawsand Bay</td>
<td>168</td>
</tr>
<tr>
<td>Drake’s Island</td>
<td>161</td>
</tr>
<tr>
<td>Duke Rock</td>
<td>165</td>
</tr>
<tr>
<td>Eddystone Grounds</td>
<td>172</td>
</tr>
<tr>
<td>Laboratory (Rocks below)</td>
<td>162</td>
</tr>
<tr>
<td>Looe-Eddystone Grounds</td>
<td>172</td>
</tr>
<tr>
<td>Mewstone ‘Amphitoeus’ Ground</td>
<td>170</td>
</tr>
<tr>
<td>‚ ‘Echinoderma’ Ground</td>
<td>170</td>
</tr>
<tr>
<td>‚ Fine Sand Ground</td>
<td>170</td>
</tr>
<tr>
<td>‚ Ledge</td>
<td>169</td>
</tr>
<tr>
<td>‚ Shell Gravel</td>
<td>169</td>
</tr>
<tr>
<td>Millbay Channel</td>
<td>164</td>
</tr>
<tr>
<td>Mount Edgecombe (shore)</td>
<td>161</td>
</tr>
<tr>
<td>Queen’s Ground</td>
<td>165</td>
</tr>
<tr>
<td>Rame-Eddystone Grounds</td>
<td>171</td>
</tr>
<tr>
<td>Remy Rocks</td>
<td>168</td>
</tr>
<tr>
<td>Rum Bay</td>
<td>160</td>
</tr>
<tr>
<td>Sound (Plymouth) shores</td>
<td>160</td>
</tr>
<tr>
<td>‚ dredging and trawling grounds</td>
<td>164</td>
</tr>
<tr>
<td>‚ ‘trawling ground’</td>
<td>169</td>
</tr>
<tr>
<td>‚ Yealm Shores</td>
<td>166</td>
</tr>
<tr>
<td>‚ dredging and trawling grounds</td>
<td>166</td>
</tr>
</tbody>
</table>

The area dealt with in this report extends from the shore to a depth of from 30 to 35 fathoms and may be considered as limited on the seaward side by a line running westwards from Bolt Head, passing a little outside the Eddystone Rocks and Hand Deeps, and then drawing northwards and meeting the coast at Looe. The length of such a line is about 35 miles, and the greatest breadth of the sea area included within it (from Plymouth to beyond the Eddystone) is from 14 to 15 miles. Roughly speaking, this area may be said to lie within a radius of 15 miles from the Laboratory. The area contains a number of typical tidal rivers (Hanoaze, Cattewater, Yealm R.), the large sheets of enclosed and sheltered sea represented by Plymouth Sound and the mouth of the Yealm, and a considerable stretch of coastal water exposed to the full force of the waves of the English Channel.

Before giving the detailed list of the fauna inhabiting the area, it will be convenient to review the general conditions prevailing in its different parts. In this way it is hoped that some conception, even if it be an imperfect one, of the nature of the influences which limit the distribution of the different species may be formed by those having no personal knowledge of the neighbourhood.
PLYMOUTH SOUND AND THE ADJACENT TIDAL RIVERS.

Plymouth Sound must be regarded as an enclosed and sheltered arm of the sea, into which the two tidal rivers, the Tamar (with its estuary the Hamoaze) on the west, and the Plym (with its estuary the Cattewater) on the east, discharge their waters. The fauna and the flora of the Sound, in their general nature, are marine rather than estuarine. The typical estuarine species of the Hamoaze and Cattewater occupy no predominant place in their composition, and the effect of the fresh water entering the area does not appear to be great. On the other hand the conditions in the Sound differ from those obtaining on the open coast, chiefly in respect to the force of the action of the waves, and possibly also to the degree of circulation of the waters, both being greatly modified by the presence of the Breakwater.

The fauna and the flora of the Sound are comparable to those found near the mouths of the different estuaries along the south coasts of Cornwall and Devon: e.g. Salcombe Estuary below the Salstone (cf. this Journal, vol. vi. p. 151), Yealm Estuary below the junction of Newton Creek with Yealm River.

Shores of the Sound.

No attempt will be made to give a detailed account of the whole coast-line, but typical portions, which offer the best opportunities for collecting, will be described.

The shores of the Sound are for the most part rocky, with gravel and stones between the rocks. Fine sand in small patches is exposed here and there at extreme low water, but there are no stretches of sandy shore.

Rum Bay. This term is used as a general name for the shore from Batten Breakwater to Jennycliff Bay.* It is a moderately sheltered stretch of coast, with low rocks of a very friable shale, which dip seawards and form ridges parallel to the line of coast. Near low-water mark the ground between the rocks is for the most part very stony, but fine sand and gravel are found at intervals. The low shale rocks are covered, between tide-marks, with Fucus, Pelvetia, Ascophyllum, and other brown weeds, occurring in definite zones, whilst at dead low water Laminaria is plentiful. The weeds and rocks are the home of the usual shore Gastropods of the district (Purpura lapillus, Patella vulgata, Littorina neritoides, L. rudis, L. littoralis, Gibbula cineraria, G. umbilicata, Calliostoma zizyphinus, Ocinebra crinacea), occurring each at its proper tidal level, as well as of the Polychaetes Nereis pelagica

* The term Rum Bay, as here used, includes both Batten Bay and Rum Bay of the Admiralty charts.
and *Eualia viridis*. The **overhanging ledges of rock** give shelter to colonies of encrusting sponges (*Hymeniacidon sanguineum*, *Halichondria panicea*, and *Sycon compressum*), compound Ascidians (*Botryllus violaceus*, *Botrylloides rubrum*), and Polyzoa (*Umbonula verrucosa*, *Crisia*), upon, which Nudibranchs (*Archidoris tuberculata*, *Holidia papillosa*) feed.

On the **Fucus** the Hydroid *Sertularia panicula* is common, the Polyzoa * Fistrellia hispida* and *Membranipora pilosa*, and *Spirorbis borcalis* occur in quantity, and, on the *Laminaria*, *Membranipora membranacea* in large patches. *Clava squamata* and *Coryne vaginata* are also often plentiful.

The cracks and **crevices between the layers of shale** shelter a characteristic and typical fauna, of which *Teredella lapidaria*, *Amphitrite gracilis*, *Polydora flava*, *Potanilla reniformis*, and *Petalostoma minutum* are representative species of the higher and intermediate tidal zones, whilst *Murphysa sanguinea* and *Polyinia nebula* occupy a similar situation near low-water mark.

The patches of **gravel and coarse sand** contain at the higher tidal levels *Audouinia tentaculata* in large numbers, and the intermediate and lower zones are characterised by the presence of large *Nephtys ceca*, *Sthenelais boa*, *Nereis cultriformis*, and *Glycera convoluta*.

Patches of **fine sand**, the most productive of which lies immediately south of Batten Castle, are found to contain * Arenicola marina*, *Lanice conchilega* (in sheltered situations near rocks), *Nephtys ceca* and *N. Hombergi*, *Pectinaria Koreni*, *Scoloplos armiger*, *Magelona papillicornis*, *Pectellochatus serpens*, *Scolelepis vulgaris* (in black muddy sand), and a number of other sand-burrowing Polychaetes, the burrowing brittle star *Ophioenida brochiata*, and the Lamellibranchs *Culchellus pellicidus* and *Tapes pullastra*.

On **stony ground** the following species are met with in considerable abundance beneath the stones: *Gummarrus marinus*, *Porcellana platycheles*, *Cancer pagurus*, *Carcinus maenas*, *Portunus puber*, *Nebalia bipes*, *Galatheus squamifera*, *Lepidonotus clava* and *L. squamata*, *Amphipura elegans*, *Asterina gibbosa*, *Ophiothrix fragilis*, *Leptoplana tremellaris*, *Botryllus violaceus*, *Actinia equina*, and during the winter months *Goniodoris nodosa*.

At the western end of Rum Bay, under Batten Castle, the shale joins the Plymouth *limestone*, and there is a mass of high rocks of the latter kind, with a fauna similar to that described in a subsequent paragraph.

Drake's Island and Mount Edgcumbe. From their position off the mouth of the Hamoaze Estuary, the shores of Drake's Island and Mount Edgcumbe are under the influence of tidal streams of considerable force, whilst at the same time they are sheltered from the southwest, and hence not exposed to the most violent wave action. The
shores of Drake's Island are for the most part rocky, the rocks, composed of a hard grit, being generally steep and high. Between the rocks are small patches of stony ground, and of sand and gravels of various textures. The shores of Mount Edgcumbe resemble the stony patches on Drake's Island, and may be treated with them.

The fauna on the rock faces resembles that at Rum Bay, and needs no further detailed description beyond a notice of the fact that owing to the steeper character of the shore and the height of the rocks, the extent of surface exposed at each of the tidal levels becomes very much reduced, so that those animals which are restricted to a particular zone are represented by a relatively smaller number of individuals.

The overhanging ledges of rock are larger and more profusely covered than those at Rum Bay, but the same species are plentiful. Perhaps the most important addition to be made to the list given for Rum Bay is the Ascidian Clavelina lepadiformis, which during some summers has been very abundant beneath these ledges.

The characteristic fauna in the crevices of the soft shale at Rum Bay is not so marked at Drake's Island, though Murphysa sanguinea and Polynia nebulosa are plentiful in crevices at dead low water.

On stony ground between the rocks at Drake's Island and along the Mount Edgcumbe shore, in addition to the species found under similar circumstances at Rum Bay, there may be found beneath the stones, more plentifully than at the latter locality, specimens of Cucumaria saccicola, Cucumaria Normani, and Echinus miliaris, whilst Myriothela phrygia is very frequent attached to the under surface of the stones.

On the south side of Drake's Island a patch of clean shell gravel is exposed, which is probably continuous with the shell gravel of Queen's Ground (cf. p. 165). In addition to numerous specimens of Carcinus maenas, which are often of variegated colours matching the colour of the shell gravel, the crab Pirimetla is found, whilst in the gravel Glycera gigantea occurs.

On the north-east side is a patch of sand, which is the most characteristic bit of clean, even-grained sand in the district. Its fauna includes Ammodytes, Natica Alderi, and Spiusa (Mactra) solidu.

A Zostera-bed exposed on the north side of the Island contains numerous Solen, occasional specimens of Echinocardium, whilst a patch of a few square yards of harder sand is crowded with Lutraria elliptica.

Limestone Shores (Rocks below Laboratory and under West Hoe; Rocks at Batten). The rocks on the limestone shores differ from the shale rocks which have been described at Rum Bay, in being much higher, in forming a large number of rock pools at the higher tidal levels, and in being of a much harder and closer texture, with few cracks and crevices. The rock fauna at the higher tidal levels, there-
fore, shows special features on the limestone shores, whilst the fauna characteristic of the cracks and crevices between the layers of the shale is not represented. The upper portions of the rocks are densely covered with barnacles, amongst which the molluses *Otina otis* and *Leucosia bidentata* are plentiful. The sides of the rock pools are covered by growths of Coralline, red and green seaweeds, Hydroids such as *Syncoryne gracilis*, *Clava squamata*, small *Tubularia*, and the sponges *Leucosolenia botryoides*, *L. complicata*, *L. variabilis*, and *Chatri-rina coriacea*. In certain of these pools the Archianellid *Dinophilus tanvius* is found in great numbers. *Saxicava rugosa* and *Cliona celata* are abundant, boring in the limestone.

In other respects the fauna on the limestone rocks does not greatly differ from that on the shale, the free-living animals being almost exactly the same. Some of the overhanging ledges are densely covered with the Ascidian, *Styelopsis grossularia* and *Potamilla reniformis* is very abundant.

The Breakwater. The most interesting feature of the fauna of the Breakwater is the collection of animals which are found boring in the limestone of which it is built. To such an extent is the stone eaten into by various animals that considerable damage is done to the structure, and constant repairs are called for. In a stone which has been injured through this cause the outer surface, to the depth of about a quarter of an inch, is converted into a honey-combed, friable mass through the ravages of the boring sponge *Cliona celata*, whilst at frequent intervals larger holes, each of which may have a diameter of a quarter of an inch, and may pierce the stone to the depth of one inch, are formed by the boring mollusc, *Saxicava rugosa*. To these two animals most of the damage is due, but in addition there are found a few holes formed by the mollusc *Gastrochaena dubia*, and many by the Polychaetes *Dodecaceria concharum*, *Polydora ciliata*, *Polydora hoplura*, and *Potamilla reniformis* (the *Sabella saxicava* of Quatrefages). *Dodecaceria* forms holes of oval or figure of eight section, which may penetrate for a depth of several inches into the heart of the stone; *Polydora ciliata* forms small U-shaped burrows, open at each end, whilst *P. hoplura* makes similar burrows of larger size.*

Other features of the fauna of the Breakwater are the abundance of the anemone *Corynactis viridis*, and of a small salmon-red anemone at present undescribed, of *Caryophyllia Smithi* and of *Galathea strigosa*. Large nests of *Lima hiuns* have also been found there.

* The facts here recorded were investigated at the request of the Government engineers responsible for the repair of the Breakwater, and a report was furnished on the subject.—E. J. A.
Dredging and Trawling Grounds of the Sound.

The greater part of Plymouth Sound consists of comparatively shallow water (4-6 fms.) with a bottom-deposit of fine muddy sand. Winding through this is a channel of much deeper water, which represents the old river-bed of the Tamar. After leaving the Hamoaze (the estuary of the Tamar) this deep channel turns northwards until it strikes the northern shores of the Sound close to Millbay, where, bending sharply to the eastward, it attains a depth of 23 fathoms. The channel continues to run eastwards, keeping within a short distance of the shore but gradually diminishing in depth until it reaches the Mallard Shoal, where, after passing southward between this and the Winter Shoal, it becomes lost in the shallow water forming the central part of the Sound (4-6 fms.). It is in this channel, and in the two channels at the eastern and western ends of the Breakwater, that stony ground suitable for dredging occurs. The greater part of the rest of the Sound, having a bottom of fine sand and mud, is better worked with trawls. The principal grounds referred to in the records are the following:—

Millbay Channel (14-23 fms.). The deep channel off Millbay is one of the most productive dredging grounds in the Sound. The dredge brings up masses of stones of varying size (chiefly limestone), with a few shells, all free from any growth of red or brown seaweeds. The stones are generally covered with a good deal of brownish mud, and are much honeycombed by the boring sponge Cliona celata, and by Saxicava rugosa, Polydora ciliata, and Dodecaceria concharam. Sponges, compound Ascidians, Antedonaria antennina, and small Hydroids and Polyzoa are numerous; a great variety of small Polychetes, more especially Phyllodocids and Syllids, are hidden amongst the cavities on the surface of the stones, and masses of tubes of Filograna implexa are frequent.

The deepest part of the channel, which forms a deep pit or hole, is remarkable for the abundance of Antedon bifida, the dredge often coming up half full of these Echinoderms. From the sides of the pit Tubularia indivisa is often obtained in quantity.

Asia Shoal. Another productive dredging ground lies along the northern edge of the Asia Shoal, which is really the southern margin of the deep channel. The water is here shallower (5-7 fms.) than in the Millbay Channel, the stones are chiefly the shales and grits of Drake's Island, instead of the honeycombed limestones found at Millbay, and they are generally covered with more or less mud. Red seaweeds grow on them in small quantities, and large Hydroids, especially Antennularia antennina and Tubularia indivisa, are often abundant.
Aleyonidium gelatinosum is sometimes present in large quantities, as well as Bowerbankia. Sponges also are numerous, and large numbers of the smaller Polychaetes (Phyllodoc maculata, especially, may occur in great quantity) take refuge amongst the fixed organisms. Calyptraeochinctensis is frequently found.

Queen's Ground. This term is used in the records to indicate the area extending from the Queen's Ground Buoy to the New Ground's Buoy and the ground around the latter. It is really the inner margin of the channel at the western entrance of the Sound. The depth is 5–6 fms. The soil is mainly a coarse shell gravel, amongst which are a number of large shells and rather small flat stones. The ground is very clean, there being little mud covering the stones and shells, and the water is clearer and purer than the estuarine waters from the Hamoaze which run through Millbay Channel. The stones and shells afford attachment to occasional pieces of red seaweed (the rare Steno-gramma may be especially noted) and to many of the larger Calyptrablastic Hydroids and branching Polyzoa (especially Bowerbankia). Lamellibranchs (especially Spisula) live amongst the shell gravel, whilst Portunus depurator is abundant on it. The Polychaete fauna differs considerably from that found on the edge of the Asia Shoal and in Millbay Channel.

Duke Rock. Depth 4–5 fms. The grounds around the Duke Rock form the western border of the channel at the eastern entrance of the Sound. In recent years the Admiralty have carried out extensive dredging operations in this neighbourhood, and have to a large extent diminished its value as a dredging ground for scientific purposes. The stones and shells which are taken here carry a similar collection of animals to that found at Queen's Ground, but the shell gravel, with the animals which inhabit it on the latter ground, is replaced by finer muddy sand.

Trawling Grounds of the Sound. The fine sand and mud grounds of the centre of the Sound and of Jennycliff Bay are best worked with small trawls of either shrimp mesh or mosquito mesh. Shrimps, prawns, and small crustacea, small flat-fishes, pipe-fishes, Sepioth atlantica, and Philine aperta, are the characteristic species taken. The dog-whelk (Nassa reticulata) and shore crab (Carcinus maenas) are abundant species on these grounds, but are best taken in traps.

The Cattewater. The soil in the Cattewater (estuary of the Plym) below Turnchapel is all soft mud, which can be worked with a shrimp trawl. The characteristic local forms are almost exclusively shrimps, prawns (especially Paleomonetes), Mysis flexuosa, and Carcinus maenas. The Cattewater is chiefly useful, however, as a collecting ground, from the fact that the Plymouth trawlers often throw a good deal of their refuse
overboard there, and many of the species from outside amongst this refuse are capable of surviving for a time.

THE YEALM ESTUARY.

In the Yealm Estuary is a large body of enclosed and sheltered water, with a fauna which is essentially marine for a considerable distance above the mouth. The mouth is almost closed by a bar of sand, a deep channel being left only on the southern side. At a distance of about a mile from the mouth, the estuary divides into two branches, the Yealm River proper and Newton Creek. The Yealm possesses a number of rich collecting grounds, which would well repay a more careful and detailed study than they have yet received.

Shores.

Yealm Sand-bank. This name has been used in the records to indicate a bank of fine to medium sand on the left bank of the Yealm River above the junction with Newton Creek, which is uncovered at low spring tides. The fauna is characterised by the presence in the sand of large numbers of *Ensis ensis*. By digging may also be obtained in more or less considerable numbers *Synapta inharvens*, *Tapes pulastra* and *T. decussatus*, *Spisula solida*, *Gari depressa*, *Sigalion boa*, *Amphitrite gracilis*, and large specimens of *Nephthys caca*. On the surface of the bank are found *Calliostoma zizyphinus*, and, during the summer months, *Aplysia punctata*, both in considerable quantities.

Eastern Shore below junction of Yealm River and Newton Creek. Along this shore the soil is composed of a coarse, muddy gravel, the most striking feature of the fauna of which is the abundance of the large Terebellid *Amphitrite Johnstoni*, with its commensal Polynoid, *Gattyana cirrosa*. *Sealibregma inflatum* is also found here.

Zostera Bed near the Mouth of the Yealm. Along the southern shore a *Zostera* bed is just exposed close to the mouth of the estuary. The muddy sand in which the *Zostera* is rooted contains an abundant Polychaete fauna, of which the two most numerous species are *Aonides oxycephala* and *Marphysa Belli*, whilst *Notomastus rubicundus* and *N. latericeus* are also found.

Dredging and Trawling Grounds.

The channel of the river just below the junction of the Yealm and Newton Creek is the best dredging ground in the estuary. The bottom is covered with stones and shells (chiefly oyster-shells), to which red and brown seaweeds are attached in considerable quantities. *Echinus*
Phallusia is often abundant, and both *Asterias rubens* and *A. glacialis* are generally taken as well as *Ophiothrix fragilis*. In addition to the ordinary shallow-water crabs, *Pilumnus hirtellus*, *Portunus arcuatus*, *Macropodia rostratus*, *Inachus dorynchus*, and *Hyas araneus* are usually found. Large specimens of *Archidoris taberculata* are met with, and *Acmccca virginea*, *Calyptraea chinensis*, and *Acanthochites fasciolaris*, each in considerable numbers, are characteristic. Of Hydroids, large colonies of *Plumularia pinnata* are the most abundant, whilst *Hydractinia echinata* is plentiful on shells inhabited by *Eupagurus Bernhardus*. Large specimens of *Phalasia mamillata* are frequent, as well as specimens of *Ascidia aspera*. *Polycirrus aurantiacus* is very plentiful, whilst numbers of *Phyllodocids* and Syllids, as well as other small Polychaetes, hide amongst the stones and shells. *Euryplecta cornuta*, *Lineus marinus*, and *Prostheceraeus vittatus* are also generally to be found.

In the Yealm River itself, above the junction with Newton Creek, there is a large oyster bed.

Zostera Bed along the Southern Shore.—A *Zostera* bed lies close to the southern shore at the mouth of the harbour, which can be most usefully worked with a shrimp trawl. Its fauna resembles that of the *Zostera* bed in Cawsand Bay, to be mentioned later. In addition to pipe-fishes, wrasse, and other small fishes, *Macromysis flexuosa* is abundant, as well as *Hippolyte varians*, *Calliostoma striatum*, *Lacuna divaricata*, and *Halidystus auricula*, whilst small *Anemonia sabata* are abundant attached to the *Zostera*.

OUTSIDE GROUNDS.

Shores.

Wembury Bay. The shores of this bay form one of the best collecting grounds on the open coast in the neighbourhood of Plymouth. A reef of high rocks (Church Reef and Blackstone Rocks) runs seawards in a south-westerly direction from in front of Wembury Church, forming deep overhanging ledges on the landward side, and leaving at low water many tide-pools both large and small. To the westward of this reef the shore is formed of stretches of low, weed-covered rocks alternating with patches of gravel and sand of different textures. The whole shore is exposed to almost the full force of the Channel waves, and the greater part of the fauna is found beneath the overhanging ledges and in other sheltered situations amongst the rocks and seaweeds. The fauna of the sand and gravel is not very extensive.

The general character of the fauna of the rock ledges and of the rock pools is similar to that found in corresponding situations within the Sound (e.g. Rum Bay, Drake's Island), but there is greater profusion
both of individuals and of species. The same shore Gastropoda are found in their respective tidal zones, and the ledges of rocks and under sides of stones are covered with the same species of sponges, ascidians, polypoza, anemones, and hydroids. Of echinoderms the representative species, as on the shores of the Sound, are *Amphiura elegans*, *Ophiocothrix fragilis* *Echinus miliaris*, and *Cucumaria sacculata*, all of which are found under stones, the two latter only at extreme low water.

Reny Rocks. A reef of exposed, weed-covered, low rocks running from the Shagstone to the mainland. The fauna resembles that of the rocks in Wembury Bay.

Whitsand Bay. An exposed shore which consists chiefly of fine shifting sand of a not very productive character. At intervals small reefs of low rocks run out amongst the sand, which form the home of a few ordinary rock-hunting species, and are specially characterised in places by the great abundance of the reef-building polychete, *Sabellaria alcelolata*. The rocky foundation in close proximity to an abundant supply of sand evidently furnishes to these worms the special conditions necessary for the formation of their masses of sand-built tubes.

Dredging and Traveling Grounds.

Cawsand Bay. Depth 3–5 fms. A characteristic inshore shallow bay with a bottom of fine sand. Being sheltered from the south-west, it is protected from the most violent and frequent gales, which in this district come from that direction, and is only visited by heavy seas during gales from the east. In the shallowest parts of the bay is an extensive bed of *Zostera*, with a characteristic fauna, this being one of the chief features which distinguishes the trawling grounds of Cawsand Bay, from those of the more exposed Whitsand Bay, to be presently mentioned.

The smaller *Crustacea* (*Hippolyte varians*, *Macromysis flexuosa*, Cumacea, etc.) are abundant, and specimens of *Maia squinado*, the common edible crab (*Cancer pagurus*), and the shrimp (*Crangon vulgaris*) are generally obtained. *Sepiola atlantica* is always present and often numerous, and in the summer months *Sepia officinalis* is often abundant. On the *Zostera*, small specimens of *Ammonia sulcata* are frequent, and Foraminifera, especially *Polystomella crispa* and *Discorbina rosacea*, are generally abundant. *Nassa reticulata* occurs in quantity, often covered with Hydroids. *Spisula elliptica* and *Ensis ensis* are common buried in the sand.

The most characteristic feature of the fauna of this bay is, however, the fishes, which are not dealt with in the present report. These consist of flat-fishes (Soles, Plaice, Dabs, etc.), Skates and Rays, and several species of pipe-fish.
Whitsand Bay. Depth 4–8 fms. Another example of a shallow sandy bay, but being open to the south and west, it is subject to much more disturbance from the waves than Cawsand Bay. Here is also a great variety of the smaller Crustacea and Sepiula atlantica is abundant. Cystes cossicola and Astropopeten irregularis, characteristic sand-dwelling species, are often taken in this bay, though much less frequently than in deeper water.

Mewstone Ledge. Depth 10–15 fms. A ridge of soft, red conglomerate rock runs seawards in a southerly direction from the Mewstone. Over this ridge at a depth of 10 to 12 fms. it is possible to work a dredge, the dredge often breaking away and bringing to the surface pieces of the rock of considerable size. The rock is free from the growth of any seaweeds, but is well covered with Hydroids, Polyzoa, and sponges. The following species are common and typical of the fauna associated with this red rock: Eunicea verrucosa with Gephyra Dohrnii and Tritonia plebeia living upon it; Aleyonium digitatum with Ovula patula; Caryophyllia Smithii with its associated barnacle Pyrgoma anglicum; Antennaria antennaria and A. ramosa with Sculpellum vulgare; small colonies of Sertulariella Gagi and S. polyzonias; Plumatella pinnata and P. Catharina; Lefoca dawsoni with occasional specimens of Myzomenia bangydensis attached; Cucumaria brunnea on the rock itself and on the attached Hydroids; occasional specimens of Antedon rosacea, Ophiosthira fragilis, Henricia sanguinolenta, and of the large Holothurian, Holothuria nigra; Ophiopsila aranea concealed in holes and crevices of the rock; Phalasia mamillata, Asciella seabra, and Ciona intestinalis (small specimens); the Polyzoa Crisia cornuta and Bugula flabellata in abundance, Aleyonidium gelatinosum, Bicellaria ciliata, small colonies of Cellaria fistulosa and C. sinuosa, and occasional large masses of Lepralia foliacea, amongst which a number of small Crustacea, especially large numbers of Porcellana longicornis, are to be found. The large Phyllophora Paretti is also often found here. The red rock itself is bored by numbers of Pholadidea loscombiana.

Mewstone Shell Gravel. On either side of the Mewstone ledge, and probably in patches between the rocks and the ledge, the bottom soil is composed of a coarse shell gravel. In working a dredge over the ledge a mixed fauna, comprising the animals from the rocks and from the gravel, is generally obtained. The gravel itself may also be worked with a small trawl, the Agassiz trawl having been generally used in our work.

Species characteristic of this shell gravel are Holothuria nigra (often in considerable numbers), Cardium norvegicum, Spatangus purpurascus, Glycimeris glycimeris, Lumbriconeris impatiens, Glycera gigantea, Aeglaophenia myriophyllum, and Eurynome aspera.
Mewstone 'Amphioxus' Ground. Depth 10-12 fms. About 1½ miles to the southward of the Mewstone (off Yealm Head) is a patch of shell gravel of finer texture than that last described, which is one of the few localities in the Plymouth district where *Amphioxus tunicatus* has been found in numbers. The fauna of this shell gravel is limited, but very characteristic. In addition to *Amphioxus*, the following are typical species: *Anapagurus lavis* and *Eupagurus cuanensis*, inhabiting chiefly the shells of *Turrilittula communis* and *Aporrhais pes-pectoani*, associated with which *Epizoanthus incrustatus* is very frequent and the Hydroid *Merona cornucopiae* is often found, especially on the *Aporrhais* shells; *Phascolion strombi*, not uncommon living in empty *Aporrhais* shells; *Ebalia tumefacta* and *E. tuberosa*, *Glycera lapidum*, and *Onuphis conchilega*.

Mewstone 'Echinoderm' Ground. 2-4 miles south of Mewstone. Depth 23-24 fms. A few years ago this was one of the most profitable grounds in the neighbourhood on which to shoot a trawl when it was desired to obtain a good collection of invertebrates. Recently it has been almost entirely ruined owing to the amount of mud and refuse tipped upon it by barges from Plymouth and Devonport. The bottom soil consists of a coarse muddy gravel. The trawl, after a successful haul, will contain large numbers of *Echinus esculentus*, together with a few *E. acutus*; numbers of *Solaster papposus*, *Buccinum undatum*, *Eupagurus Bernhardus* in *Buccinum* shells, some carrying *Adamsia polypus*, others *Hydractinia echinata*, *Eupagurus Prideauxi*, with *Adamsia palliata*; *Pecten opercularis* often in quantity, *P. tigrinus* not uncommon, and an occasional specimen of *P. maximus*; *Galatheia dispersa*, *Inachus dorsetensis*, *Macropodia longirostris*, *Ascaliella scabra*, a few *Asterias glacialis* and *A. rubens*, and varying quantities of *Sertularella Guyi* and *Cellaria simnosa* and *C. fistulosa*, according to the exact position of the haul.

Inside the 'Echinoderm' ground, between that ground and Yealm Head, in rather shallower water, there is a stretch of coarse, muddy, gravel ground, which is covered almost exclusively with the brittle-star *Ophiocoma fragilis*. A dredge hauled on this ground comes up full of these Echinoderms, a few specimens of large *Ophiocoma nigra* being mixed with them.

Fine Sand south of Mewstone. Depths 27-30 fms. From 5 to 7 miles south of the Mewstone is a frequently worked trawling ground with a bottom of fine clean sand. The fauna here closely resembles that found on the Inner Eddystone Trawling Ground (cf. this Journal, vol. v. p. 389). Characteristic and typical species are: *Astropacten irregularis*, *Aphrodite aculeata*, *Coryphes cassicelavus*, *Ophiura ciliaris*, *Dentalium entalis*, *Aleyonium digitatum* attached to
shells, *Peten opercularis* (abundant in patches), *Sertularella Gayi* and *S. polyzonias*, *Aglaophenia myriophyllum*, *Cellaria sinuosa* and *U. fistulosa*, *Ascidia scabra*, and *Macropodia longirostris*.

Stoke Point Grounds. Western boundary, Blackstone Point; eastern boundary, Revelstoke Church Cove; seaward extension, about 1½ miles. The ground shelves very regularly outside the 10-fm. line; inside this line it is very uneven; maximum depth, 22 fms.

In their general features these grounds present much similarity to the 'Mewstone grounds,' but they offer rather greater diversity of type within a given area; and perhaps partly as the result of this and also of the fact that they are exposed to the full sweep of the Channel tide, the fauna is considerably richer than it is on the Mewstone grounds.

The friable red rock characteristic of the Mewstone Ledge is met with again, and forms numerous more or less detached reefs, off Stoke Point. It is abundantly perforated by *Pholadidea*, and in the disused crypt of this molluse, the remarkable Ophiurid *Ophiopsila aranua* is plentiful. As at the Mewstone, the surface of the rock is very clean, and it affords attachment to *Eunicella*, *Antennularia*, *Aglaophenia*, *Akyonium digitatum*, *Caryophyllia*, *Tethya*, etc.

Between the reefs of red rock are patches of very rich shell sand and gravel.

The grounds include an eastward extension of the Mewstone 'Echinoderm' ground, together with patches where *Ophiothrix* and *Ophiocoma* are abundant. In deeper water this gives place to typical 'Chatopterus' ground.

The Rame-Eddystone Grounds. This name has been used to indicate the grounds lying for 3 to 4 miles on either side of the line from Rame to Eddystone and at depths of from 25 to 30 fms. Two typical classes of grounds can be recognised in this area: (1) coarse grounds with a bottom soil of muddy gravel, on which *Chatopterus* is one of the most striking forms, and the chief Hydroids are *Halecium halecinum* and *H. Beani*; and (2) fine grounds with a bottom soil of fine sand, characterised by the abundance of *Cellaria sinuosa* and *C. fistulosa* and by the Hydroid *Sertularella Gayi*. The grounds are very patchy, and the two typical faunas are much intermingled, so that it is only occasionally and after a short haul that a fair representation of either of the two types of fauna is obtained.

Both classes of ground can be profitably worked with both the dredge and trawl. On both, *Echinus esculentus* and *Peten opercularis* may be met with in large numbers in particular spots, and *Asterias rubens* and *A. glacialis* are generally distributed over the area.
The following are typical species occurring on the two classes of grounds:

Coarse Grounds. *Chaetopterus variopedatus, Hyalinocia tubicola, Halecium halceiniun* and *H. Bani, Atelecyclus septemdentatus, Ophiura albida, Ophiactis Balli, Venus fasciata, Tapes virgineus, and Ebalia tuberosa* and *E. tumefacta.*

Fine Grounds. *Cellaria sinuosa* and *C. fistulosa, Ophiura ciliaris, Sertularella Gagi* and *S. polyzonias, Echinocardium cordatum, Corystes cassivelvanus.*

From the above description it will be seen that the fauna of the Rame-Eddystone grounds resembles very closely that of the grounds in the neighbourhood of the Eddystone, already described in this Journal (vol. v. p. 365 et seq.).

The Looe-Eddystone Grounds. This name has been applied to an extension westwards of the Rame-Eddystone Grounds. Depths 25-30 fms. The fauna is of a similar general character to that of the latter grounds, but is particularly rich, as the result probably of the presence of much rough and rocky ground intermingled with trawling ground.

The Eddystone Grounds. For a detailed description of these grounds see this Journal (vol. v. p. 365).

LIST OF THE SPECIES.

Explanation of Abbreviations.

The authorities for the various records are indicated by their initials, of which the following is a complete list; those of members, or late members, of the staff are marked with an asterisk:—

A.J.S.—A. J. Smith, Assistant at the Laboratory since 1895.
A.M.N.—The Rev. A. M. Norman, L.L.D., F.R.S.
A.O.W.—A. O. Walker.
C.C.N.—Professor C. C. Nutting, University of Iowa.
C.S.—Professor Charles Stewart, L.L.D., F.R.S., Conservator of the Royal College of Surgeons.
E.A.M.—Professor E. A. Minchin, M.A., Professor of Zoology, University College, London.
E.G.G.—Dr. E. G. Gardiner, Woods Holl, Mass.
Plymouth Marine Invertebrate Fauna.

*E.J.A.—E. J. Allen, D.Sc., Director of the Plymouth Laboratory since 1895.

*E.J.B.—E. J. Bles, B.Sc., Director of the Plymouth Laboratory 1893–1894.

F.J.B.—Professor F. Jeffrey Bell, M.A., Assistant Keeper British Museum Natural History.

F.W.G.—F. W. Gamble, B.Sc., Lecturer in Zoology, Owen’s College, Manchester.

G.C.B.—G. C. Bourne, M.A., Director of the Plymouth Laboratory, 1888–1890.

J.C.S.—J. C. Sumner, A.R.C.S.

P.T.C.—Professor P. T. Cleve, University of Upsala.

R.A.T.—R. A. Todd, B.Sc., Director’s Assistant 1898–1902; Assistant Naturalist since 1902.

R.G.—Robert Gurney, M.A.

R.H.W.—R. Hansford Worth, Plymouth.

R.M.P.—Mrs. S. Pace (Miss R. M. Clark).

S.P.—S. Pace, Assistant Naturalist at the Plymouth Laboratory since Nov. 1902.

T.H.R.—T. H. Riches, M.A.

T.V.H.—T. V. Hodgson, Director’s Assistant at the Plymouth Laboratory 1895–1897.

W.B.—Professor W. B. Benham, B.Sc., University of Otago, New Zealand.

W.F.R.W.—Professor W. F. R. Weldon, F.R.S., Professor of Comparative Anatomy in the University of Oxford.

W.G.—W. Garstang, M.A., Director’s Assistant 1888–1890; Naturalist 1892–1894; ditto in charge of Fishery Investigations since 1897.

W.I.B.—W. I. Beaumont, B.A.

In some cases where there is only a single record, this has been indicated by a superior numeral, e.g. (J.T.C.?), or Queen’s Gd.¹

In the notes on Breeding Periods only those months are named for which definite records exist at the Laboratory.
FORAMINIFERA.

by

R. H. WORTH.

Miliolinae.

Biloculina ringens (Lamarck): Williamson, 1858, Rec. For. Gt. Br., p. 79, pl. vi, figs. 169, 170, pl. vii, fig. 171.

Biloculina ringens, var. patagonica, Williamson, 1858, Rec. For. Gt. Br., p. 80, pl. vii, figs. 175, 176. See also Biloculina elongata.

Cawsand B.; Drake's I.; Rame-Eddystone, generally distributed, but with unexplained preferences for certain localities, only occasionally plentiful; Eddystone-Looe, same remarks as last; Bolt, the species seems to be poorly represented.

Biloculina depressa, d'Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 79, pl. vii, figs. 172-174 (as Biloculina ringens, var. carinata).

Rame-Eddystone, distribution similar to that of Biloculina ringens, but decidedly less numerous; Eddystone-Looe, same remarks as last; the species also occurs around the Bolt; [Drake's I. (J.J.L.).]

Biloculina elongata, d'Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 80, pl. vii, figs. 175, 176 (as Biloculina ringens, var. patagonica).

Five miles W. ¾ S. from Rame, characteristics exceptionally marked.

Biloculina tubulosa, Costa: Brady, 1884, "Challenger" Report, p. 147, pl. iii, fig. 6.

A few individuals have been somewhat doubtfully attributed to this species.

Spiroloculina planulata (Lamarck): Williamson, 1858, Rec. For. Gt. Br., p. 82, pl. vii, fig. 178 (as Spiroloculina depressa, var. rotundata).

Rame-Eddystone, generally distributed and fairly plentiful in places; Eddystone-Looe, same remarks as last; Bolt, an occasional spec.

Spiroloculina limbata, d'Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 82, pl. vii, fig. 177 (as Spiroloculina depressa).

Rame-Eddystone follows distribution of last, but is less numerous; Eddystone-Looe, here the conditions seem somewhat changed, and this form is more numerous than planulata; [Drake's I. (J.J.L.).]

Spiroloculina tenuiseptata, Brady: Brady, 1884, "Challenger" Report, p. 153, pl. x, figs. 5, 6.

Rame-Eddystone, an occasional spec. only; Eddystone-Looe, an occasional spec. only.

Spiroloculina excavata, d'Orbigny: Brady, 1884, "Challenger" Report, p. 151, pl. ix, figs. 5, 6.

Rame-Eddystone, generally distributed, but rare; Eddystone-Looe, as above.

Spiroloculina fragilissima, Brady: Brady, 1884, "Challenger" Report, p. 149, pl. ix, figs. 12-14.

Found on the eastern slope of the Hand Deeps.
Foraminifera—contd.

Drake's I.; Rame-Eddystone, generally distributed, but not numerous; Eddystone-Looe, scarce in the dredgings examined; Bolt, an occasional spec.

Miliolina tricarinata (d'Orbigny): *Brady*, 1884, “Challenger” Report, p. 165, pl. iii, fig. 17.

Rame-Eddystone, an uncommon form; Eddystone-Looe, none found as yet.

Rame-Eddystone, generally distributed, numerous everywhere, sometimes the dominant species in a dredging, one of the commonest Foraminifera; Eddystone-Looe, much as above, but the species is a little less frequent; Bolt, the species is less common in the dredgings examined; [Drake's I. (J.J.L.).]

Cawsand B.; Drake's I.; Rame-Eddystone, universally present, common everywhere, but numbers fluctuate considerably from point to point, not unusually one of the dominant species in a dredging; Eddystone-Looe, much as last, but never the dominant species so far as dredgings have been examined; Bolt, extremely common, the dominant species of the ground.

Drake's I.; Rame-Eddystone, common and almost universally distributed, but more plentiful in shallower water. These remarks apply to whole district.

Drake's I.; Rame-Eddystone, as last species, but less common; Bolt, occasional specimens.

Miliolina secans (d'Orbigny): *Williamson*, 1858, Rec. For. Gt. Br., p. 86, pl. vii, figs. 188, 189 (as *M. seminulum*, var. disciformis).

From the shallower dredgings throughout the district, seems to prefer clean sands, and is often common on beaches.

Cawsand B.; Drake's I.; Rame-Eddystone, generally distributed, always present, sometimes plentiful. The same remarks may safely be applied to the whole district.

As last species, but a trifle less common.
Miliolina agglutinans (d'Orbigny): Brady, 1884, "Challenger" Report, p. 180, pl. viii, figs. 6, 7.

Drake's I.; Ramie-Eddystone, but commoner in shallow water; by no means an infrequent species anywhere in the district; occurs on Eddystone-Looe Gds., Bolt Gds., and all areas examined.

Peneroplinae.
Cornuspira foliacea (Philippi): Williamson, 1858, Rec. For. Gt. Br., p. 91, pl. vii, fig. 199 (as Spirillina).

Rame-Eddystone, generally distributed, some localities yield more spec. than others, but the form is very sparingly represented anywhere; Eddystone-Looe, rare.

Cornuspira involvens (Reuss): Brady, 1884, "Challenger" Report, p. 200, pl. xi, figs. 1-3.

Drake's I.; Ramie-Eddystone, generally distributed, in some dredgings numbers were found adherent to Hydroids; Eddystone-Looe, same remarks as last.

Astrorhizidae.
Haliphysea tumanowiczii, Bowerbank: Brady, 1884, "Challenger" Report, p. 281, pl. xxvii A, figs. 4, 5.

Occurs but sparingly in the deeper dredgings everywhere in the district, is probably much commoner near the shore: [Queen's Gd., abundant at times (s.p.): Duke Rk. (E.J.A.)]

Lituolinae.
Haplophragmium canariense (d'Orbigny): Williamson, 1858, Rec. For. Gt. Br., p. 34, pl. iii, figs. 72, 73 (as Nonionina jeffreysii).

Drake's I.; Rame-Eddystone and all grounds, not uncommon anywhere, but shows a preference for more silty areas, at times quite plentiful.

Occurs near the Eddystone, and possibly elsewhere on the outer grounds, but is nowhere common.

Haplophragmium globigeriniforme (Parker & Jones): Brady, 1884, "Challenger" Report, p. 312, pl. xxxv, figs. 10, 11.

Found in small numbers on the Ramie-Eddystone Gd.

Trochamminae.
Ammodiscus incertus (d'Orbigny): Williamson, 1858, Rec. For. Gt. Br., p. 93, pl. vii, fig. 203 (as Spirillina arenacea).

Rame-Eddystone, uncommon.

Rame-Eddystone, rare.

Trochammina ochracea: Williamson, 1858, Rec. For. Gt. Br., p. 55, pl. iv, fig. 112, pl. v, fig. 113 (as Rotula).

Found over the whole area, but is not plentiful anywhere.
TROCHAMINNA INFLATA (Montagu): Williamson, Rec. For. Gt. Br., p. 50, pl. iv, figs. 93, 94 (as Rotulina).

Distributed much like Haplophragmium conariense, which in some estuarine waters it largely replaces; it also occurs, however, well outside the 30-fathom line.

Textularinae.

TEXTULARIA SAGITTULA, Defrance: Brady, 1884, "Challenger" Report, p. 361, pl. xliii, figs. 17, 18.

The difficulty of precisely defining the limits of each species of the arenaceous textularia on these grounds is almost insuperable. Textularia sagittula is one of the less frequent forms, but it may occur anywhere where either gramen or agglutinans is found. The most typical specimens are found in estuarine waters.

This form, like the last, is infrequent, but while some specimens of sagittula may be divided from agglutinans by fairly marked features, trochus, if it really occurs on these grounds, is always most suspiciously like a somewhat unorthodox gramen.

TEXTULARIA AGGLUTINANS, d'Orbigny: Brady, 1884, "Challenger" Report, p. 363, pl. xliii, figs. 1–3.

Even between Textularia agglutinans and Textularia gramen there may arise difficulties of discrimination. Textularia agglutinans is everywhere the less common, but is generally distributed, and follows gramen in its preference of localities.

TEXTULARIA AGGLUTINANS, var. porrecta, Brady: Brady, 1884, "Challenger" Report, p. 364, pl. xliii, fig. 4.

This variety is occasionally found in all parts of the district.

TEXTULARIA GRAMEN, d'Orbigny: Brady, 1884, "Challenger" Report, p. 365, pl. xliii, figs. 9, 10.

Cawsand B; Drake's I; and the district generally.

Textularia gramen is much the most common of the Textularia; it frequently rises to from third to fifth in numerical order of the foraminifera taken in a dredging, and on the eastern slope of the Hand Deeps at one station it is only excelled by Miliolina seminulum.

VERNEUILLINA POLYSTROPHA (Reuss): Williamson, 1858, Rec. For. Gt. Br., p. 65, pl. v, figs. 136, 137 [as Buliminia scabra (arenacea)].

Drake's I.; also sparingly present throughout the district, but this species shows a preference for shallow water. In estuaries it sometimes practically replaces the Textularia.

Bulimininae.

BULIMINA PUTOIDES, d'Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 62, pl. v, figs. 124, 125.

Drake's I. A common species throughout the district, a little more plentiful within than without the 25-fathom line.

Drake's I. Distribution precisely similar to that of Bulimina pupoides, but individuals of the latter species average twice as numerous.

Bulimina aculeata, d'Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 62, pl. v, fig. 128 (as B. pupoides, var. spinulosa).

Common throughout the district, follows closely the distribution of Bulimina pupoides, on the average one specimen of aculeata occurs to every twenty of pupoides. Williamson is probably right in making Bulimina marginata and Bulimina aculeata mere varieties of Bulimina pupoides, all intermediate forms occur.

Drake's I. Occurs sparingly wherever Bulimina pupoides is found, probably it should be regarded as a variety only.

Bulimina elegans, var. eulis, Brady: Brady, 1884, "Challenger" Report, p. 399, pl. I, figs. 5, 6.

5 miles W. ¼ S. from Rame; 4½ miles W. ¼ S. from Rame.

Bulimina elegantissima, d'Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 64, pl. v, figs. 134, 135.

A minute form which is easily overlooked. On floating the silts, however, it is found in practically all dredgings; never numerically strong, it is none the less generally distributed.

Virgulina Schrebersiana, Czjzek: Goës, 1894, Syn. Arctic and Scandinavian For., p. 48, pl. ix, fig. 459; Williamsoon, 1858, Rec. For. Gt. Br., p. 63, pl. v, fig. 131 (as Bulimina pupoides, var. compressa).

Generally distributed throughout the district. A small species liable to be underestimated as to numerical prevalence, unless the sands are floated; it is really present in considerable numbers almost everywhere.

Bolivina puncata, d'Orbigny: Brady, 1884, "Challenger" Report, p. 417, pl. lii, figs. 18, 19.

Drake's I, and generally distributed throughout the district. See also note to Bolivina dilatata.

Bolivina textilaroides, Reuss: Williamsoon, 1858, Rec. For. Gt. Br., p. 77, pl. vi, fig. 168 (as Textularia variabilis, var. hevigata).

Drake's I., and generally distributed throughout the district, nowhere very numerous, nowhere rare.

I regard this and Williamsoon's Textularia variabilis, typica, as one species.

Bolivina diffformis (Williamson): Williamsoon, 1858, Rec. For. Gt. Br., p. 77, pl. vi, figs. 166, 167 (as Textularia variabilis, var. difformis).

A small form, easily overlooked, but well defined. It is generally distributed, but nowhere numerous. The prevalence of this species in surface townettings from the mouth of the Channel is a feature which must influence its apparent distribution on the sea-bottom.
PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Foraminifera—contd.]

Drake’s I., and generally distributed over the district.

This species and Bolivina punctata both flourish on almost any bottom soil and are both happier on genuine muddy silts than most foraminifera. The relative prevalence of the two species obeys some so far undiscoverable law and is subject to wide variations.

Drake’s I., and generally distributed throughout the district.

This is a species which will most probably be overlooked unless the silts are floated. Although common, it is not numerically well represented.

Cassidulinæ.

Cassidulina crassa, d’Orbigny: Williamson, 1858, Rec. For. Gt. Br., p. 69, pl. vi, figs. 143, 144 (as C. obtusa).

Drake’s I. Universally distributed and fairly numerous everywhere.

Distributed over whole district, but distinctly in less numbers than Cassidulina crassa.

Lageninæ.

Lagena globosa (Montagu): Williamson, 1858, Rec. For. Gt. Br., p. 8, pl. i, figs. 15, 16 (as Entosolenia).

A common form of universal occurrence.

Somewhat rare.

Lagena botelliformis, Brady: Brady, 1884, “Challenger” Report, p. 454, pl. lvi, fig. 6.

Not uncommon.

Lagena levus (Montagu): Williamson, 1858, Rec. For. Gt. Br., p. 4, pl. i, figs. 5, 5α (as L. vulgaris).

Present everywhere, but in less numbers than either Lagena orbignyanus, globosa, marginata, or probably sulcata. Small specs. with either two or three chambers arranged in nodosarian form are not rare; some large individuals are entosolenian at one extremity and ectxosolenian at the other.

Lagena clavata (d’Orbigny): Williamson, 1858, Rec. For. Gt. Br., p. 5, pl. i, fig. 6 (as L. vulgaris, var. clavata).

Generally distributed, but in considerably less number than Lagena levus.

A not unusual form, has not been found in all dredgings, but probably is very generally distributed.
LAGENA ASPERA, Reuss: Brady, 1884, "Challenger" Report, p. 457, pl. lvii, figs. 7-12.
Rare, but seems to exhibit a preference for the shallower waters.

LAGENA HISPIDA, Reuss: Brady, 1884, "Challenger" Report, p. 459, pl. lix, figs. 2-5.
Somewhat rare in the district.

LAGENA LINEATA (Williamson): Williamson, 1858, Rec. For. Gt. Br., p. 9, pl. i, fig. 17 (as Entosolenia globosa, var. lineata).
Rame-Eddystone and Eddystone-Looe Gds., not a common form.

Generally distributed, but in small numbers.

LAGENA SULCATA (Walker & Jacobs): Brady, 1884, "Challenger" Report, p. 462, pl. lvii, figs. 23, 26, 34.
Drake's I., and throughout the district; a common species, occurring in moderate numbers.

LAGENA SULCATA, var. interrupta, Williamson.
[Drake's L. (J.J.L.).]

Drake's I., and throughout the district; a common species, and sometimes numerically strong.

LAGENA SEMISTRIATA, Williamson: Williamson, 1858, Rec. For. Gt. Br., p. 6, pl. i, fig. 9 (as L. vulgaris, var. semistriata).
Drake's I., and throughout the district; common.

LAGENA GRACILIS, Williamson: Williamson, 1858, Rec. For. Gt. Br., p. 7, pl. i, figs. 12, 13 (as L. vulgaris, var. gracilis).
Generally distributed.

LAGENA SQUAMOSA (Montagu): Williamson, 1858, Rec. For. Gt. Br., p. 12, pl. i, fig. 29.
Drake's L., and throughout the district. Common and sometimes prominent in point of numbers.

LAGENA HEXAGONA (Williamson): Williamson, 1858, Rec. For. Gt. Br., p. 13, pl. i, fig. 32 (as Entosolenia squamosa, var. hexagona).
Drake's L., and throughout the district. Common, perhaps not quite so plentiful as Lagena squamosa.

LAGENA MARGINATA, Walker & Boys: Brady, 1884, "Challenger" Report, p. 476, pl. lix, figs. 21, 23.
Generally distributed and in considerable numbers; small forms are sometimes difficult to discriminate from Lagena orbignyanana.

LAGENA MARGINATA, var. ornata (Williamson): Williamson, 1858, Rec. For. Gt. Br., p. 11, pl. i, fig. 24 (as Entosolenia).
Rare, but possibly many species have been overlooked.

LAGENA TRIGO-MORIGINATA, Parker & Jones: Brady, 1884, "Challenger" Report, p. 482, pl. lxi, figs. 12, 13.
Rame-Eddystone, not infrequent, but represented by single species in the quantities of sand examined from the different dredgings.
LAGENA QUADRATA (Williamson): *Williamson*, 1858, Rec. For. Gt. Br., p. 11, pl. i, figs. 27, 28 (as *Entosolenia marginata*, var. *quadrata*). Present everywhere, but in small numbers. A mere variety of *Lagena marginata*.

LAGENA ORBIGNYANA (Seguenza): *Brady*, 1884, “Challenger” Report, p. 484, pl. lix, figs. 24–26, etc.

Cawsand B.; Drake’s I., and generally distributed over the whole district. This is distinctly the most common of the Lagene, and is well represented everywhere. The larger specimens are well characterised, but the smaller forms are sometimes extremely difficult to discriminate from *Lagena marginata*.

LAGENA LAGENOIDES (Williamson): *Williamson*, 1858, Rec. For. Gt. Br., p. 11, pl. i, figs. 25, 26 (as *Entosolenia marginata*, var. *lagenoides*). Generally distributed and present everywhere, but not numerically strong in any dredging.

Nodosariinae.

Generally distributed, but somewhat scarce, and rarely represented by more than a few chambers of the shell.

Nodosaria communis, d’Orbigny: *Williamson*, 1858, Rec. For. Gt. Br., p. 18, pl. ii, figs. 40, 41 (as *Dentalina subarcuata*). Generally distributed, in moderate numbers. The larger species are the largest foraminifera of the district; one in especial, from one mile S.E. of Eddystone, measures 4 mm. in length.

Nodosaria scalaris (Batsch): *Williamson*, 1858, Rec. For. Gt. Br., p. 15, pl. ii, figs. 36–38 (as *N. radicula*).

Drake’s I., and generally distributed. Somewhat scarce at places.

A small species, and very easily overlooked. Brady does not include it in his Synopsis of recent British Species. It is by no means uncommon in this district.

Cristellaria crepidula (Fichtel & Moll): *Williamson*, 1858, Rec. For. Gt. Br., p. 29, pl. ii, figs. 56, 57 (as *C. subarcuata*).

Drake’s I., and generally distributed in the district; a common form, but not numerically strong.

Cristellaria rotulata (Lamarck): *Williamson*, 1858, Rec. For. Gt. Br., p. 27, pl. ii, figs. 52, 53 (as *C. calcic (typica)*).

Generally distributed, and somewhat more plentiful than *Cristellaria crepidula*.

Brady’s only British locality is off the west coast of Scotland, and he states that the species are doubtfully referrible to this species. Occasional specs., the characteristics of which are well marked, are found in this district.
Foraminifera—contd.}

Generally distributed, but scarce.

Rare.

Polymorphininae.

Drake’s I., and generally distributed throughout district. Not a prominent species.

Polymorphina gibba, d’Orbigny:
Included for present purposes in last-named species.

Polymorphina oblonga, Williamson: *Williamson*, 1858, Rec. For. Gt. Br., p. 71, pl. vi, figs. 149, 149a (as *P. lactea* var. oblonga).
An occasional spec. from Rame-Eddystone Gds.
According to Spence Bate, this species was abundant near the Eddystone in or before 1858. I should not call it other than somewhat scarce now; [on Zostera, Drake’s I. (J.J.L.).]

Occasionally found; [Drake’s I. (J.J.L.).]

Generally distributed and not uncommon, but never abundant.

Globigerinidae.

Drake’s I., and generally distributed throughout the district.
Universally present, and if never abundant at least never scarce.

An occasional spec. only.

An occasional spec. only.

Spiloroidina dehiscens, Parker & Jones: *Brady*, 1884, “Challenger” Report, p. 621, pl. lxxxiv, figs. 8–11.
Rare.

Spirillininae.

Spirillina vivipara, Ehrenberg: *Williamson*, 1858, Rec. For. Gt. Br., p. 92, pl. vii, fig. 202 (as *S. perforata*).
Drake’s I.; Rame-Eddystone, everywhere, but not plentiful.

Spirillina margaritifera, Williamson: *Williamson*, 1858, Rec. For. Gt. Br., p. 93, pl. vii, fig. 204.
Rame-Eddystone, an occasional spec.
Foraminifera—contd.

Rotalinæ.

Generally distributed, but in small numbers.

Cawsand B., at times abundant on the *Zostera*; [Drake’s I. (J.J.L.).]

Generally distributed throughout the district, and in places common.

Discorbina Rosacea (d’Orbigny): *Williamson, 1858, Rec. For. Gt. Br.*, p. 54, pl. iv, figs. 109–111 (as *Rotalina mamilla*).

Cawsand B., very plentiful; Drake’s I., and generally distributed. A common species, universally present, and frequently from fifth to sixth of all species in abundance. But both *Discorbina globularis* and *Discorbina orbicularis* appear to merge in this species, and few specimens are so well characterised as Williamson’s figure.

Common, and of universal distribution, but less abundant than either of the preceding Discorbine.

Discorbina Parisiensis (d’Orbigny): *Brady, 1884, “Challenger” Report*, p. 648, pl. xc, figs. 5, 6, 9–12.

Cawsand B., and sparingly represented in most dredgings, but at places apparently scarce.

Much as *Discorbina parisiensis*.

Planorbulina Mediterranensis (d’Orbigny): *Williamson, 1858, Rec. For. Gt. Br.*, p. 57, pl. v, figs. 119, 120 (as *P. vulgaris*).

Cawsand B.: Drake’s I., and generally distributed through the district, but in very varying abundance. Sometimes third or fourth in numerical precedence, and sometimes very low indeed. There is no present key to its preferences of locality.

Cawsand B.: Drake’s I., generally distributed throughout the district. Present practically everywhere, but in varying abundance. Long ago Montagu noted it adherent to Hydroids, and this is the clue to its distribution; wherever Hydroids are present, this is one of the commonest foraminifera. It also exhibits an apparent preference for *Sertularella gayi* as a host.

Cawsand B., and generally distributed, but not a species which occurs in abundance.

Pulvinulina Menardi (d’Orbigny): *Brady, 1884, “Challenger” Report*, p. 690, pl. ciii, figs. 1, 2.

Somewhat uncommon, and doubtfully an inhabitant of the district, but rather a casual visitor.
 Cawsand B.; Drake's L., everywhere throughout the district competes with Miliolina seminulum and, at places, Truncatulina lobatula for first place in abundance. On fine sands it seems best at home, and one dredging, about 4 m. W. of Rame, in 20 fms., yielded close on 12,000 individuals of this species to each 10 grms. of bottom deposit, while Miliolina seminulum was present in equal numbers.

 A common form of general distribution; never attaining the occasional extreme abundance of Rotalia beccarii, it none the less runs that species very nearly at places.

Polystomellinae.

Nonionina depressula (Walker & Jacob): Brady, 1884, "Challenger" Report, p. 725, pl. cix, figs. 6, 7.
 Cawsand B.; Drake's L., and generally distributed. A common species, present everywhere, and frequently in some abundance.

Nonionina umbilicatula (Montagu): Williamson, 1858, Rec. For. Gt. Br., p. 32, pl. iii, figs. 68, 69 (as N. barleccana).
 Apparently prefers the deeper waters of the area examined; is nowhere a prominent species. Since, however, it also occurs in estuaries, it evidently is not restricted to deeper waters only.

Nonionina turgida (Williamson): Williamson, 1858, Rec. For. Gt. Br., p. 50, pl. iv, figs. 95-97 (as Rotalina).
 Cawsand B., and generally distributed. A small form probably present everywhere, but not abundant.

 Occurrence similar to that of Nonionina turgida.

Nonionina stelligerata, d'Orbigny: Brady, 1884, "Challenger" Report, p. 728, pl. cix, figs. 3-5.
 Cawsand B.; Drake's L., generally distributed, with an apparent preference for the shallower waters. Nowhere present in such numbers as Nonionina depressula.

 Cawsand B.; Drake's L., and generally distributed within the 15 fm. line; outside the 20 fm. line this form is practically unknown; never abundant outside 10 fms., but within that limit sometimes the dominant species. The Zostera of Cawsand B. is at times crowded with this species.

Polystomella subnudosa (Miinster): Brady, 1884, "Challenger" Report, p. 734, pl. cx, fig. 1.
 Not infrequent outside 28 fms.

Polystomella macella (Fichtel & Moll): Brady, 1884, "Challenger" Report, p. 737, pl. cx, figs. 8, 9, 11.
 Drake's L., and probably wherever Polystomella crispa flourishes.
FORAMINIFERA—contd.: Porifera

POLYSTOMELLA STRIATOPUNCTATA (Fichtel & Moll): Williamson, 1858, Rec. For. Gt. Br., p. 42, pl. iii, figs. 81, 82 (as P. umbiliculata).

Cawsand B.; Drake's L., and generally distributed, by no means uncommon at the 30-fm. line and outside.

POLYSTOMELLA ARCTICA, Parker & Jones: Brady, 1884, "Challenger" Report, p. 735, pl. ex, figs. 2–5.

Drake's L.; Cawsand B., and throughout the district, but much less abundant than either Polystomella crispa or Polystomella striatopunctata; a complete series of intermediate forms connects these three species.

PORIFERA.

On the shore between tide-marks, not abundant except in certain localities (E.A.M.): rocks under the Hoe, in abundance (G.P.B.): Wembury B., very abundant, on seaweeds, together with Sycon compressum (E.A.M.).

LEUCOSOLENIA COMPLICATA (Montagu).

Fairly common in rock-pools between tide-marks; also in deeper water off the Mewstone and elsewhere (E.A.M.).

LEUCOSOLENIA VARIABILIS, Haeckel.

Common everywhere in rock-pools between tide-marks (E.A.M.).

CLATHRININAE.

CLATHRINA CORIACEA (Fleming): J. S. Bowerbank, Monogr. Brit. Spongiae, vol. iii, pp. 8, etc., fig. (as Leucosolenia).

Found in small quantities nearly everywhere on rocks between tide-marks; near ladies' bathing-place; on rocks under the pier, etc. (E.A.M.): rocks under the Hoe, in abundance (G.P.B.): Reny Rks. (W.G. & R.A.T.).

Occasionally (W.G.): Rame-Eddystone Gds., not uncommon (S.P.): only below tide-marks and in deep water (E.A.M.).

SYCONIDAE.

This form appears to be an annual. The ova develope in Feb., free larvae occur in July, and sponges 3 mm. long in Sept. (G.P.B.).

Common at most rocky stations at low water (S.P., E.A.M.): occurs in less exposed situations than S. compressum; common under the Hoe except in autumn (G.P.B.).
Millbay Ch. (G.P.B.).

Haploscleridae.

Millbay Pit; Wembury B. (T.V.H.).

Common; Run B.; Drake's I. (R.A.T.).
Apparently an annual (G.P.B.).

Pœciloscleridae.

Plymouth (E.A.M.).

Hymeniacidon sanguineum (Grant): *J. S. Bowerbank*, Monogr. Brit. Spongiae, vol. iii, pp. 81, etc., fig.
Rocks under the Hoe, in abundance (G.P.B.).
 Apparently an annual (G.P.B.).

Looe-Eddystone Gds. (S.P.).

Mewstone Ledge (G.P.B.).

Suberitidae.

Polymastiidae.

Millbay Ch.; Mewstone Ledge; Yealm R. (T.V.H.): 4½ m. S.E. of the Mewstone (G.P.B.).

Clionidae.

Cliona celata, Grant: *J. S. Bowerbank*, Monogr. Brit. Spongiae, vol. iii, pp. 95, etc., fig.

Tethyidae.

Mewstone Ledge (T.V.H., S.P.).
ANTHOMEDUSÆ.

(HYDROID STAGE.)

Clavidae.

Under the Hoe (w.g.).

Bearing gonophores in March (w.g.).

Common in tide-pools under the Hoe (g.c.b., w.g.): common Wembury B., and inside Penlee (g.c.b.); Millbrook (T.V.H.).

Millbay Ch., on stones (E.J.A.).

PODOCORINIDÆ.

Medusæ liberated in May, 1896 (E.T.B.).
Laridæ.

Millbay Ch., on Sabellid tubes (A.J.S.); on Potamilla Torelli (E.T.B.).

Corynidae.

Attached medusæ in September (E.T.B.).

Rocks under the Hoe, occasionally; Mt. Edgcumbe (W.G., R.A.T.): Drake's I.; Devil's Pt.; Garden Battery (E.J.A.).

A single colony on an encrusting Polyzoan dredged from rocky ground between Penlee Pt. and Rame Hd., Aug. 1899 (E.T.B.).

Stauridiidæ.

A small colony in a Laboratory tank, June, 1899 (E.T.B.).

Myriothelidae.

•Eudendriidae.

One of the most abundant Hydroids at Plymouth during the spring; on stones from Millbay Ch., often covering the stones

Eddystone, 30 fms., not common (G.C.B.).

Bougainvilliidae.

Drake's L, at low tide (G.C.B., R.A.T.): Millbay Pit; Millbay Dock, on piles; Asia Sh. (R.A.T.): Cawsand B., on old tin can (E.T.B.): Eddystone Gds., practically confined to the fine sand ground, where it is frequently met with, generally on Polychaete tubes or on other hydroids (E.J.A.).

3 m. S. of the Mewstone, on an old rope, Oct. 1897; Eddystone Buoy, Apr. 1898 (E.T.B.).

Bimeriidae.

Abundant in the Sound on living Nassa reticulata (e.t.b., r.a.t.): Drake’s L, on Nassa (T.v.H.): Cawsand B., on Nassa (r.a.t., s.p.):

With gonophores: Aug., Oct. (e.t.b.).

Tubulariae.

Rocks under the Hoe (e.j.a.): Drake’s L, in low tide rock-pools (g.c.b.): Millbay Ch. and Pit, moderately common (w.g., e.j.a., r.a.t., s.p.): Asia Sh. (e.j.a., r.a.t.): Mt. Edgecumbe (e.j.a.): Duke Rk. (r.a.t.): Eddystone Rk. (e.j.a.).

Breeding: Feb.–Apr. (w.G., r.a.t.): May (r.a.t.).

Breeding in March (w.G.).

Growing profusely on the Duke Rk. Buoy, and on other buoys in the East Ch., 1889 (g.c.b.): Millbay Ch. (w.g., r.a.t.): not taken in 1895 (e.j.a.).

Breeding: Apr.–May (w.g., r.a.t.): Dec. (s.p.).

Corymphidae.

The hydroid generation has only been taken very occasionally, although its medusa is common (e.j.a.): off Ft. Tregantle, 5 specs. in about 3 fm., May 1887 (w.H.I.); 3 specs., May 1895 (e.j.a.): sought for unsuccessfully, 1889–90 (g.c.b.): two specs. on patch of sand in East Ch., May 1895 (e.j.a.): Queen’s Gd., single spec., June 1904 (s.p.): Cawsand B., single spec., June 1904 (s.p.).

Attached medusa in May.

(C. O. STAGE.)

Codonidae.

Plymouth, some specimens in July (w.G.).

Plymouth; Sept., 1897; May, 1898; 1899, fairly common in June, few in July: Cawsand B., a young stage with medusa-buds, Sept. 1897 (e.t.b.).
Plymouth (w.g.): single spec. Aug., 1895; Whitsand B., about 100 specs. May 1896; May 1898, few; July 1899, very abundant off Rame Hdl. (e.t.b.).

Plymouth, rare (w.g.): very abundant about Saltash Bridge, Apr. 1898; occasionally taken in the Sound during May (e.t.b.).
Medusae appeared in a Laboratory tank April 1898, and were reared to the adult stage (e.t.b.).

The Sound, a single spec. of an early stage (e.t.b.).

Plymouth, Sept. 1893; July 1899, two early stages (e.t.b.).

Single spec., July 1897 (e.t.b.).

Plymouth (e.t.b.).
Medusae budded off in tank in March (e.t.b.).

Steenstrupia rubra, Forbes [Hydroid = Corymorpha nutans, M. Sars]:
Abundant in spring and early summer (E.J.A.).

Not uncommon Apr. 1898 (e.t.b.); few specs. with numerous buds, Apr. 1894 (w.g.).

Single spec. 4 m. S. of Breakwater, Sept. 1897; Apr.–June 1898, few specs. (e.t.b.).

Tiaridæ.

Plymouth (w.g., etb.): Sept. 1893, fairly common; Sept. 1895, scarce; Sept. 1897, several specs. from the Sound and outside grounds; May 1898, two specs. near the Eddystone; June 1898, single spec. near the Mewstone; July 1899, common (e.t.b.).

Plymouth (w.g.): Sept. 1897, 2 specs. 4 m. S. of the Breakwater and 2 specs. 5 m. E. of the Eddystone, all young stages; May–June 1898; June 1899, one or two specs. occasionally (e.t.b.).
Plymouth, Sept. 1897, of varying frequency in the Sound and outside grounds, a large shoal off the Eddystone on Sept. 15th; May 1898, a large shoal in the Sound on May 2nd, it disappeared from the Sound on the 12th, and was off the Eddystone from the 16th to the 26th, but no specimens were then seen in the Sound or near the Mewstone; 1899, June–Aug., very scarce (e.t.b.).

Free-swimming medusa in March (w.f.r.w.); July–Aug. (w.g.).

Sept. 1897, intermediate stages occasionally met with in the Sound and outside; June 1898, single spec. 10 m. S. of the Mewstone (e.t.b.).

Sept. 1897, very scarce; Sept. 1898, scarce (e.t.b.).

1898, a young stage in May, 4 specs. in June (e.t.b.).

Plymouth, end of April (e.t.b.).

Plymouth, end of April (w.g.).

Numerous specs. during latter half of Feb. and March, 1893; less abundant in 1894 (w.g.): 1898, few specs. in Apr. and May (e.t.b.).

Cladonemidae.

Plymouth, 2 specs., Aug. 1895; Cawsand B., single spec. of an early stage, Sept. 1897 (e.t.b.).

Single spec., May 1896; Sept. 1897, earlier and intermediate stages frequently taken, adult very scarce; June–Aug. 1899, very scarce, only 2 specs. taken (e.t.b.).
Leptomedusæ.

(HYDROID STAGE.)

Campanulariidae.

 Ubiquitous on Alge and on other Hydroids (g.c.b.): L.W.−35 fms. (r.a.t., s.p.).
 Breeding: Mar. (r.a.t.): Apr. (a.i.s.): July (e.t.b.). Medusa produced in Laboratory tanks, May 1895 (c.c.n.). Medusa bearing gonothecæ, July (e.t.b.).

 The Hydroid form has not yet been recorded (s.p.).

 Rame Hd. (w.i.): Rame−Eddystone Gds., on Antennularia antennaria and Sertulariella gayi (r.a.t.): Whitsand B., on worm-tubes (g.c.b.): Eddystone Gds., on the fine sand area, growing on Pecten opercularis shells, Hyd rallmania, Bougainvillia, Sertularia argentea, and Cellaria (e.j.a.).

 Very common, generally on Laminaria (g.c.b., w.i., r.a.t., s.p.): Millbay Dock, on the piles (r.a.t.): Rame−Eddystone Gds., on Lepralia (r.a.t.).
 Bearing gonophores: Mar.–Sept. (w.g.).

 From trawl refuse from outside the Eddystone (g.c.b.): S. of Eddystone (e.j.a.).

 Lynher R., large colonies, up to 13 inches, in deep water under Sheviock Wood, July 1898 (e.w.l.i., w.i.b., e.t.b.): Bovisand B. (t.v.h.).

 Bovisand B., at low tide (g.c.b.).

 Very common on weeds and in rock-pools below the Hoe (g.c.b.): common on the shore between tide-marks; on hulks and buoys in the Sound and Cattewater; Phoenix Wharf and Millbay Dock, on piles: Millbay Pit (r.a.t.): Mt. Edgecumbe (e.j.a.): Saltash Pier, very abundant Oct. 1897 (e.t.b.).
 Gonosomes well developed in May (c.c.n.).

On stems of *Tabularia indivisa*; Millbay (c.c.N.).

Mewstone Gds.; Eddystone Gds., occasionally on the fine sand areas (E.J.A.).

Millbay Ch.; Hanoaze (E.J.A.): Millbay Dock, on piles; on hulls in Cattewater; between tide-marks Turnchapel, Rame B., and Yealm R.; Asia Sh. (r.a.t.): Mt. Edgecombe, at low tide (c.c.N., E.J.A.); Barn Pool on *Fucus*; Saltash Pier (E.T.B.).

Sometimes grows in great profusion in the Laboratory tanks (E.J.A.).

Campanulinidæ.

Winter Sh., abundant on *Delesseria*; between Penlee Pt. and Rame Hd., on Algae and stems of *Tabularia*; Meewstone Gds., many colonies on a piece of rope (E.T.B.).

Gonophores: July (E.T.B.).

The type specimen from Plymouth, on a stone associated with *Chocia multicornis* (c.c.N.).

Millbay Dock, on young stems of *Tabularia indivisa* and on *Eudendrium* (c.c.N.).

Lafoïdæ.

Common in 15–35 fms., on shells, worm-tubes, other Hydroids, etc. (r.a.t., s.p.): Eddystone Gds., both the creeping and branched varieties, the latter especially upon the fine sand areas where it is attached to shells or Polychaete tubes (E.J.A.).

The Neomenian *Myzomenia* (= *Dondcrisia*) *banyulensis* is frequently associated with the erect form of *L. dumosa* (E.J.A., s.p.).
Leptomedusae—contd.

Eddystone Gds. (E.J.A.).

On stems of Halocccu tenellum (C.C.N.).

Trichydridae.

Coppeiniidae.

Haleciidæ.

Leptomedusae—contd.

Breeding: Apr. (C.C.N.).

Sertulariidae.

Leptomedusae—contd.

Queen's Gd.: Asia Sh.; Millbay Ch. and Pit (r.a.t., s.p.): Eddy-stone Gds., not infrequent on Peecten opercularis shells, and on other Hydroids (e.j.a.): Yealm R. (r.a.t.): Stoke Pt. Gds. (r.a.t., s.p.): Saltash Pier (e.t.b.).
Breeding: Feb. (w.g.): Mar., Apr. (r.a.t.).

Common in trawl refuse from the Eddystone (g.c.b.): Queen's Gd. (r.a.t., s.p.).
Gonophores ripe: March (r.a.t.).

Wembury B.; Eddystone Rk., abundant Apr. 1898; Eddystone Buoy (e.t.b.).

Abundant on rocks and weeds, especially Fucus, between tideremarks (g.c.b., r.a.t., s.p.): buoy near Breakwater (r.a.t.).
Breeding: Mar.—July (w.g.).

Not uncommon in the Sound; common, 15–30 fms., on stony ground, and on sand with stones and shells: always attached to stones or shells (r.a.t.): abundant in the Hamoaze (e.j.a.): Millbay Pit; Duke Rk.; Mewstone Gds.; Cawsand B.; Ramée-Eddystone Gds. (r.a.t.): Eddystone Gds., occasional specs. (e.j.a.).
Breeding: Jan. (w.g.): Feb.—Apr. (r.a.t.).

Wembury B.; stones and shells off Mewstone (g.c.b.): Mewstone Ledge (r.a.t.).

Plumulariidae.

Not uncommon in the Sound; common outside, 15–30 fms., especially on medium gravel and muddy sand (r.a.t., s.p.): Eddy-stone Gds. (e.j.a., s.p.): Cawsand B.; Ramée-Eddystone Gds.; Mewstone Gds. (r.a.t., s.p.): Stoke Pt. Gds.; Looe-Eddystone Gds. (s.p.).
Breeding: Apr. (r.a.t.): May (w.g., r.a.t., s.p.): June—July (w.g.).

With A. antennina, but less abundant (e.j.a., r.a.t., s.p.).
Breeding: Apr. (r.a.t.): May (w.g., r.a.t., s.p.).

Eddystone Rk. (c.c.n., e.t.b.).
Moderately common, 15–30 fins., on fine sand and sand with gravel (r.a.t., s.p.): Eddystone Gds. (e.j.a., r.a.t., g.c.b., s.p.): Rame-Eddystone Gds. (r.a.t., s.p.): Stoke Pt. Gds. (s.p.).
Breeding: Apr.–June (r.a.t.): Aug. (w.G.).
The Aplacophoran Rhopalomenia Agyaopolinenic is very commonly met with twisted round the base of the stem of this form (e.j.a., r.a.t., s.p.).

Common on the fronds of Halidrys siliquosa; Bovisand B.; off Mewstone (g.c.b.): Rame-Eddystone Gds. (r.a.t.): Yealm R. (t.v.h., a.s.): Penlee-Rame Gds.; N. of Mewstone (e.j.a.): Millbay Ch.; Queen’s Gd.: Wembury B.; occasional specs. (e.j.a., r.a.t.).
Breeding: May (e.j.a., r.a.t.): Aug. (w.G.).

Not uncommon, Aug.–Oct.; Wembury B.; off the Mewstone (g.c.b.): Eddystone Gds. (e.j.a., e.t.b.): Rame-Eddystone Gds.; Mewstone Ledge (r.a.t.): Bovisand B. (g.c.b.).

Growing on Antennularia rimosac (c.c.n.).
Bearing gonophores: Apr. or May (c.c.n.).

Not uncommon; Duke Rk.; Winter Sh.; off Stoke Pt. (g.c.b.): Queen’s Gd., occasionally (t.v.h., r.a.t., s.p.): Eddystone Gds., the most abundant species on both the fine sands on other Hydroids, and on the gravels, where Hincks’ green variety is often very abundant on Chelopterus tubes (e.j.a.): Rame-Eddystone Gds., on Chelopterus and Terebellid tubes, Cellaria, Antennularia, Aysidiella scabra, etc. (r.a.t.).
With gonophores: Apr.–May (r.a.t.): Aug. (e.j.a.).

On weed, not very common (g.c.b.): Winter Sh., on Delgressia; Millbay Dock, on the piles; Yealm Est., on Laminaria (e.t.b.).

Eddystone Gds., single colony on shell of Protex mavecinus (e.j.a.): Wembury B. (g.c.b.): Stoke Pt. Gds. (s.p.).

Parasitic on P. selaca and on Antennularia (c.c.n.).
Leptomedusæ—contd.

Common in the Sound; Hincks' branched variety is very common, generally on Halichondria panicea (G.C.B.): Millbay Ch. and Pit, not uncommon: Millbay Dock, on piles; Tinside, occasionally; Asia Sh., occasionally; Rame-Eddystone Gds., on Chaeopterus tubes (R.A.T.): Eddystone Gds., generally on other Hydroids or on Polychaete tubes (E.J.A.).
Breeding: Feb.—June (W.G.).

(MEDUSA STAGE.)

Eucopidæ.

A single spec., in the Sound, Aug. 1897 (E.T.B.);

Obelia lucifera: E. Forbes, Monogr. Brit. Naked-eyed Med., p. 52, fig. (as Thaumantias). Very plentiful, June 1892 (E.J.B.): by far the most abundant Leptomedusan in the Sound and outside, Sept. 1897 (E.T.B.);

Common; 1898, very abundant Apr.—May; 1899, abundant in June (E.T.B.);

Apr. 1895 (E.J.A.).

Mitrocomella fulva: E. T. Browne, Bergens Mus. Aarb., vol. 1903, No. 4, p. 17, fig.
Single spec., off the Eddystone, May 1898 (E.T.B.).
Sept. 1893; Sept. 1895; Sept. 1897, few specs. nearly always present in townettings; June 1898, only once taken (E.T.B.).

Sept. 1893; Sept. 1897; Apr.–May 1898; June–July 1899; never very abundant, but a few specimens generally taken (E.T.B.).

Nearly always present from the spring until autumn (E.T.B.).

Sept. 1895, single spec.; 1899, four specs. in July, one in Aug. (E.T.B.).

Oct. 1892, several specs. (w.g.); Sept. 1897, single spec. from the Sound, two specs. 3 m. S.W. of the Mewstone, all young stages (E.T.B.).

TRACHYMEDUSÆ.

Geryonidae.

Solmaridae.

Plymouth, Sept., 1895 (E.T.B.).
SIPHONOPHORA.

Monophyidae.

Agalmiæ.

Mar., 1902, single specimen from ½ m. S.W. of the Mewstone and from West Channel (R.A.T.).

STAUROMEDUSAÆ.

Lucernariidæ.

Reny Rks., several small specs. with Haliclystus; single specs. from Cawsand B. and Whitsand B. (W.I.B.).

Mount Edgecumbe; Batten (E.J.A.): Drake's l.; Rame Hd. (W.G.).

DISCOMEDUSAÆ.

Pelagiidæ.

Occasionally during the summer months (s.P.).

Planulae liberated in Aug. and reared to Scyphistoma stage (E.T.B.).

Cyaneidæ.

Plymouth (E.T.B.).

Occasionally, every summer (A.J.S.).
202

PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Discomedusæ—contd.: Alcyonaria]

Ulnmaridæ.

Aurelia aurita, Lamarck: E. Haeckel, Syst. Medus., Denkschr. med.-

Most abundant in the estuaries in spring and summer; R. Tamar;
Hamoaze; Yealm R.; carried out into the Channel towards the

The ephyra appear in February and may be taken in shoals
during the first fortnight of March, they metamorphose towards
the end of the month and begin to disappear. The young meduse
reappear towards the end of May and reach their maximum
abundance during June (w.G.).

Pilemidæ.

Occasionally (s.p.).

ALCYONARIA.

Corculariidæ.

Soc., vol. ix, p. 163, fig.

Eddystone Gds.; the red form is found, often in abundance, on
old shells, and is generally most plentiful on clean shell-gravel
(E.J.A., s.p.): Stoke Pt. Gds.; Rame-Eddystone Gds.; etc. (s.p.).

Alcyonidæ.

Generally present in dredgings from the Sound and outside
grounds, but the colonies are usually small (r.a.t., s.p.): Promenade
Pier, large colonies are occasionally common, at extreme low water
(E.J.A., r.a.t., s.p.): Eddystone Gds., large colonies abundant on the
fine sand of the ‘Outer’ Trawling Gds. and S. of the Eddystone,
attached to valves of Cardium edentulum, etc. (E.J.A.).

Mewstone Ledge (r.a.t.).

p. 663, fig.

Mewstone Ledge (s.p.): 3 m. S.E. of the Mewstone (E.J.A.).

Plexauridæ.

More or less common everywhere on rocky ground, 10–25 fms.
(s.p.): Mewstone Ledge, very common (E.J.A., r.a.t., s.p.): Queen's
Gd., rare (r.a.t., s.p.): Rame-Eddystone Gds.; Stoke Pt. Gds. (s.p.).

Virgulariidæ.

Rept. Pennatulida Oban, p. 51, fig.

Single spec., Nr. Eddystone (w.p.m.): 6 m. W.S.W. of Penlee Pt.
(r.a.t.): Stoke Pt. Gds. (s.p.).
ZOANTHARIA.

Cerianthidæ.

The adult form has only once been taken, in muddy sand on the N. side of Drake’s I., but the free-swimming larva (Arachnaeidus albidus) is common during April (r.a.t.).

Zoanthidæ.

Duke Rk., common (w.G.): Millbay Ch., not uncommon (w.G., r.a.t.).

Mewstone Gds., common on shells inhabited by Anapagurus laris (r.a.t.): Eddystone Gds., a characteristic species of, and confined to, the ‘Outer’ Trawling Gds. (e.j.a.).

Edwardsiidæ.

Yealm Sand-bank, single spec. (r.a.t.).

Millbay Ch. (s.p.): Church Reef, Wembury B. (r.a.t.).

Ilyanthidæ.

Yealm Sand-bank, common (a.j.s., r.a.t.).

The larvae parasitic on Medusæ (Irene, Phialidium, etc.), are common in May (w.G., e.j.a., r.a.t.).

Single spec., few miles off the Mewstone, 20 fms. (w.G.).

Actiniidæ.

Common on rocks between tide-marks (r.a.t., s.p.).

Breeding: Jan.—Aug. (r.a.t.).

More or less common everywhere on rocks between tide-marks and on the Zostera beds. The slate-coloured variety is more abundant than the typical form with violet-tipped, green tentacles, and on the Zostera it is alone present. A flesh-coloured variety is occasionally met with. Yealm Sand-bank, brownish var. only (s.p.).

Breeding, in tanks, Aug.—Sept. (S.P.).

Common on the shore where the ground is suitable, this form seeming to prefer muddy sand with stone. Not uncommon in dredgings from Millbay Ch., Mallard Sh., etc. (R.A.T.). Especially common in the estuaries of the Yealm, Tamar, and Plym (E.J.A.).

Breeding: Jan.—Feb.; Dec. (W.G.).

Eddystone Gds., few specimens on the ‘outer’ trawling grounds, and on the fine sand S. of the Eddystone, inside valves of Cardium echinatum (E.J.A.).

Occasionally in the deeper water outside the Breakwater, and in Millbay Ch. (W.G.): Rame-Eddystone Gds., single spec. on Hydroid stem (R.A.T.).

Breeding: Jan.—Apr. (W.G.).

Common at Plymouth (W.G.).

Rare within the Sound, but common in the neighbourhood (W.G.): Promenade Pier, not uncommon on the piles at extreme low tide (R.A.T., A.J.S.): Millbay Ch., not uncommon (R.A.T.).

[Zoantharia—contd.]

More or less common everywhere 15–30 fms., associated with Eupagurus bernhardus (s.p.).

Rocks below the Lab., occasionally (g.c.b., r.a.t.): Reny Rks., not uncommon (r.a.t.).

Thoe sphyrodeta (Gosse): P. H. Gosse, Hist. Brit. Sea-Anem., p. 73, fig. (as Sagartia).

Drake’s T., at low tide (w.n.): Millbay Ch., occasionally (r.a.t., e.j.a.).

Mewstone Ledge, on Eunicella, not uncommon (t.v.h., a.j.s., R.A.T., S.P.).

Breeding: Mar. (r.a.t.): Apr.; Sept. (w.G.).

Corallimorphidae.

Amphianthidae.

Urticinae.

Not uncommon on rocks between tide-marks and occasionally in 10–20 fms. in the Sound. The specimens are not usually of great size, but large ones are occasionally trawled in 20–40 fms. (R.A.T.).

Breeding: May (w.G.).

Turbinolidae.

More or less abundant on all rocky stations, L.W.–30 fms., under boulders and in rock-crevices (s.P.): The Breakwater; Mewstone Ledge, etc. (E.J.A., S.P.).

The Cirripede Pyrgoma anglicum is commonly found attached to the margin of the cup of this species; and frequently several occur upon a single coral (s.P.).
CTENOFORMA.

Abundant in May of particular years (w.g.): Sept., 1900 (A.J.S.).

Plymouth, few small specs. (E.T.B.).

Always abundant towards the end of May (w.g.). Adults not seen after June; minute specs. appeared in Sept. (E.J.B.): Aug. (T.V.H.).

ECHINODERMA.

Synaptidae.

Drake's I., occasional specs.; Yealm R., not uncommon between tide-marks in coarse, loose sand (R.A.T.).

CUCUMARIIDAE.

Frequently in some numbers on Hydroids, Algae, etc., from rocky ground and from the trawling grounds; below tide-marks to 25 fms. (s.P.): often abundant on rocky ground off the Mewstone (E.J.A.): Yealm R., not uncommon (R.A.T.).

Cucumaria hyndmani (Thompson): This species may be readily recognised by the silvery appearance of its test.

Cucumaria normani*: *S. Pace*, see p. 309.
Not uncommon on rocky ground in crevices and under stones, L.W.–10 fms. (s.P.).

Cucumaria saxicola†, Brady & Robertson: *S. Pace*, see p. 306.
Not uncommon on rocky ground, in crevices and under stones, L.W.–10 fms. (s.P.).

Occasional specs. from Millbay Ch., Cattewater, Cawsand B.; not uncommon on the Mewstone Gds., and occasionally met with in 15–35 fms. on other grounds (R.A.T.).

* Previously recorded as *C. Pauci*.
† Previously recorded as *C. pentodes*.
Holothuriidae.

Antedonidae.

Gymnasteriidae.

Occasionally at about 3 m. S. of the Breakwater (E.J.A., S.P.):

Asterinidae.

Solasteridae.

Fairly common on coarse sand and gravel, 15–35 fms. (s.p.): the most plentiful starfish in 1892 (w.g.): Mewstone Gds., Rame-Eddystone Gds. (r.a.t., s.p.): Eddystone Gds. (E.J.A., s.p.): Stoke Pt. Gds. (s.p.): Cattewater, probably from trawl refuse (r.a.t., s.p.).

Gonads ripe in Mar. (t.y.ii.).

Echinasteridae.

Remy Rks., occasional specs. at extreme low water (r.a.t.): not uncommon on the Mewstone Gds. (r.a.t., s.p.): Eddystone Gds., occasionally on clean medium gravel (E.J.A., s.p.): Stoke Pt. Gds. (s.p.).

Asteriidae.

More or less common at all stations below low-water mark, but somewhat uncertain in its occurrence (s.p.): large specs. generally from deeper water, 50 fms. and over (E.J.A.): the Breakwater, not uncommon; Yealm R. not uncommon in dredgings, large specs. occasionally on the Sand-bank (r.a.t.): Eddystone Gds., most abundant where Peten opercularis is plentiful (E.J.A.).

Occurs below tide-marks at most stations, but in very varying abundance in different years; it is generally plentiful, but occasionally it would seem to be almost absent: * a smaller, violet-coloured var. is met with on coarse ground in 15–30 fms. (E.J.A., s.p.).

Ophiolepidae.

Lives generally on coarser soil and is less abundant than O. ciliaris (E.J.A.): Mewstone Gds. (r.a.t.): Stoke Pt. Gds., fairly common; Rame-Eddystone Gds. (s.p.): Eddystone Gds. (E.J.A., s.p.).

Breeding: May (r.a.t.): Aug. (s.p.).

* Not a single spec. of A. rubens was obtainable from towards the end of Oct. 1903 until well on in the spring of 1904, although repeated search was made for it both in the Sound and in Cawsand B. (s.p.).
Amphiuridae.

Breeding: May-Sept. (W.G.).

Single spec., 2 m. W.S.W. of the Eddystone (E.J.A.).

Ophiocomidae.

This form is almost invariably found associated with Ophiolithrix fragilis, but is generally far less abundant than the latter species, although occasionally it is the predominant form; at most stations the specimens are brilliantly coloured, but sometimes, as on the Mallard Sh., it is possible to get a pure gathering of the typical black form (S.P.): Mallard Sh., in abundance together with Antedon (W.G., S.P.): Millbay Pit, common; Mewstone 'Echinoderm' Gd. (R.A.T., S.P.): Eddystone Gds., occasional spec. on stony and rocky ground, 15-30 fms. (E.J.A., S.P.): Rame-Eddystone Gds.; Stoke Pt. Gds.; not uncommon but very local (S.P.).

Ophiocoma—cond.

Ophiostichidae.

Generally distributed and enormously abundant at certain stations, L.W.–35 fms.; a small, solitary, greyish-coloured form occurs under stones on the shore; in deeper water it grows to a much larger size and is usually very brilliantly coloured; this latter form favours a coarse gravel ground and lives in such profusion where it occurs that the dredge will frequently come up completely filled with a practically pure gathering of this species alone (s.P.).

Gonads ripe: Mar.–June (r.a.t.): Aug.–Sept. (s.p.). Spawning: Oct. (r.a.t.).

Echinidae.

Not uncommon in 15–35 fms., chiefly on the finer grounds (r.a.t., s.p.): more common in deeper water, where it replaces E. esculentus (e.j.a.): Mewstone Gds. (r.a.t.): Stoke Pt. Gds. (s.p.): Rame-Edystone Gds. (r.a.t., s.p.): Eddystone Gds. (e.j.a., s.p.): Looe-Edystone Gds. (s.p.).

The Polychaete Siphonostoma affinis is often found associated with this form, crawling among its spines (r.a.t.).

Breeding in July (w.G.).

Queen’s Gd., occasionally; moderately common in 15–35 fms., especially on the Mewstone ‘Echinoderm’ Gd.; Rame-Edystone Gds. (r.a.t., s.p.): Eddystone Gds. (e.j.a., s.p.): Mewstone Ledge; Stoke Pt. Gds., common (s.p.): Cattewater, probably from trawl refuse (r.a.t., s.p.).

The Polychaete Sclerodiscus assimilis is often found among the oral spines of this species (r.a.t.).

Gonads ripe: Mar. (r.a.t.): May (s.p.).

Common under stones at all shore stations, and frequently met with in dredgings, L.W.–35 fms. (s.p.): specs. from the deeper water stations are usually small; largest ones from Church Reef, Wembury B. (r.a.t.): Yealm R., very common near the oyster beds (e.j.a.).

Breeding: May (w.G.).

Clypeastridae.

Not uncommon on gravel bottom, 10–35 fms. (s.p.): Queen’s Gd., occasionally (r.a.t., s.p.): Mewstone Ledge shell gravel, very occasionally; Mewstone ‘Amphiocapsa’ Gd., moderately common (r.a.t.): Eddystone Gds. (e.j.a.).
Spatangidæ.

The Mollusc Montacuta substriata is very commonly attached to the oral spines of this species (R.A.T., s.P.).

Echinoïdæ.

The Mollusc Tellima ferruginosa is found associated with this species (R.A.T.).

Looe-Eddystone Gds., rare, associated with E. pennatifidum, but its habitat is probably on finer ground than that of the latter species (s.P.).

TURBELLARIA.

(Nomenclature that of F. W. Gamble, British Marine Turbellaria.

Proporidæ.

Proporus venenosus (O. Schmidt).

Monoporus rubropunctatus (O. Schmidt).

Aphanostomidæ.

Aphanostoma diversicolor, Oersted.

Various localities between tide-marks (F.W.G.).

Aphanostoma elegans, Jensen.

One specimen amongst Ulva at Redding Pt. (F.W.G.).

Among Zostera from Cawsand B., rare (F.W.G.).

CONVOLUTA PARADOXA, Oersted.
Littoral zone, widely distributed, nowhere abundant (f.w.g.).

CONVOLUTA FLAVIRACILIUM, Jensen.
Among sand in creeks at Picklecombe Fort, Wembury B. and
Bovisand B. (f.w.g.).

Microstomidae.

MICROSTOMA GREENLANDICUM, Lev.
Among Ulva, Redding Pt. (f.w.g.).

Mesostomidae.

PROMESOSTOMA MARMORATUM (Schulze).
Not uncommon in tide-pools in Wembury B., Drake's I., and
Redding Pt. (f.w.g.).

PROMESOSTOMA OVOIDEUM (O. Schmidt).
Occasionally dredged near Duke Rk. (f.w.g.).

PROMESOSTOMA SOLEA (O. Schmidt).
Abundant in dredging from all localities (f.w.g.).

PROMESOSTOMA AGILE (Levinsen).
Among Zostera in Cawsand B. (f.w.g.).

BYRSOPHLEBS GRAFFI, Jensen.
Drake's I., low spring-tide; amongst algæ (f.w.g.).

BYRSOPHLEBS INTERMEDIA, v. Graff.
Drake's I., low spring-tide; amongst algæ (f.w.g.).

Plymouth Sound (e.g.g.).

PROXENETES FLABELLIFER, Jensen.
Tide-pools on north side of Cawsand B. (f.w.g.).

MESOSTOMA NEAPOLITANUM, v. Graff (?).
One specimen among Fuci on inner side of Breakwater (f.w.g.).

Proboscidae.

PSEUDORHYNCHUS BIFIDUS (McIntosh).
Plymouth Sound (e.g.g.).

ACRORHYNCHUS CALEDONICUS (Claparède).
Tide-pools near Picklecombe and Redding Pt.; less commonly
in Wembury B. (f.w.g.).

MACRORHYNCHUS NAEGELEI (Kölliker).
Plentiful in August on inner side of Breakwater (f.w.g.).

MACRORHYNCHUS CREOCEUS (Fabricius).
Dredged once on New Gds. (f.w.g.).

MACRORHYNCHUS HELGOLANDICUS (Metschnikoff).
Once on New Gds. (f.w.g.).

GYRATOR HERMAPHRODITUS, Ehrbg.
Tide pools on rocks in front of Laboratory: water sometimes
brackish. In early winter, not in spring (e.g.g.).

HYPORHYNCHUS ARMATUS (Jensen).
Among Zostera in Cawsand B.; tide-pools Redding Pt. (f.w.g.).
Tanks in Laboratory (e.g.g.).
In the context of *Plymouth Marine Invertebrate Fauna*, the following species are mentioned:

Turbellaria—contd.

Hyporhynchus penicillatus (Schmidt).
One specimen among *Zostera* in Cawsand B. (f.w.g.).

Vorticidae.

Pro vortex balticus (Schultze).
Between tide-marks, chiefly at Wembury B. (f.w.g.).

Pro vortex affinis (Jensen).
Drake's I. among algae (f.w.g.).

Pro vortex rubrobacillus, Gamble.
Dredged off New Gds. (f.w.g.).

Encysted stage common on all stony shores at low water (w.i.b., s.p.).

Plagiostomidae.

Plagiostoma dioicum (Metschnikoff).
Duke Rk. and Wembury B. (f.w.g.).

Plagiostoma elongatum, Gamble.
Wembury B., among sand; Breakwater (f.w.g.).

Plagiostoma pseudomaculatum, Gamble.
Among weed-tubes of *Polydora ceca* in Hamoaze (f.w.g.).

Plagiostoma sagitta, Uljanin.
Tide-pool Redding Pt. (f.w.g.).

Plagiostoma caudatum, Levinsen.
One specimen among *Zostera* in Cawsand B. (f.w.g.).

Plagiostoma vittatum (Frey u. Leuckart)
Abundant littoral species in all localities. Egg capsules from Breakwater in September (f.w.g.).
The tanks in the Laboratory swarm with them (e.g.g.).

Plagiostoma Koreni, Jensen.
Breakwater and Redding Pt. Tank in Laboratory (f.w.g.).

? **Plagiostoma siphonophorum** (Schmidt).
A specimen from Millbay Ch. (f.w.g.).

Plagiostoma Girardi (Schmidt).
Low spring-tides, Wembury B.; tide-pools north side of Cawsand B.
Not uncommon Duke Rk. and Millbay Ch. (f.w.g.).

Vorticeros auriculatum (O. F. Müller).
An abundant littoral species in all localities (f.w.g.).

One specimen New Gds.; one on inner side of Breakwater (f.w.g.).

Enterostoma austriacum, v. Graff.
Common in Sound below 5 fms. (f.w.g.).

Enterostoma fingalianum, Claparède.
Among *Floridae*, Wembury B. (f.w.g.).

Cylindrostoma quadriloculatum, (R. Leuckart).
Abundant among *Floridae*, Wembury B. (f.w.g.).
Tanks in Laboratory (e.g.g.).

Cylindrostoma inerme (Hallez).
Duke Rk., Millbay Ch., Hamoaze (f.w.g.).
Cylindrostoma elongatum, Levinsen.
Tide-pools, Wembury B. (f.w.g.).

Monophorum striatum (v. Graff).
Duke Rk., a single specimen (f.w.g.).

Monotidae.

Monotus lineatus (O. F. Müller).
Not uncommon amongst Ulva, Redding Pt. (f.w.g.).

Monotus fuscus (Oersted).
Abundant among Balani, Ulva, and generally throughout the littoral zone (f.w.g.).

Monotus albus, Levinsen.
Tide-pools below Picklecombe Fort (f.w.g.).

Automolos unipunctatus (Oersted).
Rarely among algeæ, Duke Rk. (f.w.g.).

Automolos horridus, Gamble.
One specimen from Hamoaze (f.w.g.).

(?) Automolos ophioccephalus (Schmidt).
Millbay Ch. (f.w.g.).

Planariidae.

Fovia affinis, Stimpson.
In a sandy creek, Wembury B. (f.w.g.): Cawsand B.; Whitsand B.; on drift weed (w.l.B.).

Cryptocelis alba, Lang.
Millbay Ch.; Mewstone Amphiocous Gd., Nov., 1899 (w.l.B.).
Confirmed F. W. Gamble.

Leptoplana tremellaris (O. F. Müller).
Generally, under stones and shells, from littoral zone to 15 fms. (f.w.g., w.l.B.): plentiful in July and August, scarcer in September. Difficult to find in February (f.w.g.): Millbay Pit; about 2 m. S. of Mewstone; Yealm R. (w.l.B.).

Leptoplana dræbachensis, Oersted.
Plymouth Sound (f.w.g.).

Leptoplana fallax (Quatrefages).
Millbay Ch. (f.w.g.).

Leptoplanidæ.

Cryptocelis alba, Lang.
Millbay Ch.; Mewstone Amphiocous Gd., Nov., 1899 (w.l.B.).
Confirmed F. W. Gamble.

Leptoplana tremellaris (O. F. Müller).
Generally, under stones and shells, from littoral zone to 15 fms. (f.w.g., w.l.B.): plentiful in July and August, scarcer in September. Difficult to find in February (f.w.g.): Millbay Pit; about 2 m. S. of Mewstone; Yealm R. (w.l.B.).

Leptoplana dræbachensis, Oersted.
Plymouth Sound (f.w.g.).

Stylochoplana maculata, Quatrefages.
Cawsand B., common on trawled weed, July, 1898 (w.l.B.).

Planoceridæ.

Stylochoplana maculata, Quatrefages.
Cawsand B., common on trawled weed, July, 1898 (w.l.B.).

Prostheceraeus vittatus (Montagu).
Off Stoke Pt. (j.T.c.): Sound (w.g.) [f.w.c.]: Queen's Gd., occasionally; Yealm R., not uncommon, sometimes very large (w.l.B.).

Cycloporus papillosus, Lang.
On Ascidians and sponges dredged in Cattewater and outside Sound (f.w.g.): on Botryllus under stones below the Laboratory (e.J.a.): Barn Pool, var. levigatus; Mt. Edgcumbe; on Fucus with Botrylloids; Queen's Gd.; Duke Rk. (w.l.B.): common on Botryllus (s.p.).
PLYMOUTH MARINE INVERTEBRATE FAUNA. 215

[TURBELLARIA—contd. : NEMERTINI]

EURYLEPTA CORNUTA (O. F. Müller).
Occasionally dredged on Duke Rk. and in Yealm R. (F.W.G.): Drake's I., N. shore; Yealm R.; off the Mewstone, on gravel and rough ground; Rame-Eddystone Gds. (W.I.B.): Asia Sh.; Queen's Gd.; etc. (S.P.).

OLIGOCLASTUS SANGUINOLENTUS (Quatrefages).

STYLOSTOMUM VARIABILE, LANG.
Estuary of Yealm, Duke Rk. Young stages between tide-marks at Redding Pt. and round Mallard Buoy in September (F.W.G.); not uncommon on stony bottom in the Sound and Yealm R.; Cawsand B., on drift weed; Millbay Docks, on Piles with Ascidiella (W.I.B.).

PROSTHIOSTOMIDÆ.

NEMERTINI.

Nomenclature:—Bürger. Nematiten des Golfes von Neapel. 1895. (Unless otherwise stated.)

CARINELLIDÆ.

CARINELLA LINEARIS, Mcintosh.
Two specimens Duke Rk. (1892) (T.H.R.).

CARINELLA POLYMORPHA (Renier).
One specimen, Stoke Pt., 25 fms. 22.3.92 (T.H.R.): Mewstone Amphioxus ground, 10.9.95; about half-way between Rame and Eddystone, 20.12.28; 4 m. W. of Eddystone, 9.4.00, one specimen on each occasion (W.I.B.).

CARINELLA SUPERBA (Kölker) (= C. annulata, Montagu of Riches and of Bürger's earlier works).

CARINELLA ANNULATA, Montagu (= C. McIntoshii of Bürger's earlier papers and of Riches; = C. aragoi, Joubin).

CEPHALOTHRICIDÆ.

CEPHALOTHRIX BIOCULATA, Oersted.
CEPHALOTHRIS LINEARIS (Rathke), Oersted.
 Rum B. in sand between tide-marks; dredged outside Breakwater
 (T.H.R.).
 Breeding in March (W.G.).

EUNEMERTIDAE.

EUNEMERTES NEESI (Oersted).
 Abundant on Breakwater, rare elsewhere (T.H.R.): the Bridge,

EUNEMERTES GRACILIS, Johnston.
 Breakwater, among Laminaria roots (T.H.R.): Drake’s I. (R.A.T.,
 W.I.B.).

EUNEMERTES ECHINODERMA (Marion).
 Yealm, one specimen dredged 25.1.99, one from sand-bank 12.2.00
 (W.I.B.): Yealm at low water (R.C.P.).

NEMERTOPSIS FLAVIDA (McIntosh) Beaumont (= Tetrastemma flavidum,
 McIntosh, Riches, Joubin, neo Bürger).

NEMERTOPSIS TENUES, Bürger (= Tetrastemma flavidum, var. longissimum
 Joubin).
 Acad., 1900, pp. 817 and 818, where reasons are given for relegating
 Tetrastemma flavidum to genus Nemertopsis Bürger.
 Bürger, Naples Monograph.

The doubtful status of Nemertopsis tenues as a species distinct
from N. flavida, and the fact that they have rarely been dis-
tinguished with certainty make it expedient to consider them
there (W.I.B.).

Very common in Plymouth Sound, between tide-marks and from
dredgings, especially Duke Rk. and Millbay Ch. (T.H.R.).
 Breakwater (between tide-marks), Asia Sh., Duke Rk., Millbay
 Ch., R. Yealm (dredging-ground); both forms occur in R. Yealm
 and Millbay Ch. (W.I.B.).

AMPHIPORIDAE.

AMPHIPORUS PULCHER (Johnston): McIntosh, Mon. Brit. Annel. i.
 v, 1900, p. 819. This is not the A. pulcher of Bürger’s Monograph.
 Taken on one or two occasions on Eddystone Gds. (W.I.B.).

AMPHIPORUS LACTIFLOREUS (Johnston).
 Common between tide-marks, under stones (T.H.R.): Drake’s I.
 Wembury B. (T.V.H.).
 Breeding in early spring (T.H.R.), March (W.G.).

 In considerable abundance, Millbay Ch. (T.H.R.).
 Once between tide-marks, Drake’s I.; dredged, Asia Sh., Millbay
 Ch. (common); R. Yealm (W.I.B.).
 Breeding in spring and in Oct. (T.H.R.).
Nemertini—contd.]

Amphiporus bioculatus, McIntosh.

One specimen dredged in Millbay Ch., 18.11.92, (t.h.r.).

Drepanophorus spectabilis (Quatrefages).

Among weeds dredged in Cawsand B. (one specimen); dredged off Stoke Pt. (four) (t.h.r.).

Taken several times on Mewstone Ledge; Queen’s Gd. (once);

Eddystone Gds. (w.I.B.).

Queen’s Gd., Millbay Ch., Cawsand B. (r.a.t.): 5 m. S. of Mewstone (a.j.s.).

Tetrastemmidae.

Found Nov., 1902 (t.h.r.).

Tetrastemma candidum (O. F. Müller).

T. vermiculatum (Quatrefages).

T. melanoccephalum (Johnston).

Until the British *Tetrastemma* have been thoroughly revised, any attempt to deal with the distribution of the so-called species, *T. candidum*, *T. vermiculatum*, and *T. melanoccephalum*, is of doubtful value. Nemertines recorded under each of these names have been commonly dredged in Plymouth Sound, and occasionally found between tide-marks and among *Zostera* in Cawsand B. *T. candidum*—so-called—has also been found on the Mewstone ledge, on the inner trawling grounds, where it is abundant among *Cellaria*, and on the Eddystone Gds. But it may hereafter be found that two distinct species (perhaps more) have been confused as *T. candidum* (w.I.B.).

Tetrastemma cephalophorum, Bürger.

Millbay Ch., Duke Ik. (as *Prosorhoeimus Claparedii* by mistake) (t.h.r.): dredged Millbay Ch., Queen’s Gd., Duke Ik., R. Yealm (w.I.B.).

Oerstedia dorsalis (Zool. Dan.).

Very common in dredgings, especially in early summer among *Zostera* in Cawsand B. (t.h.r.): Queen’s Gd., Millbay Ch. (r.a.t.): Asia Sh. (w.I.B., r.a.t.): Cawsand B. (r.a.t.): 5 m. S. of Penlee Pt. (r.a.t.): Eddystone Gds. (w.I.B., e.j.a.): found almost everywhere from shore down to 30 fms. or more—a yellow form (Bürger’s var. *cineto* abundant among *Cellaria* (w.I.B.).

Breeding in autumn (t.h.r.): Sept., Oct., Nov. (w.G.).

On *Codium* and other weeds from Laminarian zone (t.h.r.): Rum B. and Batten among corallines (w.I.B.).

Coralline pools in Wembury B., many specimens; among weeds on shore and dredged at Duke Ik. (t.h.r.).

Malacobellidae.

Malacobella grossa (O. F. Müller).

In branchial cavity of *Cyprima islandica*, never more than one in a mollusc (t.h.r., s.p.).

Ripe females in autumn (t.h.r.).
Eupoliidæ.

Eupolia curta, Hubrecht.

Dredged off Mewstone 10.6.97 and 23.11.99, one specimen on each occasion (W.I.B., R.C.P.).

Lineidæ.

Yealm shore, low water, one (R.C.P.).

Lineus longissimus, Gunn (= L. marinus of McIntosh).

Dredged in Yealm and outside Breakwater, occasionally on shore (T.H.R.): occasional specimens dredged and found on the shore from all parts of the Sound; Wembury B.; Yealm; Mewstone Ledge (W.I.B., R.A.T.): Eddystone Gds. (E.J.A.).

Lineus gesserensis (O. F. Müller) = L. obscurus, Desor.

Lineus lacteus (Grube).

North side of Drake's L, between tide-marks; Cawsand B., not common (T.H.R.).

Lineus bilineatus (? Renier), McIntosh.

Micrura fasciata, Ehrenberg.

Breeding: Oct. to end of year (T.H.R.).

Micrura purpurea (Dalyell), J. Müller.

Micrura aurantiaca (Grube).

Asia Sh. (A.J.S.), one spec. only from each locality.

Micrura lactea (Hubrecht) (= M. candida, Bürger).

Stoke Pt., 10.11.92, one dredged (T.H.R.).
[Nemertini—contd.: Archiannelida: Polychaeta]

Cerebratulus fuscus (McIntosh).

Cerebratulus pantherinus, Hubrecht (= C. marginatus (pars) Joubin).

One dredged off Stoke Pt. (T.H.R.).

ARCHIANNELIDA.

Rock-pools in Sound far above low-water, in March and April: not found in June (S.F.H.): pools high up on limestone rock below the Laboratory and in front of West Hoe Terrace (E.J.A.).

Polygordius (apogon McIntosh?): Fraipont, Le Genre Polygordius, Faun. Flor. Neapel, 1887, p. 87.

Rearred from townettlings taken in September (E.J.B.).

Frequent on the eggs of lobsters taken by Plymouth fishermen. Breeding during the summer months (E.J.A.).

POLYCHAETA.

Syllidae.

Drake's I., Millbay Ch., Queen's Gd., buoys in Sound, amongst weeds: Yealm, in red sponge (E.J.A.).

Amongst dredgings from Millbay and Queen's Gd. (E.J.A.).

Odontosyllis ctenostoma, Claparede: Marion et Bobretzky, Annel. Golfe Marseille, 1875, p. 42.

From the shore, under stones and amongst weeds, sponges, etc., on Drake's I., Run B., and below Laboratory (E.J.A.).

Dredgings from Queen's Gd. (E.J.A.).

NEW SERIES.—VOL. VII. NO. 2.

In dredgings from Queen’s Gd. and Asia Sh. (E.J.A.).

Frequent in dredgings from Millbay Ch. and Asia Sh. Yealm dredging (E.J.A.).

One spec. from Queen’s Gd. dredging (E.J.A.).

Fairly common among stones from Millbay Ch. (W.G.): very plentiful in dredgings from Asia Sh., especially amongst sponges and *Aleyonidium*: occasionally dredged Millbay Ch. and Queen’s Gd. (E.J.A.).

Frequent in dredgings from Queen’s Gd. (E.J.A.).

Hesionidae.

On shore at low-water mark under stones, Drake’s I., Mt. Edgemoor, Rum B.: amongst dredgings from Millbay Ch. and Asia Sh. (E.J.A.).

Common in dredgings from Millbay Ch. and Asia Sh.; occasionally from Queen’s Gd. (E.J.A.).

Magalia perarmata, Marion et Bobretzky: Annél. Golfe Marseille, 1875, p. 54, Pl. 7.

Not uncommon in dredgings from Queen’s Gd., Asia Sh., and Millbay Ch. (E.J.A.).

Aphroditidae.

On most fine-sand grounds off Plymouth, between 20 and 30 fms. (T.V.H., R.A.T., E.J.A.).
PLYMOUTH MARINE INVERTEBRATE FAUNA. 221

[Polychaeta—contd.]

Most frequently on gravel grounds in the neighbourhood of the Eddystone (T.V.H.): occasionally on similar ground in about 20 fms. (R.A.T., E.J.A.).

Under stones and amongst weeds, Hydroids, Polyzoa, etc.: from low-tide mark to 30 fms. and over, common and widely distributed (T.V.H., E.J.A.).

Everywhere on the shore under stones, especially at extreme low water (T.V.H.): less frequently in dredgings from the Sound (E.J.A.).

In dredgings from the neighbourhood of the Eddystone (T.V.H.): Yealm Sandbank and east shore, commensal in tubes of *Amphitrite Johnstoni* (E.J.A.).

Stony ground off Prawle Point, 30 fms. (W.F.R.W.).

Between tide-marks and in dredgings throughout the whole area to 30 fms. (T.V.H.).

Not uncommon: most frequently under laminarian roots at the Breakwater, more rarely on Eddystone Gds. (T.V.H.).

Between tide-marks amongst Laminaria roots on the Breakwater: amongst Hydroids, Polyzoa, etc. on Eddystone Gds. (T.V.H.).

On the Breakwater, amongst Laminaria roots and under stones at low-water mark (T.V.H.).

Among Polyzoa (*Cellaria*) and *Choropterus* tubes from Eddystone Gds. (T.V.H.).
Amongst Polyzoa and Chaeotrocha tubes on Eddystone Gds.: not uncommon (T.V.II).

Common between tide-marks and amongst dredgings throughout the Plymouth area (T.V.II, E.J.A.): Eddystone Gds. (T.V.II).

On the shore at Mt. Edgcumbe: amongst dredgings Millbay Ch. and Asia Sh. (R.A.T., E.J.A.).

In the ambulacral groove of Astropeten irregularis: common (T.V.II, R.A.T., E.J.A.).

Common amongst dredgings from Millbay Ch., less frequent from Asia Sh. and Queen's Gd. (E.J.A.).

Amphinomidae.
Phyllodocidae.

In dredgings from Millbay Ch., Asia Sh., and Yealm; on the shore at Mt. Edgecumbe and in Yealm estuary (E.J.A.).

Common in dredgings from Millbay Ch., Asia Sh., and Queen's Gd., occasionally from Yealm (E.J.A.).

Breeding: March, April, May, June, July (E.J.A.).

Not infrequent in dredgings from Millbay Ch., Asia Sh., and occasionally Queen's Gd.

Breeding: May; eggs brick-red (E.J.A.).

Frequent in dredgings from Queen's Gd.; occasionally from Asia Sh., Millbay Ch., and Mewstone Echinoderm Gd. (E.J.A.).

In dredgings from Millbay Ch. and Asia Sh. (E.J.A.).

Breeding: April–July (E.J.A.).

Very numerous in dredgings from Millbay Ch., Asia Sh., and Queen's Gd. (E.J.A.).

Breeding: May to July; eggs green (E.J.A.).

Occasional specimens Queen's Gd. (E.J.A.).

Frequent in dredgings from Millbay Ch., Asia Sh., and Drake's I. (E.J.A.).
Phyllodoce Paretti, Blainville: *Cuvier*, Règne animal, Annélides. Pl. 13. Fig. 1.

Mewstone Ledge (E.J.A.): Stoke Pt. Gds. (s.p.).

Occasional specimens from dredgings, Millbay Ch., Asia Sh., Queen's Gd., Barn Pool (E.J.A.).

Tomopteridae.

Nereidæ.

Common on the shores, especially in muddy gravel, all round the Sound, Wembury B., Yealm Estuary (R.A.T., E.J.A.).

Common in the mud flats of the Tamar and Plym estuaries, seldom in the Sound; found only where the density of the water is low (E.J.A.).

Small specimens common in all dredgings from the Sound, Millbay, Asia Sh., Queen's Gd., and from Yealm R.; larger specimens chiefly from Queen's Gd.; occasional specimens on the shore under Laboratory and Barn Pool (E.J.A.).

In shells of *Buccinum undatum* inhabited by *Espigerus Bernardius*; Mewstone Gds., Rame to Eddystone Gds., Eddystone Gds. (E.J.A.): Yealm R. (s.p.).

Breeding: May (W.G.).

Not uncommon in sand between tide-marks, Drake's I., Mt. Edgecumbe, Jennycliff (rare), Wembury B., Yealm Estuary south shore. Small specimens amongst dredgings Queen's Gd. and Asia Sh. (E.J.A.).

Occasional specimens in fine sand between tide-marks, Drake's I. and Mt. Edgecumbe; more common on shores of Yealm estuary; one specimen of Heteronereis stage taken in Cattewater (E.J.A.). In mud-bank of Cattewater near Oreston (J.T.C.).

Frequent amongst weeds on rocky shores and from dredgings in all parts of the Sound; also Wembury B. and Yealm R. (T.V.II., E.J.A.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Polychaeta—contd.]

Nephtydidæ.

Large specimens on sandy shores, especially Drake's I., Rum B., and Yealm Sand-bank (T.V.H., R.A.T., E.J.A.).

Nephthys cirrosa, Elders: Borstenwurmer, 1868, p. 3. Pl. xxiii.
In sand between tide-marks, Drake's I. and Yealm estuary (E.J.A.).

Eunicidæ.

On coarse shell-gravel grounds, in depths from 20 to 30 fms. off the Mewstone, off Stoke Pt., S. of Rame Head, and off Eddystone (E.J.A., R.A.T.).

Common on muddy-gravel grounds from 20 to 30 fms.: off Mewstone, Rame to Eddystone and Eddystone Gds. (E.J.A., R.A.T.)

Frequent on the shore in crevices of rock, especially on the bridge between Drake's I. and Mt. Edgcumbe; also Rum B., Wembury B., and Yealm Estuary (W.G., T.V.H., R.A.T., E.J.A.).

On the shore between tide-marks N. side Drake's I., Rum B.; most frequent in Zostera beds at mouth of Yealm R. (E.J.A.).

Frequent in Plymouth Sound, on the shore between tide-marks (Rum B., Drake's I.), and in dredgings (Asia Sh., Millbay Ch., Queen's Gd.); on shore Wembury B. and Reny Rks.; dredged in Yealm R. (E.J.A.).

Between tide-marks N. side of Drake's I. and Mt. Edgcumbe; amongst dredgings from Queen's Gd., Asia Sh., and Millbay Ch. (E.J.A.).

Coarse grounds between Eddystone and Rame; very abundant on Queen's Gd. in spring of 1903 (E.J.A.).

Shores of the Sound, between tide-marks (Drake's I., Mt. Edgcumbe, Rum B.); amongst dredgings from Millbay Ch., Asia Sh., Queen's Gd., Yealm R., and Eddystone Gds. (E.J.A.).

Occasional specimens at low-water mark on shores of Sound (E.J.A.).

Glyceridae.

Glyceridae.

Between tide-marks Drake's I., Jennycliff, Yealm Estuary; in dredgings from Millbay Ch., Rame to Eddystone and Eddystone Gds. (E.J.A.).
Sphærodoridæ.

Frequent in dredgings from Millbay Ch. and Asia Sh.; occasionally also from Queen's Gd. and from between tide-marks on Drake's I. and Mt. Edgecumbe (E.J.A.).

Aricidæ.

One specimen dredged off the Mewstone (E.J.A.).

In dirty sand and between layers of shale at Rat I. (Hamoaze) (w.g.): in sand at Drake's I., Rum B., and the Yealm Estuary (E.J.A.).

Spionidæ.

Mud between tide-marks, Rum B. and Wembury B.; numerous (E.J.A.).

One specimen from mud in Rum B. (E.J.A.).

Fine gravel between tide-marks on eastern side of Plymouth Sound (E.J.A.).

In Zostera bed at low-water mark, eastern shore of Yealm mouth; very numerous (E.J.A.).

Boring in limestone of the Breakwater and in limestone dredged from Millbay Ch. (E.J.A.).

At Rum B. and Rat I. (Hamoaze); common in crevices of shale (w.g.): Rum B. in crevices of shale (E.J.A.): dredgings from Yealm R. (E.J.A.).

Breeding: Feb. (w.g.).
Eddystone Gds. (T.V.H.).

Boring in the limestone of the Plymouth Breakwater (E.J.A.).

Disomidae.

In sand at low tide, S. of Batten Castle; larvae not uncommon in the plankton during the summer months (E.J.A.).

Chaetopteridae.

Larvae in townettings July to October (w.g.).

Magelonidae.

In fine sand near low-water mark at Jennycliff B. (R.A.T., E.J.A.), under Batten Castle, and on S. shore of Yealm Estuary (E.J.A.).
Larvae in townets in July and August (E.J.A.): in September (E.J.B.).

Ammocharidae.

In fine sand near low-water mark at Jennycliff B. (R.A.T., E.J.A.) and under Batten Castle (E.J.A.).

Cirratulidae.

Common in gravel and sand just below high-water mark on all shores, both inside and outside the Sound (T.V.H., R.A.T., E.J.A.); occasional small specimens from dredgings at Millbay Ch. (E.J.A.).
Boring in limestone on Plymouth Breakwater, abundant; Millbay Ch. (E.J.A.).

Terebellidae.

Common in sand between tide-marks and between layers of shale in Ruan B. and at Mt. Edgcumbe, Yealm Sand-bank, and Wembury B.; dredged Millbay Ch. and Eddystone Gds. (E.J.A.).
Polychaeta—contd.]

In sand and gravel near low-water mark along the S. shore of the Yealm R.; most common on east shore where the stream divides (R.A.T., E.J.A.).

Common on sandy shores inside and outside the Sound; occasionally dredged Queen’s Gd.: Eddystone Gds. (T.V.H., R.A.T., E.J.A.).

Common between tide-marks on Reny Rks., less frequent Drake’s I., N. side; also from dredgings in Yealm R. (E.J.A.).

Dredged at Millbay Ch., Queen’s Gd, Eddystone Gds. (E.J.A.).

Breeding: July (W.G.); April (E.J.A.).

In dredgings from Millbay Ch., Queen’s Gd., and Asia Sh. (E.J.A.).

Amongst shell gravel near low-water mark on N. side of Drake’s I.; tubes from Queen’s Gd.; Yealm R. shore (E.J.A.).

**Terebellides Stroemi, Sars: Malmgren, Nord. Haifs-Annul., 1865, p. 396, Pl. xix, Fig. 48.

One specimen dredged four miles S.W. by S. of Rame Head (E.J.A.).
Ampharetidae.

Common in soft mud in Plymouth Sound, on the shore and in deeper water (E.J.A.).

One specimen dredged four miles S.W. by S. of Rame Head (E.J.A.).

Amphicteonidae.

Common in sand near low-water mark S. of Batten Castle (E.J.A.).

Eddystone Gds. (T.V.H.).

Capitellidae.

Common in black mud from between tide-marks, Wembury B. and Rum B. (E.J.A.).

South shore of Yealm Estuary (near the mouth), common (E.J.A.).

Shore near low-water mark, Yealm Estuary; not frequent (E.J.A.).

Opheliidae.

Ammotrypane aulogaster, Rathke: Beiträge zur Fauna Norwegens, 1840, p. 188, Pl. x.

Dredged off Duke Rk. (w.g.): Mewstone *Ammophius* Gd. (E.J.A.).

Arenicolidae.

Scalibregmidae.

In muddy gravel at low-water mark on southern shore of Yealm R., just below the junction of the two rivers; two specimens, 10/9/00 (E.J.A.).

Frequent in dredgings from Millbay Ch.; occasionally from Asia Sh. and off the Mewstone (E.J.A.).

Chlorhemidae.

Dredgings from Millbay Ch. and Asia Sh.; also 2½ miles off Stoke Pt. (E.J.A.).

Sabellidae.

Large specimen from shore in Jennycliff B.; found also in Wembury B. (shore); not uncommon boring in limestone of Breakwater (E.J.A.).

Common in dredgings from Millbay Ch. and from Yealm R. (E.J.A.).
POLYCHAETA—contd.

Recorded once from Yealm dredging (E.J.A.).

In cracks between rocks at extreme low-tide mark on Renny Rks.; Jennycliff B. shore (E.A.T.).

Serpulidae.

Common attached to shells and stones on all grounds from the shore to 30 fms. (E.J.A.).

Common on stones and shells, 0–30 fms. (E.J.A.).

Common on weeds, especially Faucus, and on stones on all shores. (E.J.A.).

Hermellidae.

Common attached to rocks on sandy shores at Whitsand B. (E.J.A.).

Attached to shells, etc., in dredgings from Queen's Gd., Duke Rk., Asia Sh., Millbay Ch., and Eddystone Gds. (E.J.A.).

Breeding: May (W.G.); September (E.J.A.).

Pallasia murata, Allen: see p. 299.

One specimen from gravel off Stoke Pt.; tubes frequent on Mewstone shell-gravel Grounds (E.J.A.).
PLYMOUTH MARINE INVERTEBRATE FAUNA. 233

[Myzostomaria: Oligochaeta: Gephyrea: Hirudinea: Chaetognatha: Branchiopoda]

MYZOSTOMARIA.

Common on *Antedon bifida* from the Sound (E.J.A.).

OLIGOCHÆTA.

Mud at Drake’s I. and on the shores of the Sound (I.E.B.).

Mud on Drake’s I. and on shores of Sound (E.E.B.).

Common in gravel between tide-marks, Rum B. (E.E.B.).

GEPHYREA.

Petalostoma minutum, Keferstein.

Phascolion strombi, Montagu.

Frequently met with in shells of *Aporrhais pes-pelecani*; Mewstone Gds. (T.V.H., E.J.A.).

Thalassema neptuni, Gaertner.

HIRUDINEA.

Occasionally on the outside grounds; parasitic on the skate (S.P.).

Breeding: July (E.W.L.H.).

CHAETOGNATHA.

In townsettings throughout the year (L.H.G.).

BRANCHIOPODA.

Evadne nordmanni, Lovén: *C. Apstein*, Nordisches Plankt., pt. vii, Cladoc., p. 12, fig.

1892, appeared beginning of July and still present in Oct. (E.J.B.):

1895, constantly present in Aug., disappeared early Oct. (T.V.H.):

Plymouth Marine Invertebrate Fauna.

[Branchiopoda—cont.: Ostracoda: Copepoda]

Podon intermedius, Lilljeborg: *C. Apstein*, Nordisches Plankt., pt. vii, Cladoc., p. 15, fig.

Carrying ova: Aug. (T.V.H.)

Plymouth neighbourhood, Apr. 1904, rare (L.H.G.).

Ostracoda.

Cyprinidæ.

Asteropidæ.

Cytheridæ.

Copepoda.

Calanidæ.

Paracalanidæ.

[Copepoda—contd.]

Pseudocalanidae.

One of the commonest species, in immense numbers during autumn, winter, and spring, 1888–9 (g.c.b.): 1899, Feb.–Apr., more or less rare (p.t.c.): very common in 1903 and 1904 (l.h.g.).

Centropagidae.

Plymouth, 1888–9, abundant except during winter, when it is scarce (g.c.b.): 1899, Jan.–Feb., rare; Mar.–Apr., in fair numbers; May, rare; June, more or less rare; July–Aug., rare; Sept., very rare (p.t.c.): 1903, Jan.–Feb.; Apr.–June; Aug.–Oct.; 1904, Jan.–July (l.h.g.).

Plymouth, June 1899 (p.t.c.): Dec. 1902; Sept. 1903; Mar.–June 1904 (l.h.g.).

Temoridae.

Plymouth, 1888–9; scarce during winter months, becoming more common in Apr., and reaching maximum abundance Aug.–Sept. (g.c.b.): 1899; Mar., somewhat rare; Apr., very common; June–Oct., rare (p.t.c.): 1903–4, rare in winter (l.h.g.).

Pontellidae.

Plymouth, 1888–9, abundant in autumn and late summer, absent in winter (g.c.b.): 1904, July (l.h.g.).

Plymouth; 1902, Dec.; 1904, Apr.–July (l.h.g.): near the Eddystone, in small numbers, Aug. and Oct., 1888 (g.c.b.).

Parapontellidae.

Near Eddystone, few specs. Sept. 1888; the Cattewater, Mar. 1889 (g.c.b.): Plymouth, rare, Mar.–Apr. 1899 (p.t.c.): 1903, May–July; 1904, Feb.–May, July; rare in winter (l.h.g.).

Acartiidae.

Plymouth, 1899; Jan., rare; Mar.–Apr., more or less abundant; June–Aug., common; Sept.–Oct., in fair numbers; Nov.–Dec., very rare (p.t.c.): 1903, except during Mar. and May; 1904, Jan.–July (l.h.g.).

One of the most common species at all seasons, 1888–9 (g.c.b.).

New series.—Vol. VII. No. 2.
LONGIPEDIIDÆ.

ECTINOSOMIDÆ.

MICROSETELLA NORVEGICA (Boeck) [=Ectinosoma atlanticum, Brady]:

HARPACTIDÆ.

EUENTERPE ACUTIFRONS (Dana): C. Claus, Frei lebend. Copep., p. 110, fig. (as E. gracilis).
Plymouth, very abundant late winter and spring, 1889 (g.c.b.): 1899; Jan.–Feb., rare; Mar.–May, somewhat rare; July, fairly plentiful; Aug., rare; Sept., fairly common; Oct.–Dec., more or less rare (p.t.c).

The Cattewater (g.c.b.).

CYCLOPIDÆ.

Very abundant Feb.–Apr., practically absent during late summer and autumn, 1888–9 (g.c.b.).

OITHONA SIMILIS, Claus.: W. Giesbrecht, Fauna Flora Neapel, vol. xix, pp. 548, etc., fig.
Plymouth, 1899, more or less common throughout the year (p.t.c).

Plymouth, few specs. Apr. 1889 (g.c.b.).

Plymouth (g.c.b., p.t.c., T.V.H.).

CORYCÉUS VENUSTUS, Dana: W. Giesbrecht, Fauna Flora Neapel, vol. xix, pp. 674, etc., fig.
Plymouth, Nov. 1899, very rare (p.t.c.).

ONCEA MEDITERRANEÆ (Claus): W. Giesbrecht, Fauna Flora Neapel, vol. xix, pp. 602, etc., fig. Plymouth (g.c.b., p.t.c.).

ONCEA MINUTA: W. Giesbrecht, Fauna Flora Neapel, vol. xix, pp. 603, etc., fig.
Plymouth, 1899, very rare Jan.–Mar., rare in Dec. (p.t.c.).

ONCEA SUBTILIS: W. Giesbrecht, Fauna Flora Neapel, vol. xix, pp. 603, etc., fig.
Plymouth, Mar. 1899, very rare (p.t.c.).

CIRRIPIEDIA.

Balanidae.

Balanus balanoides (Linnaeus): C. Darwin, Monogr. Cirrip., Balanidae, p. 267, fig.
Rocks between tide-marks in the Sound, etc. (s.P.).

Balanus crenatus, Bruguière: C. Darwin, Monogr. Cirrip., Balanidae, p. 261, fig.
Common in dredgings from the Sound, etc., on stones and shells (s.P.): Eddystone Gds. (E.J.A.).

Balanus perforatus, Bruguière: C. Darwin, Monogr. Cirrip., Balanidae, p. 271, fig.
Abundant on rocks between tide-marks; rocks under the Laboratory; Millbay Dock, on piles; Drake’s l.; etc. (s.P.).

Rame-Eddystone Gds., attached to the upper valve of Pecten opercularis; etc. (s.P.).

Pyrgoma anglicum, Leach: C. Darwin, Monogr. Cirrip., Balanidae, p. 360, fig.
Common on Caryophyllia smithi, 15–35 fms. (r.a.t., s.p.).

Chthamalus stellatus (Poli): C. Darwin, Monogr. Cirrip., Balanidae, p. 455, fig.
Rocks between tide-marks in the Sound, etc. (s.P.).

Verrucidae.

Common on shells, stones, etc., L.W.–35 fms.; the Sound: Stoke Pt. Gds.; Rame-Eddystone Gds.; etc. (s.P.).

Lepadidae.

Lepas anatifera, Linnaeus: C. Darwin, Monogr. Cirrip., Lepadidae, p. 73, fig.
Occasionally on drift-wood, etc. (r.a.t., s.p.).

Scalpellum vulgare, Leach: C. Darwin, Monogr. Cirrip., Lepadidae, p. 222, fig.
Common on Haliotis, Antennularia, Aglaophenia, etc., 15–35 fms. (r.a.t., s.p.).

Peltogastridae.

Common, parasitic on Carcinus maenas (s.P.).

LEPTOSTRACA.

Nebalia bipes (Fabricius): G. O. Sars, Fauna Norvegicæ, vol. i, p. 9, fig.
Common under stones, at low tide; Drake’s l.; Mt. Edgecumbe; Rum B., etc. (r.a.t., s.p.): Asia Sh., not uncommon (s.P.): Millbay Ch., occasionally: Whitsand B. (A.J.S.). Often abundant on the bait in lobster pots (E.J.A.).
Breeding: Apr.–July (w.G.).
238 PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Amphipoda]

AMPHIPODA.

Hyperiidae.

Orchestiidae.

Talitrus locusta (Pallas): *G. O. Sars*, Crust. Norway, vol. i, p. 23, fig. Abundant on all sandy shores, under weed and stones, at the high-water mark of spring tides (s.p.).

Lysianassidae.

Pontoporeiidae.

Ampeliscidae.

[Amphipoda—contd.]

Amphilocheidae.

 Plymouth, 8 fms., 1887 (A.M.N.).

Stenothoidae.

 Plymouth (A.M.N.).

 Plymouth, single spec., the type (A.M.N.).

Leucothoidae.

Oediceridae.

 Plymouth (A.M.N.).

Iphimiidae.

 Plymouth Hr. (T.V.H.).

Calliopiidae.

Atylidae.

 Breeding: July (R.A.T.).
Gammaridae.

Gammarus locusta, Limnaeus: *G. O. Sars*, Crust. Norway, vol. i, p. 499, fig. Very common under stones and among weeds, etc., between tide-marks to 5–6 fms. (r.a.t.). Females with ova: Jan. (r.a.t.): Dec. (r.a.t., t.v.h.).

Gammarus marinus, Leach: *G. O. Sars*, Crust. Norway, vol. i, p. 497, fig. Common on the shore (r.a.t., s.p.): Rum B. (r.a.t.): Drake’s l.; the Breakwater; Mt. Edgcumbe; Wembury B. (t.v.h.): Reny Rks. (r.a.t.): Queen’s Gd., occasionally (r.a.t., t.v.h., s.p.). Females with ova: Feb. (r.a.t.): Mar. (t.v.h.).

Photidae.

Aora gracilis (Spence Bate): *G. O. Sars*, Crust. Norway, vol. i, p. 545, fig. The Sound, occasionally (r.a.t.).

[Amphipoda—contd.]

Podoceridae.

Not uncommon in dredgings from the Sound and occasionally between tide-marks (r.a.t.): Yealm R. (t.v.h.).
Female carrying young: Feb. (r.a.t.).

Diuke Rk., 5 fms. (t.v.h.).

Abundant on the buoys, hulks, and piles in the Sound, Millbay Docks, and Cattewater (r.a.t.).
A female with ova: Nov. (t.v.h.).

Millbay Ch.; Queen’s Gd.; common (r.a.t., s.p.): Yealm R. (r.a.t.): Eddystone Gds. (E.J.A.).

Corophiidae.

Millbay¹; Queen’s Gd.¹; Duke Rk.¹ (t.v.h.).

Millbay Ch. and Pit, very common; Queen’s Gd., not uncommon (r.a.t., t.v.h.): West Ch.: Yealm R. (t.v.h.).
Females with ova: Nov. (t.v.h.).

Unciola crenatipalma (Spence Bate): *C. S. Bate & Westwood*, Hist. Brit. Sess.-eyed Crust., vol. i, pp. 488, 489, fig. (♀ as *Dryope irrorata*, ♀ as *D. crenatipalma*).

Cheiruridae.

Common in drift-wood (r.a.t., s.p.).

Caprellidae.

Moderately common, Millbay Ch.; Asia Sh.; Drake’s I.; Queen’s Gd.; Yealm R. (r.a.t.): 4 miles W. of the Eddystone, single spec. (r.a.t.).
Females with ova: Mar.–Apr. (r.a.t.).

Cawsand B.; Jennycliff B. (t.v.h.).
ISOPODA.

Apseudidae.

Drake’s I., common among mud at roots of corallines (w.g.): common under stones and in rock crevices; Jennycliff B.; Drake’s I. (s.p.).

Females carrying ripe ova in Aug. (s.p.).

Not uncommon between tide-marks; Rum B.; Reny Rks.; Wembury B. (r.a.t.): Millbay Ch. (r.a.t.).

Ova hatching: Feb. (r.a.t.).

Tanaidae.

Common in crevices of the limestone of Plymouth Breakwater (r.a.t.).

Anthuridae.

Occasional specimens in dredgings from the Sound; Asia Sh.; Queen’s Gd.; Millbay Ch. (r.a.t.).

Gnathiidæ.

Common under stones between tide-marks, and in dredgings from the Sound (r.a.t., s.p.): Mewstone Gds. (r.a.t.).

Females with ova: Jan.; Feb. (r.a.t.): March (s.p.): May (r.a.t.).

Hatching out: Feb. (r.a.t.).

Ægidae.

Occasional specs., 20–30 fns. (r.a.t., s.p.).

Breeding: Feb. (r.a.t.).
TLYMOUTH MARINE INVERTEBRATE FAUNA.

 Cirolanidæ.

 A dead, but fresh specimen of Scyllium canicula brought to the Laboratory in Sept. 1899, contained about 400 C. cylindracea, of which over 300 were living; having eaten through the wall of the stomach of the dogfish, they were feeding on the heart and liver (R.A.T.).

 Cymothoidæ.

 Rum B., common; Reny Rks., occasionally (R.A.T.).

 Sphæromidæ.

 Not uncommon in empty barnacle shells, etc., between tide-marks in the Sound (R.A.T.): Jennycliff B., abundant in rock crevices; Mt. Edgcumbe, under stones; the Breakwater; etc. (S.P.).

 Under stones; Drake's I.; Rum B. (R.A.T., S.P.).

 Limnoriidæ.

 Common in drift wood, etc., in the Sound (R.A.T., S.P.).

 Idoteidæ.

 Queen's Gd., on Antennularia¹; Cawsand B., on Zostera; Whit- sand B. (S.P.).
Jennycliff B., common (T.V.II., R.A.T.): Whitsand B. (s.p.).

Common among Zostera; Drake’s I.; Jennycliff B.; Cawsand B.; Whitsand B.: Yealm Est. (s.p.).

Drake’s I., abundant under stones at low-water; Jennycliff B., Mt. Edgecumbe, etc., occasionally (s.p.).
Breeding: Mar. (s.p.).

Idothea prismatica (Risso): *C. N. Bate & Westwood*, Brit. Sess.-eyed Crust., p. 391, fig. (as *I. paralelo*).
Cawsand B., single spec. inhabiting a dead Zostera stem (w.g.).

Single spec., between Breakwater Lt. and Queen’s Gd. Buoy (J.T.C.).
Carrying embryos: Dec. (J.T.C.).

Arcturidae.

Not uncommon clinging to the spines of *Echius esculentus*; Eddystone Gds. (R.A.T., s.p.): Mewstone Ledge, occasionally (R.A.T.).

Astacilla intermedia (Goodsir): *C. Spence Bate & Westwood*, Brit. Sess.-eyed Crust., vol. ii, p. 371, fig. (as *Arcturus*).
The Breakwater (w.h.): Queen’s Gd. (T.V.II.).

Janiridae.

Common in Millbay Pit and between tide-marks at Mt. Edgecumbe and Drake’s I.: less common in dredgings from Queen’s Gd. and Asia Sh. and on the Reny Rks.; occasionally outside in 33 fms. (R.A.T.).

Munidae.

Ligiidae.

Common in rock-crevices, etc., above high-water mark in the Sound (R.A.T., s.p.): abundant on quay walls in the Cattewater (s.p.): the Breakwater (A.O.W., s.p.).
Breeding: June (A.J.S.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Isopoda—contd.: Cumacea: Stomatopoda: Schizopoda]

Bopyridae.

Bopyrus Squillarum, Latreille: G. O. Sars, Crust. Norway, vol. ii, p. 197, fig. Not uncommon on Leander serratus; Cawsand B.; etc. (r.a.t.)

Gyge Galatheae: C. S. Bate & Westwood, Brit. Sess.-eyed Crust., p. 225, fig.

Rum B., on Galathea squamifera (r.a.t.).

Cryptoniscidae.

Rocks below the Hoe, not uncommon among barnacles (r.a.t.).

Cumacea.

Cumidae.

Iphinoe trispixosa (Goodsir): G. O. Sars, Crust. Norway, vol. iii, p. 14, fig. Abundant 1892 (w.g.): Whitsand B., May 1902, May 1903 (a.m.n.).

Cawsand B.: 1889; Apr. 1900: June 1903 (a.m.n.).

Diastylidae.

Cawsand B., Apr. 1900; Whitsand B., May 1902, and common in May 1903 (a.m.n.).

Sept. 1889: 3 m. N.E. of the Eddystone, Sept. 1900 (a.m.n.).

Whitsand B. (a.j.s.).

Pseudocumidae.

Cawsand B., Apr. 1900; Whitsand B., May 1902, and abundant in May 1903 (a.m.n.).

Stomatopoda.

Single spec. near New Ground Buoy, Dec. 1900 (r.a.t.).

The larvae are occasionally met with in townettings (E.J.A.).

Schizopoda.

Euphausiidae.

Occasionally taken in the townets, in the Sound and outside (r.a.t.): single spec., 3 m. off Rame Hl., June 1898 (E.W.L.H.): Cawsand B. and 2½ m. S. of Breakwater, few immature specs., Feb. 1899 (W.I.B.).
Siriellinae.

Breeding: Apr.; Oct. (w.i.b., r.a.t.).

Cawsand B, few specs. Apr., June, and Sept.; Jennycliff B, few specs., June and Oct.; Yealm Est., several specs. among decaying Zostera, Oct.; 2½ m. S. of the Breakwater Fort, single spec. at surface, Feb.; 1899 (w.i.b.).

At the surface 1 m. S. of the Breakwater Fort, Sept. 1892; Drake's l, abundant among weeds June 1893 (w.g.): Rum B, single spec. Feb. 1901 (r.a.t.): Jennycliff B, (f.w.g. & w.i.b.).

Breeding: June (w.g., r.a.t.).

Whitsand B, Aug. 1892 (w.g.): July 1898 (e.w.l.h.): Oct. 1899, abundant (w.i.b.): May 1903, abundant (s.p.): Cawsand B, immature spec. in Apr.: Yealm Est., single spec. among decaying Zostera, Oct.; 1899 (w.i.b.).

Breeding: July (e.w.l.h.): Aug. (w.g.): Oct. (w.i.b., r.a.t.).

At the surface about 1 m. S. of the Breakwater Fort, Sept. 1892 (w.g.): Mewstone 'Amphioicus' Gd., Oct. 1899 (w.i.b.).

Breeding: Sept. (w.g.): Oct. (w.i.b.).

Plymouth, 1889: 1890 (a.m.n.): Aug. 1898, 3 m. S. of Rame Hl. (e.w.l.h. & w.i.b.): 1899: Cawsand B, few specs. in Feb.; Mewstone 'Amphioicus' Gd., several in Oct.: W. of Hand Deeps, 33 fms., sand, abundant in June: about 4 m. S. of the Breakwater, abundant in Mar.: etc. (w.i.b.): Whitsand B, single spec., May 1903 (s.p.).

Breeding: June (w.i.b., r.a.t.).

Hist., ser. 6, vol. x, p. 158, fig.

Millbay Ch.; Queen's Gd.; Cawsand B.; Yealm R.; off Stoke Pt.; a few at a time (w.g.): Jan. 1899, Millbay Ch.; Feb. 1900, Asia Sh. (w.i.b.).

Breeding: Oct.—Nov. (w.g.).
Leptomysisae.

4 m. S.S.W. of Rame Hdl., and Mewstone 'Amphioxus' Gd., Oct.;
1 m. W. of Stoke Pt., Nov.; 1899 (W.I.B.).

Aug. 1896, 3 m. W. by S. of the Eddystone (W.I.B.): Aug. 1898,

Cawsand B.; Rame Hdl., on the shore among *Fucus*; Whitsand B.; 4 m. S.S.W. of Rame Hdl.; W. of Hand Deeps, on sand: Yealm Est., among decaying Zostera; several specs., Feb.–Oct. 1899 (W.I.B.).

Mysine.

Hemimysis lamorna (Couch): *G. O. Sars, Carcinol. Bidr. Norges Fauna, Mysider, Pt. iii, p. 65, fig. (as *Mysis*).

Together these two species include, but they do not respectively coincide with, the *Macromysis flexuosa* and *M. nigra* of Sars and of Norman. Both are known to occur in the Plymouth area, but they have only been quite lately differentiated, and consequently their distribution has not yet been fully determined. The evidence at present available points to the conclusion that *M. flexuosa* is essentially an estuarine form, and *M. nigra* more strictly marine. This is in agreement with the experience of Gamble. The *Macro-

Laira, 1897 (e.w.i.h.): R. Lynher; tidal pool opposite Saltash; Summer 1898 (e.w.i.h. & w.i.b.): R. Tamar, just above Saltash Bridge, few specs. Mar. and Dec. 1899: Jennycliff B., single young spec. Sept. 1899 (w.i.b.): Saltash, Feb. 1901 (r.a.t.).

Breeding: Feb. (r.a.t.).

W. of Hand Deeps, June 1899; 4 m. S.S.W. of Rame Hl., Oct. 1899; several specs. (w.i.b.).

Breeding: June; Oct. (w.i.b.).

Saltash, very abundant Mar. and Dec. 1899; Cawsand B., single spec. Apr. 1900 (w.i.b.): Tregantle, single spec. Dec. 1897 (e.w.i.h.): Whitsand B., several specs. May 1903 (s.p.).

Macrura.

Palaeomonidae.

Leander serratus (Pennant): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 302, fig. (as *Palaemon*).

More or less common everywhere among weed (r.a.t., s.p.).

Breeding: Jan.–Feb. (w.g., r.a.t.): Mar.–Apr. (w.g., r.a.t., s.p.): May (w.g., r.a.t.): June (w.g.): Nov. (w.g., r.a.t.): Dec. (w.g.).

Leander squilla (Linnaeus): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 305, fig. (as *Palaemon*).

The Sound, not uncommon between tide-marks (r.a.t.).

Breeding: May (r.a.t.): July, and earlier (w.g.). Hatched out in Aug. (r.a.t.).

Palaeomonetes varians (Leach): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 309, fig. (as *Palaemon*).

Common in brackish water; Saltram; Laira: etc. (r.a.t.): Erth, R. Lynher, common in pools on a salt-marsh (w.i.b.): tributaries of R. Plym, very common (w.f.r.w.).

Breeding: Apr. (r.a.t.): May–June (w.g., r.a.t.): July; Aug., late stages only (w.g.).

Pandalidae.

Pandalus montagui, Leach: *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 297, fig. (as *P. annulicornis*).

Occasionally abundant during short periods, at other times apparently quite absent (s.p.): Nov. 1887, large numbers in Batten B. (w.i.h.): Feb. 1896, single spec. Cawsand B. (t.v.i.h.): Aug. 1897; Sept. 1898 (e.w.i.h.): July–Aug. 1902; Aug. 1903 (s.p.).

Breeding: Jan. (w.g.): Feb. (w.g., t.v.i.h., r.a.t.): Nov. (w.g., r.a.t.): Dec. (w.g.).

Hippolytidae.
Hippolyte varians, Leach: C. Heller, Crust. südl. Europa, p. 288, fig. (as Virbius).
Breeding: July (R.A.T.).

Alpheidae.

Crangonidae.
Crangon allmani, Kinahan: A. Wollebeck, Rept. Norweg. Fish. & Mar. Invest., vol. 1, No. 4, p. 21, fig.
More or less abundant everywhere on sand, L.W.–10 fms. (R.A.T., s.p.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

Macrura—contd.

Cheraphilus nanus (Kroyer): T. Bell, Hist. Brit. Stalk-eyed Crust., p. 268, fig. (as Crangon bispinosus).
 At the surface in the Sound, Feb. 1887 (W.H.).

Nikaæ.

 Late stages: Sept. (R.G.).

Nephropsidæ.

 Common among rocks, occasionally between tide-marks; Rum B.; Wembury B.; etc. (R.A.T.): occasionally on sand; Eddystone Gds. (E.J.A.).

* If the “law of priority” is to be rigidly followed, this species must be termed Astacus gammarus (Linn.).

NEW SERIES.—VOL. VII. NO. 2.
Scyllaridae.

Arctus ursus, Dana: *C. Heller*, Crust. südl. Europa, p. 195 (as *Scyllarus arctus*).

Millbay Dock, single spec., Apr. 1892 (r.a.t.); off the Breakwater Lt., single spec. in a crab-pot, Aug. 1897 (J.T.C.): 5 m. S. of the Eddystone, single spec. Jan. 1900 (r.a.t.).

Breeding: Mar. (s.p.).

Palinuridae.

Common among rocks; the Sound; etc. (r.a.t.).

Females in berry: Apr.–May (r.a.t.): Dec. (w.h.). Hatching: July (J.T.C.). Phylophora stage: Mar. (r.g.).

Galatheidae.

Abundant everywhere, 10–30 fms. (s.p.): Queen's Gd., common; Duke Rk., common; Cawsand B., occasionally (r.a.t.): Millbay Pit (w.I.B., r.a.t.): Rame-Eddystone Gds.; Mewstone Gds.; etc. (w.I.B., r.a.t., s.p.): Eddystone Gds., on all the grounds and in almost every haul (e.j.a.).

Breeding: Mar. (w.g., r.a.t.): May (s.p.).

Asia Sh.; Millbay Ch.; 3 m. S.S.W. Breakwater Lt.; 5 m. S.W. Penlee; 1 m. S.S.W. Yealm Hd. (w.I.B.): Queen's Gd.: Mewstone Gds.; Rame-Eddystone Gds. (r.a.t. & w.I.B.).

Breeding: Mar. (w.g., r.a.t.).

Abundant under stones on all rocky shores, L.W.–3 fms. (s.p.): Millbay Ch.; Queen's Gd.; Yealm R.; occasionally (r.a.t.).

Breeding: Jan.–May (r.a.t.).

The Breakwater, occasionally; Mt. Edgcumbe (r.a.t., s.p.); Drake's I. (t.v.h.): off Batten Breakwater¹; off Yealm Hd., 18 fms² (J.T.C.).

Callianassidae.

Occasional specs. between tide-marks in the Yealm and under Mt. Edgcumbe, also in dredgings from Queen's Gd., and a single spec. 5 m. W. ¾ S. of Rame Hd. (r.a.t.).

Breeding: Aug. (r.a.t.).

Thaumastocheilidae.

Zoea stage: Aug.–Sept. (r.g.).
Macrura—contd.

Paguridae.

Eupagurus Bernhardus (Linnæus): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 171, fig. (as *Pagurus*).

The shell inhabited by this species usually affords lodgment for one or more specs. of *Adamsia polypus* [= *Sagartia parasitica*], or else it is invested with a colony of *Hydraetinia echinata*; also its apical whorls are occupied by the Polycheate *Nereis fucata* (R.A.T., S.P.).

Eupagurus cuanensis (Thompson): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 178, fig. (as *Pagurus*).

Eupagurus Prideauxi (Leach): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 175, fig. (as *Pagurus*).

Almost always associated with *Adamsia palliata* (R.A.T., S.P.): a spec. trawled 2 m. S.W. of Penlee had an *Adamsia polypus* upon its shell as well as the normal *A. palliata* (E.W.I.H.): occasionally the shell is invested with a colony of *Hydraetinia echinata* in place of the *Adamsia palliata*, and very rarely both are present upon the same shell (S.P.).

Eupagurus sculptimanus (Lucas): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 186, fig. (as *Pagurus Forbesi*).

Whitsand B. (T.V.H.).

Breeding: July (W.G.).

Anapagurus levis (Thompson): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 184, fig. (as *Pagurus*).

BRACHYURA.

Porcellanidae.

More or less abundant on all grounds, L.W.-30 fms. (s.p.).

Females in berry: Mar.-Apr. (w.G., r.a.t., s.p.): May (w.G., s.p.): June (w.G., r.a.t.): July (w.G., r.a.t., s.p.): Aug. (r.a.t.). Zoa stage: Mar. (e.g.).

Under stones on all rocky shores, L.W.-3 fms. (s.p.).

Females in berry: May-June (r.a.t.): May (w.G.): June-July (w.G., s.p.): Aug. (r.a.t.). Zoa stage: Aug. (n.g.).

Dromiidae.

Not yet observed in the Plymouth district, although species are occasionally taken a little outside the district on the Cornish coast (s.p.).

Leucosiidae.

Cawsand B.1; Whitsand B.1 (t.v.h.): Eddystone Gds., on sandy gravel, E. of Head Deep (E.J.A.).

Millbay Ch. (t.v.h.): not uncommon, 20-30 fms.: Mewstone Gds.; Rame-Eddystone Gds.; etc. (r.a.t.): Eddystone Gds., together with E. tumefacta (E.J.A.).

Females in berry: May-June (r.a.t.).

Duke Rk., single spec. (t.v.h.): Eddystone Gds., abundant on coarse sandy gravel W. of the Eddystone, constantly present but less abundant on clean shell-gravel grounds (E.J.A.).

Inachidae.

Not uncommon on weedy ground (w.G.): very rare, 15-30 fms. (r.a.t.).

Macropodia longirostris (Fabricius): T. Bell, Hist. Brit. Stalk-eyed Crust., p. 6, fig. (as Stenonychus longirostris).

Queen's Gd., not uncommon; Cawsand B., occasionally; moderately common outside the Sound, 15-30 fms.: Mewstone Gds.; Rame-Eddystone Gds.; etc. (r.a.t.): Eddystone Gds., especially abundant where the prevailing Hydroid is Sertularella Gogi (E.J.A.): Yealm R., occasionally (r.a.t.).

Breeding: Feb.-Apr. (r.a.t.): May (w.G.): July-Aug. (r.a.t.).

Occasionally in dredgings from the Sound; Cawsand B., moderately common; Yealm R., not uncommon (R.A.T.).

Millbay Ch., occasionally; Duke Rk.; Yealm R., not uncommon (R.A.T.).

Pisa biaculeata (Montagu): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 27, fig. (as *P. Gibbins*).

Breeding: May (R.A.T.).

Parthenopidae.

Cancridae.

Small specs. common among stones between tide-marks on all rocky shores; large specs. seldom seen above low-water mark (s.p.).

Between tide-marks on all rocky shores, not uncommon under stones, etc. (S.P.).

Common between tide-marks on all rocky shores (S.P.).

Eriphidae.

Not uncommon on all rocky shores under stones and in crevices, L.W.–5 fms. (S.P.): common in Lepidaria foliacea; Mewstone Ledge; etc. (R.A.T., S.P.).

Portunidae.

[Brachyura—contd.]

- Breeding: Mar. (w.g.).

- Breeding: May (w.g.).

- Common among stones on all rocky shores, between tide-marks—5 fms. (s.p.).
- Females in berry: Feb.–May; July (r.a.t.). Zoæas hatching out: Mar.–May (r.a.t.).

- Not uncommon in dredgings from the Sound and outside grounds, 15–30 fms.; Queen’s Gd., occasionally; Drake’s L., occasionally between tide-marks; Yealm R., not uncommon (r.a.t.): Eddystone Gds., on gravel, and occasionally on sand grounds adjoining the gravel (E.J.A.).
- Females in berry: Feb.–May (r.a.t.). Hatching out: Mar.; June (r.a.t.).

Bathynectes longipes (Risso): *T. Bell*, Hist. Brit. Stalk-eyed Crust., p. 361, fig. (as *Portunus*).
- Near the Eddystone, on fine sand (w.g.).

- Common everywhere, tide-marks—3 fms. (r.a.t., s.p.): Millbay Ch., occasionally (r.a.t.).
- Females in berry: Jan.–Apr. (w.g., r.a.t.): May-Aug. (w.g.): Nov. (r.a.t.): Dec. (w.g., r.a.t.). Zoæa stage: Feb.–Apr. (r.a.t.): July (r.a.t.).

Portunus biguttatus (Risso): *C. Heller*, Crust. südl. Europa, p. 94 (as *Platyonichus nasutus*).
- Drake’s L., occasional specs. burrowing in fine gravel (w.g., r.a.t.).
- Females in berry: Aug. (r.a.t.). Megalops stage: Aug. (r.g.).

- The ♂ is not uncommon at times on the shrimp-trawling grounds, particularly in Cawsand B., also swimming near the surface at the deeper water stations, but the ♀ has only twice been recorded at the Laboratory (s.p.).
- Females in berry: Sept. (r.a.t., w.i.b.). Hatched: Sept. (r.a.t.).

Corystidae.

- Moderately common 15–30 fms. (r.a.t.): local but common where it occurs, generally on muddy gravel (s.p.): Rame-Eddy-
Brachyura—cont., Pycnogonida

Stone Gds.; Mewstone Gds. (r.a.t., s.p.); Eddystone Gds., abundant on muddy gravel about 1 m. E. of the Eddystone, on gravelly sand about 3 m. W. of the Eddystone, and occasionally at other stations (E.J.A.).

Breeding: Apr.–July (r.a.t.).

Generally distributed on clean fine sand, 15–30 fms.; Cawsand B., not uncommon (r.a.t., s.p.).

Females in berry: May–July; Nov. (r.a.t.). Zoöa stage: Feb.–May (r.g.). Megalops stage: Apr. (r.g.).

Pinnotherae.

Mewstone 'Amphioles' Gd., in the mantle-cavity of Cardium norvegicum and of Glycymeris (w.g. & r.a.t.).

Breeding: July–Aug. (r.a.t.).

Ocypodidae.

Hatched out in June (r.a.t.).

Pycnogonidae.

Yealm R.; Breakwater (t.v.h.).

Phoxichilidae.

Queen's Gd., occasionally (r.a.t.): Millbay Pit, several specs.; Yealm R. (t.v.h.).

Phoxichilidiidae.

Asia Sh. (a.m.n., s.p.).

Palleneae.

Asia Sh. (s.p.).

Nymphonidae.

Males carrying ova in Feb. (r.a.t.).
BRYOZOA.

Acteidae.

Queen's Gd., occasionally on Alge; common on rocky ground S. of the Breakwater (r.a.t.).

Not uncommon on shells, etc., 20–35 fms.; Mewstone Gds.; Rame-Eddystone Gds. (r.a.t.).

Eucrateidae.

On a hulk near the Breakwater (r.a.t.): between Rame Hd. and the Eddystone, on Bowerbankia (e.j.a.).

Cellulariidae.

Plymouth (s.F.H.).

Mewstone, 25 fms. (s.F.H.).

Common S. of the Breakwater, 20–35 fms.; Mewstone Gds.; Rame-Eddystone Gds.; Stoke Pt. Gds. (r.a.t., s.p.): Eddystone Gds., plentiful on the fine sand and gravels, generally attached to Polychete tubes or to Cellaria, rare on the shell-gravel grounds (e.j.a.).

Plymouth (s.F.H.).
PLUMARIAE.

Bicellariidae.

Moderately common, 5—35 fms., on Cellaria and on Hydroids (r.a.t.): Millbay Pit; Asia Sh. (r.a.t., s.p.): Queen's Gd., not uncommon (s.p.): Duke Rk. (E.J.A.): Mewstone Ledge, occasionally (r.a.t.): Rame-Eddystone Gds. (r.a.t., s.p.): Eddystone Gds., not uncommon on various Hydroids (E.J.A., s.p.).
With oviceils: March (r.a.t.).

Eddystone Gds. (E.J.A., s.p.): Rame-Eddystone Gds. (s.p.).

Common in dredgings from the Sound (r.a.t., s.p.): Mewstone Ledge, moderately common (r.a.t.): Eddystone Gds., occasionally (E.J.A.).
Breeding: July, Sept. (r.a.t.).

Plymouth, common (S.F.H.).

Moderately common in dredgings from the Sound (r.a.t., s.p.).

Flustridae.

Millbay Ch., occasionally (s.p.): Queen's Gd. (R.M.P.).

Millbay Ch., occasionally (r.a.t.).

Membraniporidae.

Mewstone, 20 fms. (T.H.T.).

Eddystone Gds. (R.M.P.).

Eddystone Gds. (E.J.A.).

Eddystone Gds. (E.J.A.).

Mewstone, 25 fms. (S.F.H.).
[Bryozoa—contd.]

Plymouth, a doubtful fragment (s.f.h.).

Plymouth (r.m.p.).

Cawsand B. (t.h.t.).

Generally distributed, on Laminaria, etc. (r.a.t., s.p.).

Common everywhere on Fucus, etc., between tide-marks (r.a.t., s.p.).

Queen’s Gd.; Cawsand B.; Mewstone, 20 fms. (s.f.h.).

Microporidae.

Mewstone, 25 fms. (s.f.h.).

Cellariidae.

Common with C. sinuosa, especially on fine sand grounds, 15–30 fms. (E.J.A.).

Eddystone Gds. (E.J.A.).

Common with C. fistulosa, especially on fine sand grounds 15–30 fms. (E.J.A.).

Tubicellariidae.

Mewstone, 25 fms. (s.f.h.).

Cribrilinidae.

Mewstone ‘Echinoderm’ Gd. (r.a.t.); Eddystone Gds. (E.J.A.).
With ovicells: Apr. (r.a.t.).

Mewstone, 25 fms. (s.f.h.).

Microporellidae.

Escharidae.

Lepralia foliacea (Ellis & Solander): *T. Hincks*, Hist. Brit. Mar. Polyzoa, p. 300, fig. Millbay Pit, occasionally: Queen's Gd., not uncommon; Mewstone Ledge, abundant; more or less common on all the outside grounds, 10–30 fms. (s.p.).

Eddystone, 20 fms. (s.f.h.).

Mewstone Ledge, two small colonies in dead *Peetur* shell (s.f.h.).

Millbay Ch. (t.h.t.): Plymouth, common; Yealm Sand-bank, abundant on Alge (r.m.p.).

Mewstone, 25 fms. (s.f.h.).

Plymouth, very common (s.f.h.): Millbay Ch. (r.a.t.): Eddyestone Gds. (e.j.a.).

Plymouth (s.f.h.).

Mewstone, 25 fms. (s.f.h.).

Eddystone Gd. (e.j.a.).

Celleporidae.

Mewstone, 20 fms. (t.h.t.): Eddyestone Gds. (e.j.a.).

Cawsand B. (r.m.p.).

Eddystone, 20–30 fms. (s.f.h.).

Common at most outside stations (r.m.p.).

Eddyestone Gds. (e.j.a., s.p.): Rame-Eddyestone Gds. (r.a.t., s.p.):
Stoke Pt. Gds. (s.p.).

Crisiidae.

Not uncommon, 4–5 fms., on red seaweeds, stones, and sponges (s.f.h., r.a.t.).
Ovicells: Apr., May (s.f.h., r.a.t.).
Fairly common, mostly on red seaweeds (s.f.h.): Queen’s Gd.; Mewstone Ledge; Rame-Eddystone Gds. (R.A.T.).
Ovicells: commonest Apr.–May (s.f.h.).

Plymouth, seldom found (s.f.h.): Queen’s Gd., not uncommon; Duke Rk., occasionally common (R.A.T.).

Eddystone Gds. (E.J.A., R.A.T.): common, almost always on red weeds or Sertularia (s.f.h.).
Ovicells: Feb.–May (s.f.h., R.A.T.); commonest, Mar.–Apr. (s.f.h.).

Rare (R.A.T.).

Plymouth, 4–30 fms., the commonest species; generally on stones, but also on shells, red seaweeds, Cellaria, sponges, etc.; grows most luxuriantly in 4–6 fms. (s.f.h.): Queen’s Gd., occasionally (R.A.T.): Eddystone Gds. (E.J.A.).

Diastoporidae.

Eddystone Gds. (E.J.A.).

Mewstone Ledge (s.f.h.): Eddystone Gds. (E.J.A.).

Tabuliporidae.

Plymouth, common, 3-15 fms. (s.F.H.).

Plymouth district, abundant on Cystoseira granulata and on Saccorhiza bulbosa (s.F.H.).

Eddystone Gds. (e.j.a.).

Eddystone Gds. (e.j.a.).

Eddystone Gds. (e.j.a.).

Lichenoporidae.

Common on all grounds 15-30 fms. (e.j.a.).

Alcyoniididae.

In dredgings from the Sound, Mewstone Ledge, and S. of the Breakwater to 35 fms. (R.A.T., s.p.): Millbay Ch.; Asia Sh.; abundant (A.J.S., s.p.): Eddystone Gds. (e.j.a.).

Cawsand B. (T.H.T.1).

Plymouth (s.F.H.).

Plymouth, on Sertularia crenpressina (s.F.H.).

Flustrellidae.

Very abundant everywhere between tide-marks, on Fucus, etc. (R.M.P.).
Breeding: early Feb.—mid. July; spermatozoa more abundant Feb.—Mar.; ova, Mar.—May; larvae, Apr.—July (R.M.P.).

Vesiculariidae.

Penlee-Rame Gds., common on Holideys (R.M.P.).

Plymouth, very common (s.F.H.); Duke Rk. (t.h.t.).
Ischnochitonidae.

Abundant, 15–30 fms., especially on muddy gravel (s.p.).

Acanthochitidae.

Rocks under the Hoe, moderately common among barnacles: Millbay Ch.; Mewstone Ledge; Yealm R., occasionally in dredgings (r.a.t.): Blackstone Rks., Wembury B., abundant; Yealm Sand-bank (s.p.).

PROSOBRANCHIATA.

Patellidae.

More or less abundant everywhere on rocks between tidemarks (r.a.t.): Mt. Edgecumbe, very large specs. (A.J.S.).

On stems of *Laminaria*, common everywhere, especially Reny Rks. and the Bridge (r.a.t.).

Acmaeidae.

More or less common on all rocky shores, L.W.–5 fms., gregarious: Drake's I., large specs. (s.P.): moderately common in dredgings from the Yealm (r.a.t.).

Fissurellidae.

Not uncommon, 10–30 fms. (s.p.).

Millbay Ch.; Queen's Gd. (s.p.): the Breakwater, between tidemarks (r.a.t.): Mewstone Ledge; occasional specs. on the outside grounds in 15–30 fms. (r.a.t., s.p.): Eddystone Gds., constantly present, but seldom numerous, on all grounds where shells are plentiful (E.J.A.).
[Prosobranchiata—contd.]

Occasional specs. on all rocky stations, L.W.–10 fms. (s.p.); occasionally between tide-marks; the Breakwater; Reny Iks.; the Mewstone; Church Reef, Wembury B.; not uncommon in dredgings from the Yealm R. (r.a.t.).

Trochidae.

A single specimen, possibly merely an empty shell, 3 m. S.W. Penlee Pt. (r.a.t.).

Abundant nearly everywhere, between tide-marks–10 fms., under stones, on *Zostera, Fucus*, etc. (s.p.).

Gibbula magus (Linnaeus): *J. G. Jeffreys*, Brit. Conch., vol. iii, p. 305, fig. (as *Trochus*).

Uncommon at Plymouth, occurring only on coarse shell-sand or gravel; Queen's Gd.; between the Knap and Panther Buys, four very large specs. (s.p.): Millbay 'shell-gravel' Gd.; Mewstone 'Amphioeus' Gd. (r.a.t.).

Occasional specs. from the Rame-Eddystone, Eddystone, Stoke Pt., and other outside grounds (s.p.).

Common at most stations, but not so abundant as *G. cineraria*, and occurs at a rather higher level, H.W.–3 fms. (s.p.).

Monodonta crassa (Montfort): *J. G. Jeffreys*, Brit. Conch., vol. iii, p. 317, fig. (as *Trochus lineatus*).

The distribution of this species at Plymouth appears to be a very limited one, but it is met with in some numbers upon restricted areas of the rocks, at and above high-water mark, at those stations where it occurs; N.E. Drake's I.; Blackstone Iks., Wembury B.; Yealm Sand-bank (s.p.).

Moderately common on sandy gravel, 20–30 fms. (s.p.): Mewstone 'Echinoderzu' Gd., common (r.a.t.): Eddystone Gds., on gravel with sand or muddy sand (e.g.a.).

Occasionally; Cawsand B.; Jennycliff B.; Yealm Est., common on *Zostera* (r.a.t.).

Common under stones and in crevices on all rocky shores at low water; a dwarf var. is not uncommon in the deeper water of the outside grounds (s.p.): Yealm R., a characteristic var. is common on the sand-bank (r.a.t.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

Turbinidæ.

More or less common everywhere on Algae and Zostera, L.W.—10 fms.; common among weed growing on ships'-bottoms, buoys, etc. (s.p.): Queen's Gd.; Jennycliff B.; Cawsand B.; etc. (r.a.t., s.p.).

Littorinidæ.

Common on Fucus-covered rocks near low-water mark (s.p.): rocks below the Hoe, large specs. moderately common; smaller specs. common on the Zostera in Jennycliff B., Cawsand B., and Yealm Est.: 1 m. S. of the Mewstone, very occasionally (r.a.t.).

Breeding: Feb.—Apr. (r.a.t.).

Cawsand B. (r.a.t., s.p.).

Not uncommon between tide-marks on most shores, but seldom in any quantity; this form occurs at a lower zone than L. rudis (s.p.): St. John's Lake, abundant; Yealm R., common (A.J.S.).

Abundant on rocks above high-water mark (s.p.).

Abundant everywhere on Fucus, Zostera, etc. (s.p.).

Very abundant on all rocky shores near high-water mark (s.p.).

Rissoidæ.

Moderately common in the Sound between tide-marks; occasionally in dredgings from Millbay Ch., Asia Sh., etc. (r.a.t.).

Dead shells only (r.a.t.).

Dead shells only (r.a.t.).
[Prosobranchiata—contd.]

 Drake’s I.; Millbay Pit; occasionally (R.A.T.).

 Common on Zostera (s.P.); Cawsand B., very common; Yealm Est., moderately common (R.A.T.).

 Common on all rocky shores, gregarious under stones, particularly where there is a certain amount of silt, L.W.-10 fms. (s.P.).

 Dead shells only (R.A.T.).

 Dead shells only (R.A.T.).

 Millbay Pit (R.A.T.).

 Common between tide-marks on all rocky shores, gregarious under stones and in crevices, especially where there is a certain amount of silt; Yealm Sand-bank (s.P.).

 Dead shells (R.A.T.).

Assimineidae.

 Common in brackish water; the Hamoaze; Hoe Lake; etc. (R.A.T.).

Adeorbidae.

 Ram’s Cliff Pt., common on rocks at low tide, Aug. 1887 (W.H.).

Skeneidae.

 Common among the roots of seaweeds, and corallines, rocks under the Hoe; Drake’s I.; etc. (R.A.T.).

Capulidae.

 Occasionally on gravel grounds, 15–35 fms., generally attached to Pecten opercularis (s.P.); Mewstone Gds., occasionally on P. opercularis (R.A.T., s.P.); Eddystone Gds. (E.J.A., s.P.).

The Sound, common in dredgings on stony ground, attached to stones, shells, etc.; Asia Sh.; Millbay Ch.; the Bridge; etc. (s.P.): Yealm R., always present in dredgings; Cawsand B.: etc. (r.a.T.): Yealm Sand-bank, between tide-marks (s.P.).

Breeding: July (r.a.T.): Aug.—Sept. (s.P.).

Cypraeidae.

More or less abundant everywhere, particularly on rocky or stony ground, L.W.—30 fms.; the form occurring in deeper water is usually small and has a smooth, fawn-coloured mantle (s.P.).

Not uncommon on Apleyonium digitatum, 10—30 fms.; Mewstone Ledge; Stoke Pt. Gds.; etc. (s.P.): Mewstone Ledge, on Eniwicella¹ (W.I.B.).

Spawn probably belonging to this species has been found in Apr., June—July (r.a.T.).

Not uncommon on gravel grounds, 15—30 fms. (s.P.).

Naticidae.

Breeding: June (r.a.T.).

On sandy bottoms (w.g.): rare (s.P.).

Breeding: Apr. (w.g.).

Lamellariidae.

Not uncommon between tide-marks and in dredgings from the Sound, etc. (s.P.): occasionally on the outside grounds, 15—30 fms. (r.a.T., w.l.b., s.P.): Yealm R., not uncommon (r.a.T., s.P.).

Spawn: Jan.—May (w.g.).

Mewstone 'Echinoderm' Gd. (r.a.T.).
[Prosobranchiata—contd.]

Cerithiidae.

Not uncommon under stones on rocky shores, L.W.–10 fms. (s.P.).

Not uncommon in dredgings from the Sound, generally on sponges; occasionally on the outside grounds in 15–30 fms.; Yealm R., common on red sponge (r.a.t.).

Scalidae.

Dead shells only (r.a.t.).

Rum B., between tide-marks; Asia Sh.; Yealm R. (r.a.t.).

Stoke Pt. Gds. (s.P.).

Pyramidellidae.

Common on the ears of Pedicul opercularis (r.a.t., s.P.): on *P. maximus* (r.a.t.).

Occasionally under stones, particularly where there is a certain amount of silt, L.W.–10 fms.; Drake’s I.; Jennycliff B.; etc. (s.P.): Asia Sh.; Wenbury B. (r.a.t., s.P.).

Rame-Eddystone Gds., occasionally (s.P.).

Eulimidae.

Common among sponges, etc.: Millbay Pit; Asia Sh.; Mallard Sh.; Yealm R.; etc. (s.P.).
Plymouth Marine Invertebrate Fauna.

[Prosobranchiata—contd.]

 Occasionally; Rame-Eddystone Gds.; Eddystone Gds.; etc. (s.p.).

 Occasionally; Millbay Pit; Mewstone Gds.; etc. (s.p.).

Cacidae.

 Dead shells only (r.a.t.).

 Dead shells only (r.a.t.).

Turritellidae.

 Common in places, on muddy and sandy gravel, 15–30 fms. (s.p.):
 Mewstone Gds. (r.a.t., s.p.): Rame-Eddystone Gds.; Stoke Pt. Gds. (s.p.): Eddystone Gds. (E.J.A., s.p.).

Aporrhaidae.

 Not uncommon, particularly on muddy gravel, 5–35 fms.;
 Jennycliff B., rare; Cawsand B., occasionally; Rame-Eddystone Gds.;
 Stoke Pt. Gds.; etc. (s.p.): Eddystone Gds. (E.J.A., s.p.).

Buccinidae.

 Mewstone 'Echinoderm' Gd., moderately common; Rame-Eddystone Gds.; Yealm R., moderately common in dredgings, and not uncommon on the sand-bank (r.a.t.): Eddystone Gds., numerous on the gravel and coarser sands near the Eddystone (E.J.A.): Stoke Pt. Gds. (s.p.).
 Breeding: Jan.–Apr. (w.g.). Hatching: Feb.–Mar. (r.a.t.).

 Not uncommon in the Sound, under stones, L.W.–20 fms. (s.p.).

 Dead shells only (r.a.t.).

Muricidae.

 Moderately common on rocks between tide-marks (r.a.t., s.p.):
 Asia Sh.; Millbay Ch.; Yealm R.; occasionally (r.a.t.).
 Spawn: Apr. (r.a.t., s.p.): May (w.g.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Trochophora—contd.]

Abundant on rocks between tide-marks everywhere (s.P.).

Nassidae.

More or less common everywhere, L.W.–5 fms., especially on muddy sand; Cawsand B.; Jennycliff B.; Drake’s I.; Yealm R.; etc. (s.P.).

More or less common on all rocky shores, gregarious under stones and in crevices, particularly where there is a certain amount of silt, L.W.–10 fms. (s.P.).

Pleurotomidae.

Occasionally in muddy gravel, 20–30 fms. (s.P.).

Queen’s Gd. (R.A.T.).

Mangilia (Bellardiella) gracilis, P. Fischer: *J. G. Jeffreys*, Brit. Conch., vol. iv, p. 363, fig. (as *Defreania*).

Not uncommon, 20–35 fms., particularly on muddy gravel (s.P.).

Clathurella linearis (Montagu): *J. G. Jeffreys*, Brit. Conch., vol. iv, p. 368, fig. (as *Defreania*).

Clathurella purpurea (Montagu): *J. G. Jeffreys*, Brit. Conch., vol. iv, p. 373, fig. (as *Defreania*).

Occasionally under stones and in rock crevices, L.W.–5 fms.; Drake’s I.; Asia Sh.; Hollow Rock B.; Jennycliff B.; Blackstone Rks., Wembury B.; etc. (S.P.).

Breeding: Nov. (s.P.).

Clathurella reticulata (Renier): *J. G. Jeffreys*, Brit. Conch., vol. iv, p. 370, fig. (as *Defreania*).

Occasionally, 15–30 fms. (S.P.).
TECTIBRANCHIATA.

Acteonidae.

Dead shells occasionally taken (r.a.t.).

Tornatinidae.

Dead shells occasionally taken (r.a.t.).

Only dead shells (r.a.t.).

Scaphandridae.

Common on the trawling grounds outside Sound (w.I.B., s.p.).

Dead shell only (r.a.t.).

Dead shells only taken (r.a.t.).

Bulidae.

Yealm Est. (w.G.): Jennycliff B. (r.a.t.1).

A single specimen, 4½ m. S.W. by W. Penlee Pt. (r.a.t.).

Philinidae.

Common on muddy sand bottom, at times very abundant; Cawsand B.; Jennycliff B.; Cattewater, etc. (w.I.B., s.p.): sandy bottom Whitsand B. (w.G.).
Breeding: Apr. (w.G.): May–July (w.G., r.a.t.)

Mewstone Ledge (w.I.B.): Millbay Ch. (r.a.t.).

The Sound, single spec. among Bowervankia; plentiful 20 fns., among shells covered with Bugula, 1891 (w.G.): Drake’s I. (E.J.A.1): Asia Sh.1; Millbay Docks, occasionally on the piles (r.a.t.).

Whitsand B., 4–12 fms. (w.I.B.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Teetibranchiata—cont'd: Nudibranchiata]

On rough ground, about 2 m. S. of the Mewstone, Feb. 1893 (w.G.).

Aplysiidae.

P^t*e*<sup>ctibranchiata—cont'd.: Nudibranchiata**

On rough ground, about 2 m. S. of the Mewstone, Feb. 1893 (w.G.).

Aplysiidae.

Queen's Gd., rare; Cattewater; Cawsand B.; Reny Rks.; Yealm R., moderately common in dredgings, very common at times on the shore, especially in May and June; Yealm Est., small specs. not uncommon on the Zostera (r.a.t.): E. end of Whitsand B., in quantity beneath seaweed on rocks (w.i.r.).

Breeding: Apr.—July (r.a.t.): June—Oct. (w.g.): maximum, May—June (a.i.s.).

Pleurobranchidae.

Jenylcliff B. (a.i.s.): Wembury B., on the shore; S. of the Mewstone (w.g.).

Not uncommon on the trawling grounds (w.i.r., s.p.): the Sound, unusually plentiful, especially in Millbay Ch. and the Hamoaze, 1893; young specs. common swimming at the surface in the Sound, Sept. 1892 (w.g.): Cattewater and Yealm R., very occasional (r.a.t.).

Runcinidae.

Tide-pools below Hoe, very abundant Apr. 1889, small specs. in Sept. (w.g.): Rum B. (r.a.t.): among corallines from rock-pools in the Sound; Yealm R. (w.i.r.).

Nudibranchiata.

Hermæidae.

St. Peter's Pt., Hamoaze, single spec. on Delesseria (w.g.): West Entrance of Sound, in townet, single spec.; Cawsand B., single spec. (w.i.r.): off Penlee Pt., small spec. in townet (s.p.).

Drake's L., two on Bryopsis (w.g.): inside Bovisand Pier, single spec. (r.a.t.): in Lab. tank on a stone from Bovisand B. (w.i.r.).

Breeding: June (w.g.).

Stiliger bellulus, d'Orbigny.

Cawsand B. (w.g.)
Breeding: Oct., and probably earlier (W.G.).

Limavoniidae.

Æolidiidae.

Fairly common on all stony shores (W.I.B., S.P.): Yealm R., specs. common and particularly fine, among heaps of drift Fuens, etc. (A.J.S.).

Outside the Breakwater (W.G.).

Two specs. with spawn on Hydractinia, 3–4 m. S. of the Mewstone (W.I.B.).

Occasionally on stony ground: Millbay Ch.; Asia Sh.; New Gds. (W.I.B.).

Breeding: July (W.G.).

Fairly abundant on the trawling grounds, 20–35 fms. (w.i.b., s.p.).
Breeding: May; Nov. (w.g.).

Single spec., between Duke Rk. and Jennycliff: Cawsand B., single spec. (w.g.).

Occasionally at most stations in the Sound and outside (w.i.b., s.p.): twice amongst Hydroids, Duke Rk. (w.g.).

Mewstone Ledge, rare (r.a.t.): on stone dredged in Firestone B.; Rame-Eddystone Gds. (w.i.b.).

Fairly common on the 'inner' trawling grounds (w.i.b., s.p.): Whitsand B. (w.g.).

CORYPHIELLA smaragdina [\(t = G. gracilis \), var.]: J. Alder & Hancock, Monogr. Brit. Nudibr. Moll., p. 49, fig.
Millbay Ch.; Asia Sh.: May 1898 (w.i.b.).

Drake's I. (w.g., w.i.b.): Asia Sh., on Antennularia; Barn Pool, on Eunice; Batten B.; Duke Rk. (w.i.b.): Cawsand B. (w.g.): Yealm Est., on Zostera, fairly common in 1897 (w.i.b.).
Breeding: June (w.i.b.): Nov. (w.g.).

Millbay Dock, on piles; Millbay Ch.; Cawsand B. (w.i.b.): the Cattewater; Cobbler Buoy; Duke Rk.; off the Mewstone (w.g.): reef between Wembury Pt. and the Mewstone (E.J.A.).
Breeding: Apr.–May (w.g.).

Queen’s Gd.: Cawsand B.; Yealm Est. (w.i.b.).

Millbay Ch.; Cawsand B.; rocky ground off Penlee (w.i.b.): Mewstone Gds. (w.g., w.i.b. & r.a.t.).

Queen’s Gd. (w.i.b. & r.a.t.): Blackstone Rks., Wembury B. (s.p.): West Entrance of Sound, amongst goby eggs, which is apparently its natural habitat (w.i.b.): Mewstone Gds., generally in Buchinum shells occupied by Blebionis ovaliris, sometimes as many as 50 in
one shell; resembles the eggs with which it is associated, the
colour varying according to whether the eggs are those of the
Goby or Butterfly Blenny (A.J.S.).

Antiope cristata** (delle Chiave):** *J. Alder & Hancock*, Monogr. Brit.
Nudibr. Moll., p. 54, fig. (as *Antiope*).

Rock-pool under the Hoe: Rum B. (W.G.): Queen's Gd. (s.p.,

Antiope hyalina, Alder & Hancock: *J. Alder & Hancock*, Monogr.
Brit. Nudibr. Moll., p. 54, fig. (as *Antiope*).

2-4 m. N.E. of Eddystone (W.I.B.).

Not uncommon outside the Breakwater (W.G.): Eddystone Gds.;
Mewstone Gds.; Stoke Pt. Gds.: 6 m. S. of the Mewstone, in
considerable numbers, Jan.–June 1895: has not been seen since 1898
(E.J.A.).

Lomanotidæ.

Fairly common on *Antennularia* in shallow water: Asia Sh.:
New Gds.: Millbay; etc. (W.I.B., s.p.): about 1 m. S. of Mewstone,

Very scarce; two specs., New Gds.: 4 m. S. of the Mewstone,
large spec.; 3 m. S.S.W. of Ilfracombe Hds. (W.I.B.): Queen's Gd.,
young specimens on *Antennularia* (W.G.).

Dotonidæ.

Moll., p. 48, fig.

Fairly plentiful on *Antennularia* at most stations (W.I.B., s.p.):
always on calyptoblastic Hydroids (W.G.): Millbay Docks, on
Plumularia; buoy near Breakwater; Drake's I., on the shore

Breeding: most of the year (W.I.B., s.p.).

Moll., p. 48, fig.

Common on *Antennularia*, etc., from the outside grounds, less
frequent in the Sound (W.G., W.I.B., s.p.).

Breeding during the greater part of the year (W.I.B., s.p.).

* As *L. varians.*
† As *L. Geni.*
I'LYMOUTII
MAIMXK
INVKRTEHKATE
FAUNA.

Generally distributed and common on Antennaria in the Sound and outside (W.I.B., s.P.).
Breeding most of the year (W.I.B., s.P.).

Between Drake’s I. and Breakwater Lt. (F.W.G.); Cawsand B.; Yealm Est.; on Zostera and on Laminaria, rare (W.I.B.).

Dendronotidae.

Pleurophyllidiidae.

Single spec., 2 m. N. of Eddystone (J.T.C.).

Tritoniidae.

A pink variety is fairly common on Euniceella, especially from the Mewstone Ledge (W.I.B.).

Dorididae.

Not uncommon on most rocky shores and in dredgings from the Sound (w.g., w.i.b., s.p.): Yealm R.; Rame-Eddystone Gds.; Eddystone Gds. (w.i.b.).

Breeding: Jan.–June (w.g.).

Occasionally on the shore and in dredgings from the Sound on stony ground (w.i.b., s.p.): Drake's I. (w.g., c.c.b.): Yealm R.; Downderry, on the shore (w.i.b.)

Occasionally on rocky and stony shores, and in dredgings from the Sound (w.g., w.i.b., s.p.): Reny Rks.; Yealm Est., south shore (w.i.b.).

Drake's I. (w.g., t.v.h.): Barn Pool (w.h., w.g.): Garden Battery (R. A. T.): Duke Rk. (w.g., t.v.h.): Yealm R. (R. A. T.): Wembury B., few small spee. among corallines (w.i.b., s.p.): Eddystone Gds. (R. A. T.):

Punctilucus.

Off Rame Hdl, 20 fms., single spee. (W.G.): Queen's Gd. (s.p.):

Breeding: July–Aug. (W.G.).

Extremely abundant at times on Cellaria; Mewstone Ledge; Rame-Eddystone Gds.; Eddystone Gds.; etc. (W.I.B.).

Off Stoke Pt. (W.G.).

Breeding: Feb.; May; July; Sept. (W.G.).

PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Nudibranchiata—contd.: Pulmonata: Scaphopoda: Pelecypoda]

IDALINA (Idaliella) ASPERSA (Alder & Hancock): *J. Alder & Hancock*, Monogr. Brit. Nudibr. Moll., p. 46, fig. (as *Idalia*).

Yealm Est.¹; off Penlee Pt.¹ (w.G.).

PULMONATA.

Otinidae.

Common in empty barnacle shells near high-water mark on the rocks under West Hoe and below Laboratory (R.A.T.): very abundant near high-water mark in rock crevices, etc., gregarious within limited areas; Drake's I.; cave under Ram's Cliff Pt.; etc. (S.P.).

Auriculidae.

Rocks under West Hoe, in empty barnacle shells (R.A.T.): common in crevices of rocks near high-water mark; Jennycliff B.; Drake's I.; etc. (S.P.).

SCAPHOPODA.

Not uncommon on the fine sand grounds, 15–30 fms. (R.A.T., S.P.): Eddystone Gds., on all fine sand grounds except the 'Outer' trawling ground, and occasionally on gravel (E.J.A.).

PELECYPoda.

Nuculidae.

Anomiidae.

More or less common everywhere, L.W.–30 fms., on stones, shells, rocks, etc. (R.A.T.): Eddystone Gds., wherever suitable attachment can be found, least frequent on the fine sand grounds (E.J.A.).

Eddystone Gds., wherever suitable attachment is to be found, least common on the fine sand grounds (E.J.A.).

Several dead shells (s.p.).

Occasionally between tide-marks, among stones, etc., and in 15–30 fms., particularly on muddy gravel (s.p.): Queen's Gd. (R.A.T., s.p.): Reny Rks., occasionally (R.A.T.).

Occasionally on all rocky shores, in crevices and among stones, L.W.–30 fms. (s.p.): not uncommon in rock crevices at Drake's I. and Ram B.: occasionally from the Bridge and Millbay Ch. (R.A.T.).

Mytilidae.

Very common on the coal-hulks moored in the Cattewater and on the piles of the Promenade Pier; young specs. are common between tide-marks on the rocks below the Hoe and occasionally from Drake's I. and Asia Sh. (R.A.T., s.p.): Yealm Sand-bank (s.p.).

Occasionally between tide-marks, under boulders (s.p.): Asia Sh. (R.A.T.).

Not uncommon on the outside grounds in 15–30 fms.: occasionally between tide-marks on the Breakwater and Drake's I.; Millbay Pit (R.A.T.).

More or less common, buried in the tests of Tunicates; Millbay Pit and Ch.; Mewstone Ledge; Yealm R.; etc. (R.A.T., s.p.).

Pteridae.

Very rare from the offing (R.A.T.).
[**Pelecypoda—contd.**]

Small specs. are occasionally taken on gravel off Rame Hd., 20–30 fms.; dead shells are common (r.a.t.): Queen's Gd.; Stoke Pt. Gds., etc.; small specs. only (s.p.).

Ostreidae.

Millbay Ch.; Queen's Gd.; Mewstone Ledge; Yealm R.; stray specs. occasionally dredged (r.a.t.): inside the Bridge (s.p.1). Extensive oyster-beds are cultivated in the Tamar R. at Saltash, and in the Yealm R. (e.j.a.).

Pectinidae.

Mewstone 'Echinoderm' Gd., not uncommon; Rame-Eddystone Gds., etc. (r.a.t.): Eddystone Gds., moderately abundant on the various gravel grounds (e.j.a., s.p.): Mewstone Ledge; Asia Sh.; Yealm Sand-bank, between tide-marks\(^1\) (r.a.t.).

Not uncommon on all rocky shores, among stones, inside dead shells, etc., L.W.–30 fms. (s.p.): Drake's I.; Asia Sh.; Queen's Gd.; the Breakwater; etc. (r.a.t., s.p.).

The Breakwater, not uncommon at low tide; occasional specs. from Drake's I., Asia Sh., Queen's Gd., Rum B., Yealm R. (r.a.t.).

More or less common everywhere in 15–30 fms., especially on the Mewstone 'Echinoderm' Gd. and about 5 m. S.W. of Penlee Pt.; occasionally from Queen's Gd. and Asia Sh.; the Breakwater, single small spec. between tide-marks (r.a.t.): Eddystone Gds., more or less abundant on all the grounds, often in beds which, while of limited extent, contain very numerous individuals (e.j.a., s.p.).

Breeding: June–Aug. (s.p.).

Not uncommon on coarse muddy or sandy gravel; Stoke Pt. Gds.; Rame-Eddystone Gds.; etc. (s.p.): Mewstone 'Echinoderm' Gd. (r.a.t., s.p.): Eddystone Gds., not abundant, for the most part on coarse ground (e.j.a.): the Breakwater, single spec. between tide-marks (r.a.t.).

Limidae.

Abundant at extreme low tide among a small patch of stones with muddy gravel on the N. side of the Breakwater\(^1\); Reny Rks.\(^1\) (r.a.t.): Drake's I. (s.p.\(^1\)).

Dead shells only (R.A.T.).

Astartidae.

Not uncommon, 15–30 fms., generally on muddy or sandy gravel (R.A.T., s.p.).

Cyprinidae.

Lucinidae.

Occasionally on the Zostera bed N.E. of Drake's I. and on the Yealm Sand-bank; dead shells are very common in Cawsand B. (R.A.T.).

Rame-Eddystone Gds. (s.p.): dead shells not uncommon (R.A.T.).

Yealm Sand-bank, occasionally; dead shells are very common in Cawsand B. (R.A.T.).

Common attached to the anal spines of Spatangus purpurascens (R.A.T., s.p.).

Dead shells only (R.A.T.).

Leptonidae.

Not uncommon on all rocky shores, L.W.–30 fms., in crevices, inside dead shells, etc., particularly where there is a thin layer of silt; gregarious (s.p.): Drake's I.; Asia Sh.; Queen's Gd.; Rum B.;
PLYMOUTH MARINE INVERTEBRATE FAUNA.

[Pelecypoda—contd.]

Millbay Ch., in Saxicava borings; etc. (r.a.t., s.p.): Stoke Pt. Gds., in Pholadidea crypts, etc. (s.p.): Eddystone Gds.: generally in fine mud inside dead shells (E.J.A., s.p.).

Abundant between tide-marks on all rocky shores, in crevices, etc. (s.p.): rocks below the Hoe, very common among barnacles and the roots of Fucus, etc. (r.a.t.).

Dead shells only (r.a.t.).

Scrobiculariidae.

St. John's Lake, Hamoaze, common in fine tenacious mud (r.a.t.).

Tellinidae.

Drake's L., occasionally between tide-marks (r.a.t.): Mewstone Gds., common: Rame-Eddystone Gds. (r.a.t., s.p.): Stoke Pt. Gds. (s.p.): Eddystone Gds. (E.J.A., s.p.): Yealm R., occasionally on coarse sand between tide-marks (r.a.t.).

Yealm R., occasionally in coarse sand between tide-marks (r.a.t.).

Not uncommon in the muddy sand of the Zostera beds; Cawsand B.; Batten B.; Jennycliff B.; etc. (s.p.).

Tellina squalida, Pulteney: E. Forbes & Hanley, Hist. Brit. Moll., vol. i, p. 298, fig. (as T. incarnata). Dead shells only (r.a.t.).

Saltash (E.J.A.).

Donacidae.

Donax variegatus (Gmelin): E. Forbes & Hanley, Hist. Brit. Moll., vol. i, p. 336, fig. (as D. politus). Dead shells only (r.a.t.).

Mactridae.

Dead shells only; these are common in West Ch. and Whitsand B. (r.a.t.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

West Entrance, abundant; Cawsand B., moderately common (s.P.).

VENERIDEAE.

Dead shells only (r.a.T.).

Dead shells only (r.a.T.).

Occasionally on gravel grounds, 10–30 fms. (s.P.).

Moderately common in the Sound on muddy sand and gravel, and occasionally outside in 15–30 fms. (r.a.T.).

Cawsand B., moderately common in sand; occasionally on the
[Pelecypoda—contd.]

outside grounds, 15–30 fms.; Yealm Sand-bank, between tide-marks (r.a.t.).

Dead shells only (r.a.t.).

Occasionally between tide-marks and in dredgings from the Sound; the variety "*perforans*" is moderately common between tide-marks where the rocks are bored by *Stavicera*; Yealm Sand-bank, common (r.a.t.).

Common in gravel in Millbay Ch.; occasional specs. from Drake's L, Jennycliff B., the Breakwater, Reny Rks., and from the outside grounds in 15–30 fms. (r.a.t.).

Cardiidae.

Living specs. are seldom obtained, 15–30 fms., although dead shells are moderately common; Cawsand B., single spec. (r.a.t.): Eddystone Gds., fresh dead shells are a characteristic feature of the fine sand of the 'Inner' and 'Outer' Trawling Gds. (E.J.A.).

Common on gravel, 15–30 fms.; West Ch. and Queen's Gd., occasionally; Mewstone Ledge, moderately common in the patches of gravel between the rocks; Mewstone 'Amphiobius' Gd.; Rame-Eddystone Gds.; etc. (r.a.t., s.P.): Eddystone Gd. (E.J.A., s.P.).

Garidae.

Occasionally with *G. tellinella*; Rame-Eddystone Gds.; Eddystone Gds.; etc. (s.P.).
[Pelecypoda—contd.]

Yealm R., not uncommon in coarse sand between tide-marks (R.A.T.).

Myiæ.

Soleniæ.

Jennycliff B., single spec.; 4 m. W. by S. of Rame Hd., single spec.; dead shells are not uncommon 2-4 m. S.W. of Rame Hd. (R.A.T.).

Solecurtus scopula (Turton): *J. G. Jeffreys*, Brit. Conch., vol. iii, p. 3, fig. (as *S. candidus*).

Ensis ensis (Linnaeus): *J. G. Jeffreys*, Brit. Conch., vol. iii, p. 16, fig. (as *Solen*).

Yealm Sand-bank, very common; Drake's I., not uncommon in sand at the N.E. corner; sandy patch S. of Batten Castle; Cawsand B.; etc. (R.A.T.).

Ensis siliqua (Linnaeus): *J. G. Jeffreys*, Brit. Conch., vol. iii, p. 18, fig. (as *Solen*).

Dead shells only (R.A.T.).

Saxicavidae.

Mewstone Gds.; Rame-Eddystone Gds. (R.A.T.): Eddystone Gds., on all grounds, attached to shells, the roots of Hydroids, etc. (E.J.A.).
Pelecypoda—contd.]

Everywhere boring in limestone, etc., L.W.–20 fms. (r.a.t.).

GASTROCHÆNÆA.

The Breakwater, boring in limestone; Asia Sh.; Millbay Ch. and Pit; Yealm R., single spec. boring in an oyster shell (r.a.t.).

Pholadidae.

Rum B., common in particular patches of shale rock (r.a.t., a.j.s.).

Rum B., common (r.a.t.).

Rum B., common at low tide (r.a.t.); abundant in the red rock of the Mewstone Ledge, Stoke Pt., etc., 10–20 fms. (s.P.).

Teredinidae.

Not uncommon in drift and submerged wood (r.a.t.).
Breeding: July (w.g.).

Pandoridae.

Cawsand B., occasionally (r.a.t.); Rame-Eddystone Gds. (r.a.t., s.P.); Eddystone Gds. (e.J.A., s.P.); Stoke Pt. Gds. (s.P.).

Lyoniidae.

Cawsand B., occasionally (r.a.t.): single spec. off Stoke Pt. (e.J.A.).

Anatinidae.

Dead shells only (r.a.t.).

Single spec., S. of Batten Castle, in sand (r.a.t.).

Dead shells only (r.a.t.).
CEPHALOPODA.

Ommastrephidae.

Loliginidæ.

The Sound, occasionally (w.g.); practically absent, Jan.–June 1895 (e.j.a.): Tamar R., below Saltash Bridge; Lynher R.; small specs. common, July 1897 (e.w.l.h.): 'Inner' trawling grounds, large spec. Aug. 1897 (w.i.b.).

Breeding: Apr.–Sept. (w.g.).

Off the Draystone, single spec. (w.g.).

Cawsand B.; Whitsand B.; etc. (w.g.): Jennycliff B. (r.a.t.): St. John's Lake, Hamoaze, Aug. 1898 (e.w.l.h.).

Breeding: Apr.–June (w.g.). Late embryos in Oct. (w.g.).

Sepiidae.

SEPIA ELEGANS, d'Orbigny: *G. Jatta, Fauna Flora Neapel*, vol. xxiii, p. 160, fig.

Not uncommon on the trawling grounds (e.w.l.h., w.i.b., s.p.).

SEPIA OFFICINALIS, Linnaeus: *G. Jatta, Fauna Flora Neapel*, vol. xxiii, p. 149, fig.

Comes into the bays and estuaries to spawn during July and Aug. (w.i.b.): Mewstone Gds.; Rame-Eddystone Gds.; etc., occasionally (r.a.t.): very scarce during 1904 (A.J.S.).

Breeding: July–Sept. (r.a.t.). Hatching: Oct. (r.a.t.).

Sepiolidæ.

Common in Cawsand B., Jennycliff B., and Whitsand B.; occasionally on the outside grounds in 15–30 fms. (r.a.t., s.p.): the Cattewater, common (r.a.t.): Tamar R., common just below Saltash Bridge; Downderry, common in sandy pools; Yealm R. (w.i.b.).

The Sound, single spec. Nov. 1887 (w.h.): Mewstone Gds., single spec. Oct. 1899 (w.i.b.).

Two specs, autumn 1892 (w.g.): occasionally on the Trawling Gds. (A.J.S.).
PLYMOUTH MARINE INVERTEBRATE FAUNA.

295

[Cephalopoda—contd.: Tunicata]

Polypodiidae.

On the shore and from lobster pots; generally only a few specimens are obtained during the summer months, but it varies greatly in abundance in different years (E.J.A.): exceptionally plentiful* in 1900 (W.G.).

MOSCHITES CIRROSA (Lamarck): J. G. Jeffreys, Brit. Conch., vol. v, p. 146 (as Eledone), fig.

Tunicata.

Molgulidae.

Eddystone Gds., on Chatopterus tubes, not uncommon (E.J.A.).

Cynthiidae.

Abundant on rocks between tide-marks, Jennycliff B., Rum B., Mt. Edgecumbe; occasionally in dredgings from Millbay Ch., Queen's Gd., etc. (R.A.T.): Eddystone Gds., the small squat var. not uncommon on shells, particularly Pecten shells, on the gravels W. of the Eddystone (E.J.A.).

Breeding: May; Oct. (W.G.).

Asciidiidae.

Off the Eddystone (W.G.).

Duke Rk., single spec. on small stone; 2 m. S. of Mewstone, single spec. on stone (W.G.).

Moderately common in dredgings from the Yealm R., Mewstone Ledge; and occasionally from the Duke Rk., Cattewater, and West Ch. Not uncommon washed up on the Yealm Sand-bank between tide-marks (R.A.T.).

Eddystone Gds., occasional specs. (E.J.A.).

Not uncommon on the Bolt Head shell gravel attached to stones (E.J.A.).

\textit{Ciona intestinalis} (Linnaeus): \textit{R. Hartmeyer, Fauna Arctica, vol. iii, p. 297, fig.}

Until 1901 this Ascidian was comparatively rare, having only been recorded occasionally from Millbay Ch., the Cattewater, Yealm R., Mewstone Ledge, and the Eddystone Gds., and the specimens were never of greater length than 4–5 inches. In that year the species became for a time very abundant in Millbay Docks, completely covering the piles and rafts, and many of the specimens from the Inner Dock were of extremely large size, measuring as much as a foot in length (E.J.A.): Stoke Pt. Gds., small specimens fairly common (s.p.).

PLYMOUTH MARINE INVERTEBRATE FAUNA.

[297]

Clavelinidae.

Eddystone Gds. (w.g., r.a.t.): Stoke Pt. Gds. (w.g.).

Perophora banyulensis, Lahille.

Duke Rk. (w.g.).

Rocks under the Hoe, abundant (w.h.): Queen's Gd.; Millbay Pit; Asia Sh. (A.J.S.): Duke Rk.; Yealm Estuary (w.g.).

Mewstone Gds., attached to various objects from rough ground, 10-20 fms.; once in the Sound, forming a thin growth on the stems of red weeds (w.g.): Mewstone Ledge, on Eurinales (r.a.t., s.p.).

Drake's L., occasionally at extreme low tide (w.g., r.a.t.): Queen's Gd. (r.a.t., s.p.): Mt. Edgcumbe (w.g., t.v.h.): Duke Rk. (w.g., r.a.t.):

Rum B.; Millbay Ch.; Mewstone Ledge; Wembury B. (t.v.h.): very rarely, in 10-15 fms. off the Mewstone and Penlee (w.g.).

Breeding: June (w.g.): July (r.a.t.).

Distomidae.

On stones, dead shells, etc., at Duke Rk. and elsewhere (w.g.).

Duke Rk., very abundant on stones; 2 m. S. of Mewstone (w.g.).

Breeding: June (w.g.).

Polyclinidae.

Plymouth, attached to the stalks of Bowerbankia or Amathia (w.g.).

Off the Mewstone (w.g.).

Church Reef, Wembury B. (w.g.).

Breeding: June (w.g.).

Single colony, 3 m. S. of the Mewstone (w.g.).

Common everywhere on rocks between tide-marks (r.a.t.): Millbay Ch. (t.v.h.): Millbay Docks, on wooden piles (w.g.): Duke Rk. (E.J.A., r.a.t.): Yealm R. (t.v.h., r.a.t.).

Breeding: Sept. (w.g.).
Asia Sh., on roots of Laminaria and on stones and shells; Millbay Ch., on stones and shells; Bovisand B., on stones and shells (w.g.).

Duke Rk., on stones (w.g.).

Drake’s L, on reef leading to the Bridge, on roots of Laminaria at extreme low-water; Picklecombe, E. of the Fort on roots of Laminaria; Devil’s Pt., Stonehouse, under a stone, low-water, spring tide; Duke Rk., in crevices of stones; Wembury B., under overhanging rocks (w.g.).

Botryllidæ.

Common on rocks, under stones and on weed, at low water on all shores (w.g.).
Breeding: June–Aug. (w.g.).

Under the Hoe, common under stones (w.g.).
Breeding: Aug.–Oct. (w.g.).

Doliolidæ.

Tow-nettings, Aug. and Sept., 1893, a considerable number (w.g.); very abundant during 1895 (t.v.i.): S. of the Eddystone, several specs. Nov. 1904 (L.H.G.).

Salpidae.

Aggregated form at surface, N. of Eddystone, Aug., 1901 (r.a.t.).

Large shoals visited the Sound in 1893, from the middle of June to the end of the first week in July (w.g.).
Breeding: Aug.–Oct. (w.g.).

Appendiculariidæ.

Generally present in tow-nettings, occasionally common (r.a.t.).
Breeding: Mar.–Apr. (w.g.).

* Previously recorded as D. Tritonis, Herdman.
Pallasia murata, n. sp.: a new British Sabellarian.

By

E. J. Allen, D.Sc.

Director of the Plymouth Laboratory of the Marine Biological Association.

With Plate X.

Fragments of a large tube built of pieces of coarse gravel and shell, evidently the work of some Polychaete, have been constantly dredged for many years on the grounds in the neighbourhood of the Mewstone and Stoke Point, to the eastward of Plymouth Sound. Not until June 4th, 1903, was the worm first discovered to whose skill as a mason these tubes are due. On that day the Laboratory fisherman captured and drew attention to a tube which was occupied by a living worm. The specimen, along with a number of fragments of empty tube, was obtained on a patch of coarse gravel off Stoke Point.

The species thus discovered has proved to belong to the genus Pallasia, a genus which was founded by de Quatrefages to include certain foreign Hermellidae (Sabellaridae) which were distinguished by having two rows and not three of peristomial chaetae in the paleal crown. As will be seen from the description given below, the new worm most closely resembles Pallasia Giardi, McIntosh, from Port Jackson, in Australia, and Pallasia levispinis, Grube, from Upolu, in the Pacific and from Ascension. The details of its structure, as well as the large size of the British specimen, indicate that it is a new species. I propose to name it Pallasia murata. My thanks are due to Mrs. L. E. Sexton for the excellent drawings of the specimen reproduced in Plate X.

Tube. The pieces of tube of Pallasia which have been dredged have sometimes reached a length of four to five inches, with an internal diameter of half an inch. It is doubtful, however, whether a complete tube has ever been obtained.

The tube is built of two layers, an internal layer consisting of comparatively small pieces of shell or thin, flat stones, arranged with considerable regularity and forming a smooth internal surface, and an external layer of large pieces of gravel and shell, forming a strong, but
rugged and irregular, outer covering. (Plate X., Fig. 5). The particular tube which contained the living worm had a piece of *Haliclona halicina* growing near one end. This circumstance, combined with the fact that short pieces of empty tube only are generally taken with the dredge, seems to suggest that the tubes are sunk more or less vertically in the gravel, with one end protruding at the surface.

Colour. When removed from its tube the general colour of the body of the worm is seen to be buff, with dark chocolate-brown markings in the region of the thorax and peristomium. The branchiae, which form two rows along the dorsal surface of the thorax, are dark olive-green, and the smooth caudal portion of the animal is also dark green.

External characters (Figs. 1 and 2). The peristomial lobes, which carry the crown of paleae, are not fused together as in *Sabellaria*, but form distinct, elongated organs, pointed at their anterior extremities. Their dorsal surfaces are slightly concave, and each carries a row of a little over twenty papillae on its external margin, and two rows of paleae (peristomial chætae), one on the external margin immediately inside the papilla, and one on the internal margin (Fig. 4).

The outer row of paleae contains thirty-four or thirty-five thin, straight, translucent, flattened bristles, which run out into long fine points at their distal ends.

The paleæ of the inner row, of which eleven can be seen on each side, are much stouter and stronger than those of the outer row. They are of a bright yellow colour, straight, flattened, and directed forwards. The two most posterior chætae of this row appear much smaller than the others, their tips only protruding through the skin, and they appear to be separated from the others by a considerable interval, being situated quite at the hinder end of the inner margin of the lobe. The intervening space is not, however, free from paleæ, which are present, but have not pierced the skin.

Behind the rows of paleæ (Fig. 4), on the dorsal surface of the worm are two stout, black hooks, one on each side, embedded in fleshy papillæ and curving backwards. Outside the hooks are two conical papillæ, which seem to be the two most posterior members of the rows of papillæ which line the outer margins of the peristomial lobes. They are, however, of considerably larger size than the papillæ immediately in front of them.

The inner and ventral surfaces of the peristomial lobes (Fig. 3) are covered with numerous tentacular filaments, arranged, as is usual amongst the Sabellariidae, in transverse rows.

The mouth lies on the ventral surface, between the bases of the peristomial lobes (Figs. 1 and 3), and is almost completely surrounded by a large, hood-shaped structure. Posteriorly the mouth, including
the hinder portion of the ‘hood-shaped structure,’ is bordered by a curved row of ten rounded, cushion-like lobes, and laterally there is on each side a much larger conical lobe, as in *Sabellaria*. Outside this conical lobe lies the neuropodial cirrus of the first segment, and externally to this again a small rounded lobe, from in front of which the short neuropodial bristles of this segment arise.

The two tentacles are best seen from the ventral surface of the worm. They arise behind (dorsal to) the lip, and extend a little beyond the anterior ends of the peristomial lobes. The tentacles

* After the above was written I sent the specimen of *Pallasia* to Mr. Arnold Watson, who is at present engaged in a study of the British Sabellariidae. Mr. Watson has kindly allowed me to print here the following valuable note explaining his views as to the nature of the structures which surround the mouth:—

"The hood-shaped structure which surrounds the mouth (well shown in Figs. 1 and 3) is really formed by the upper and lower lips combined: the top portion being due to the former, and the side folds to the latter. As the result of recent study of the British Sabellariidae (*S. alveolata* and *S. spinulosa*) I have found that the lower lips (by means of a membranous structure winding in and out between the tentacular fans) are practically extended to the distal extremities of the peristomial lobes, while the upper lip is similarly but more directly so extended right and left, a few foldings only (less than a dozen on either side) occurring anteriorly, and each fold corresponding with the position of a single tentacular filament placed in the inner margin of the peristomial lobe. The membranes which proceed from the upper and lower lips respectively coalesce at the extremity of the lobes. The result is the formation of a ciliated channel running the length of each lobe, receiving, by means of the transverse folds, the material collected by the fans and by the internal filaments, and conveying it to the mouth of the worm, there to be used for food or for building purposes. An arrangement, similar in principle, but differing in detail, appears to exist in *Pallasia*.

"The hood-shaped structure, the product of the upper and lower lips combined, is common to all. Fear of causing injury by manipulation of the tentacular filaments, etc., to the specimen *Pallasia*, has prevented my making a satisfactory examination, but by careful posing and illumination it can be seen that the margin of the upper lip, though shallower, runs forward (and not backwards, as would be needful to form a hood), and that it is intimately connected with the first of a series of filaments which border completely the inner edge of the peristomial lobe. For the reason before given, the course of the lower lips cannot be followed, but from appearances and analogy with *Sabellaria*, each lip is probably connected with the inner edge of the first external fan. An avenue or channel is thus formed between the inner and outer sets of filaments, leading to and carrying material to the mouth in the way already explained.

"The main difference to be noted is, that whereas in *Sabellaria* there are only few inner tentacular filaments, and those at varying intervals, in *Pallasia* the inner margin of the lobes is by their means completely and compactly fenced. Viewed from the dorsal surface, these inner filaments seem to have a fan-like arrangement somewhat similar to those in the outer edge, but not quite so well defined.

"The ‘curved row of cushion-like lobes,’ combined with the ‘larger conical lobes,’ forms the ‘building organ’ of the worm. They are glandular structures, and doubtless supply the cement with which the sand, stones, and shells are attached. I have seen the whole in action in *Sabellaria*, and by means of sections the glandular structure of the organ has been proved. The peculiar columnar arrangement of the glands is, in *Pallasia*, to some extent indicated by its external appearance. In *Sabellaria* the glandular portion, although crenate on its edge, is not distinctly divided into cushion-like lobes. Probably the latter arrangement in *Pallasia* is a modification enabling the worm to deal more easily with the very bulky material used in the construction of its tube.

Arnold T. Watson."
have the same general shape as the palps of Spionideae and Disomideae (e.g. Pecilochætus), being D-shaped in section with the flattened (or grooved) surface, bordered by a crenate membrane.

Meyer (1888, p. 507) suggests that the peristomial lobes (Paleenträger) represent the notopodia of the first segment of the body. This view is supported by the striking resemblance between the relations of the parts in Pallasia murata and that found in Pecilochætus, where the parapodia of the first segment are much enlarged and directed forwards. It may be noted in this connection that Meyer considers that the Hermesdæae are nearly related to the Spionideae, with which family Pecilochætus also is closely allied.

The neuropodial cirrus of the second segment is seen immediately behind the mouth. It consists of a flattened, triangular lobe, from in front of which a bundle of hair-like bristles arises. The notopodium of this segment is represented by two broad, flattened, forwardly directed, fin-like processes, extending transversely along the lateral surfaces of the body, and running out into two or three points. No notopodial chaetae can be seen. The notopodial cirrus of the second segment is well developed, springing from the dorso-lateral surface and falling inwards and backwards to meet its fellow of the opposite side, constituting with the latter the first of the pairs of gills with which the dorsal surface of the worm is furnished.

In the third segment the neuropodium consists of a very small, pointed lobe, from below and behind which a few short, flattened chaetae spring. There is no neuropodial cirrus. The notopodium consists of a broad, flattened, fin-like process, with a small secondary lobe or cirrus attached to the posterior angle of its dorsal surface, and provided with a row of strong, broad, flattened chaetae (paleæ) of a bright yellow colour. The notopodial cirrus forms a Gill like that of the second segment, though slightly larger.

The fourth, fifth, and sixth segments are very similar in character to the third, and all have broad, strong chaetae in the neuropodia. These chaetae occur, therefore, in four segments and not in three as in Sabellaria.

In the seventh segment the parapodia take on the form which persists generally throughout the abdomen. This region comprises about forty segments, of which the last few are rudimentary, and on which the dorsal cirri (gills) persist only in the first fifteen or sixteen. The notopodia on all the segments have the form of flattened, fin-like processes, each bearing along its external margin a closely packed row of uncini. These uncini (Fig. 6) have eight teeth, of which the first is only slightly developed. The middle teeth are the longest. Two long, tendon-like filaments are attached to the lower end of each uncini, and one

† On one side of the specimen examined this lobe is bifid.
such filament is also attached to a small projecting piece behind the first rudimentary tooth. The neuropodial cirri are developed on the abdominal segments as flattened, bilobed processes arising behind the bundles of neuropodial chaetae and joined to the ventral edges of the notopodia. Of the two lobes of each cirrus the internal is rounded, the external conical and pointed; the bilobed structure becomes less pronounced posteriorly. Each neuropodium has a bundle of long, hair-like chaetae, which are longest on the most posterior segments and show the structure seen in Fig. 7.

The smooth, caudal portion of the worm is devoid of appendages, excepting for three or four pairs of rudimentary neuropodial cirri on its most anterior part. The anus is terminal and is surrounded by a large, funnel-shaped membrane with a crenate margin.

Dimensions. Total length of preserved specimen, 13 cm. (5·1 inches). Length of first segment to the tip of the peristomial lobes, 22 mm. Length of thorax, to anterior edge of mouth, about 19 mm. Length of abdomen, 66 mm. Length of caudal portion, 26 mm. Maximum breadth, not including parapodia, 10 mm. Length of tentacles, 18 mm.

Amongst the various species of Sabellariide (Hermellidæ) which have been described, the two species which most nearly resemble that now found at Plymouth are *Sabellaria (Pallasia) Giardi*, McIntosh (from Port Jackson, Sydney), which McIntosh thinks may be identical with Kinberg’s *Lygodomis indicus*, and *Sabellaria (Pallasia) lervispinis*, Grube (from Upolu and Ascension). The three species *P. lervispinis*, *P. Giardi*, and *P. murata* form a distinct group of the genus *Pallasia* characterised by the deep division of the peristomial lobes (a character found also in *P. Johnstoni*, McIntosh), by the straight, slender and pointed paleae of these lobes, and by the fact that the dorsal chaetae of four segments (Segts. 3, 4, 5, and 6) have the modified, stout, flattened form, instead of this modification being confined to three segments only.

The following table gives an indication of some of the points in which the three species differ from one another:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (preserved)</td>
<td>25 + mm.</td>
<td>130 mm.</td>
</tr>
<tr>
<td>Breadth</td>
<td>4·5</td>
<td>10</td>
</tr>
<tr>
<td>Number of Segments</td>
<td>27</td>
<td>46</td>
</tr>
<tr>
<td>Papillae on Peristomium</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Paleae—outer row</td>
<td>28, straight and smooth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" inner row</td>
<td>10 "6 teeth"</td>
<td>34, straight and smooth</td>
</tr>
<tr>
<td>Uncini</td>
<td>18 each side</td>
<td>Curved inwards 11</td>
</tr>
<tr>
<td>Gills</td>
<td></td>
<td>"8 teeth"</td>
</tr>
</tbody>
</table>

The table gives an indication of some of the points in which the three species differ from one another.
LITERATURE.

(*Family Sabellariidae.*)

1865. Quatrefages.—Hist. Nat. Années, T. ii. pp. 308-325. References to previous literature on the subject will be found here.
1885. McIntosh.—Challenger Report, xii. pp. 414-422.
1897. Ehlers.—Hamburger magellanische Sammelreise, p. 124.

EXPLANATION OF PLATE X.

Illustrating Dr. E. J. Allen's paper on "Pallasia murata, n. sp.: a new British Sabellarian."

Fig. 1. *Pallasia murata*, ventral view. Natural size.
Fig. 2. " " dorsal view. Natural size.
Fig. 3. Anterior segments, ventral view. × 2.
Fig. 4. " dorsal view. × 2.
Fig. 5. Tube of *Pallasia murata*. Natural size.
Fig. 6. Uncinus.
Fig. 7. Neuropodial chaeta of abdomen.
Note on two species of *Cucumaria* from Plymouth, hitherto confused as *C. Montagui* (Fleming): *C. Normani*, n. sp., and *C. saxicola*, Brady and Robertson.

By

S. Pace.

Pending the publication, in a paper now in preparation, of an account of the Holothuria of the Plymouth district, and an attempt at a revision of the European species of that group, it has appeared advisable to publish the following short note*, with the view of removing one of the most prolific of those sources of error with which the literary history of the Holothuria has come to be burdened.

Holothuria Montagu, Fleming, affords a remarkable instance of how much confusion may gather around a specific name; the species was itself founded on a misconception, and almost every author who has since made use of Fleming's name, or who has attempted to disentangle its synonymy, has but made matters rather more involved. It is not my intention to discuss the synonymy of *C. Montagu* at all fully in the present paper, as it will be more convenient to do this subsequently, when dealing with other species, and only so much of the history of the name will now be mentioned as is essential to the immediate purpose of the present note.

In 1808 Montagu (4) described and figured as "*Holothuria Pentactes, var.," a species of *Cucumaria* which he had found on the south coast of Devonshire. This species, from Montagu's excellent description, must certainly have been one of the two forming the subject of this paper; and which has, among other names, been known as *C. Montagu*, Fleming. Now, whatever *C. Montagu* really may be, it certainly is not conspecific with Montagu's supposed variety of *C. pentactes*. Of course, it was undoubtedly Fleming's intention to honour Montagu by bestowing his name upon the species discovered by that naturalist; but, unfortunately, the description (2) of *C. Montagu* is based upon specimens of another species collected in the Firth of Forth. Fleming makes reference under the name *Montagu* to Montagu's description

* My thanks are due to Dr. E. J. Allen, Director of the Plymouth Laboratory, for allowing me to devote the necessary time to this research; to Prof. F. J. Bell for granting me facilities for working at the collections under his care at the British Museum; and to Dr. A. M. Norman for much friendly criticism.
of the Devonshire Cucumarian, but Montagu's actual form is probably the one that is described as *Holothuria pentactes* in the *History of British Animals*.

Fleming's name appears to have dropped into almost complete disuse until revived by Dr. A. M. Norman (5). Norman, however, overlooked the fact that Fleming was not dealing with the same species as Montagu; and in addition, he has failed to realise that there are two species of *Cucumaria* of somewhat similar outward appearance living upon the South Devon coast. Norman's *Cucumaria Montagu* is, in fact, a complex, and it is mainly as the result of this that subsequent authors have experienced so much difficulty in reconciling their ideas as to the identity of *C. Montagu*.

Before proceeding further, it will, perhaps, be most convenient to say something regarding the characters and habits of the two Cucumarians in question, and to call attention to the more important points of difference between them.

During life it is an easy matter to separate the two forms; and from quite an early date in the history of the Plymouth Laboratory they have there been recognised as distinct species. At Plymouth, for some years past, these species have been recorded and distributed as "C. pentactes," and "*C. Planeri," the one known by the latter name being the one figured by Montagu. However, neither of these names can be retained. Linnaeus' *Holothuria pentactes* is now generally regarded as being an indeterminate* species; and, whether Brandt's name *Planeri* be eligible for the common Mediterranean species or not, it certainly cannot be applied to the very different species from Plymouth. For the moment, it will perhaps simplify matters if we refer to Montagu's "*Holothuria pentactes, var.," as *Cucumaria* sp. 1 and to the second Plymouth form as *Cucumaria* sp. 2.

Both of these species of *Cucumaria*, sp. 1 and sp. 2, are fairly common in the neighbourhood of Plymouth Sound, being found under stones and in crevices on rocky ground from low-water mark down to a depth of a few fathoms. *Sp. 2* is perhaps the more frequently met with, and it appears, also, to live in somewhat deeper water.

There are no very great points of difference in the outward form of the two species, which are also of much the same size; but *sp. 1* is rather shorter and of less even calibre than *sp. 2*, and it has the posterior extremity more tapering. The *podia* in *sp. 1* are numerous, appearing as though disposed in two parallel rows in each ambulacrum;

* Absolutely no useful purpose is served by guessing as to what an author had before him when founding a species. Unless, in the case of an insufficiently described species, the type-specimen is available, it is far better to entirely discard the name in question rather than to accept the interpretation of a subsequent author. The latter course is a fruitful source of error, for it is seldom possible to say definitely which later writer is the one to be followed.
while in sp. 2 they are so few as to appear arranged in a single zigzag series; also, in the latter species, the podia are less completely retractile. The arborescent tentacles are very similar in both forms. The general body colour of sp. 1 is a dirty, brownish white; while in sp. 2 it is a pure milk white, excepting the tips of the podia, which are yellowish. Both species are absolutely without maculation. In sp. 1 the neck and the bases of the tentacles are uniformly tinged a rich purple-brown colour, with more or fewer scattered pigment granules of an even darker colour. On the other hand, in sp. 2 these parts are typically pale, although generally they are more or less dusted with dark-coloured pigment granules, and sometimes, indeed, to such an extent as to render the neck region quite dark; but in such a case the dark pigmentation is never diffuse, as it invariably is in sp. 1. The interspaces between the anal papillae are darkly pigmented in sp. 1, and in sp. 2 the interior of the anal orifice is reddish or orange coloured. A great difference is noticeable in the texture of the surface. In sp. 1 the test, being densely crowded with spicules, is very tough and coriaceous, and its surface is much wrinkled, while in sp. 2 the surface of the body is extremely smooth and delicate, marked only with transverse strie due to the encircling fibres of the superficial muscle layer.

The spicular deposits, which are much more numerous in sp. 1 than they are in sp. 2, show considerable and characteristic differences. The general body spicule in sp. 1 is typically lozenge-shaped, perforated with four large foramina, and always bearing about twelve very prominent nodules: in sp. 2 the corresponding spicule is invariably absolutely devoid of nodulation, and an additional foramen is typically developed at each end of the long axis of the spicule, thus doing away with the simple lozenge shape. The upper body spicules of the two forms offer even greater diversity of structure: while in sp. 1 they are numerous and campanulate in form, in sp. 2 they are quite typical 'tables,' and, being few in number, are easily overlooked. The lateral deposits of the podia in sp. 1 have their foramina typically in a single series, while in sp. 2 they are arranged in two or more parallel rows, or with a group of three or four small foramina at each end of the spicule.

Returning now to Dr. Norman's paper on Cucumaria Montagni, Norman first briefly describes the external features of three spirit specimens, which he terms specimens 'A,' 'B,' and 'C,' and which with others had been collected for him by a local naturalist at Polperro, a few miles west of Plymouth. He then goes on to give a very full and remarkably lucid account of the spicules of each of these specimens individually. Specimen 'A' is certainly an example of what we have termed Cucumaria, sp. 1: the general body spicules, the campanulate deposits, and those of the podia and tentacles being well described.
Regarding his specimen 'B,' Norman says: "Body-spicule like that of A, but only a spicule here and there showing any nodulous growth, the vast majority presenting a perfectly smooth surface; nor are they so universally confined to the number of four foramina, the spicules often having an additional foramen at each end (i.e. four in a direct central longitudinal line). . . . No bell-shaped spicules have been found in this specimen, though they have been thoroughly sought for. Pedicels with lateral spicules, some just as in A, but here more generally with about three small foramina at each end." With reference to his specimen 'C,' Norman writes as follows: "Body-spicule exactly as in B, but here I could not find a single one that was nodulous, and no bell-shaped spicules. Pedicel-spicules as in B."

From the above quotations it will be seen that while Norman is thus describing in his specimens 'B' and 'C' the body-spicule of a Cucumarian which is evidently the same as my Cucumaria, sp. 2, he regards this spicule, by reason of the presence of a few scattered nodulous spicules in one of the preparations he examined, as a mere modification of that type which he had met with in his specimen 'A,' and which is characteristic of my Cucumaria, sp. 1. There can, however, be no doubt as to the absolute distinctness of the two spicule types, and the explanation of their apparent coexistence in Norman's specimen 'B' is probably a very simple one indeed; namely, that a few spicules of the first species were adhering to the surface of specimen 'B.' It must be remembered that all Dr. Norman's specimens had been preserved in the same bottle*; and I have been able to prove experimentally that under such condition it is a very easy matter for spicules from one individual to become transferred to the mucus, enveloping the body of another specimen; in fact, I was myself very nearly misled in this manner. It is also to be noted that Norman was unable to make out the upper body deposits, which, as already remarked, are not very easily seen in sp. 2, in either of his specimens 'B' or 'C'; had he observed these he would have seen immediately that he was dealing with a species different to that of his specimen 'A."

Misled by the apparently enormous variability of the spicules of the specimens examined by him, Norman was induced to unite with C. Montagu a couple of other species, Cucumaria Lefèvrei, Barrois, and Scaphoria Drumonli, Hérouard, which are probably distinct, and also to suggest the possible identity of still others: a suggestion which subsequent authors have not been slow to follow.†

* I have been able to examine the original bottle, which is now in the British Museum, and I can affirm that it contains both the species referred to in this paper.

† Koehler (3) considers that Norman erred in uniting Hérouard's Colochirus Lefèvrei with H. Montagu; but the evidence he adduces in support of this view is rather strange, and shows that he cannot have read Norman's paper at all carefully, for he instances the spectacle shape of the spicules of Norman's Cucumaria Montagu, and their invariable want of nodulation, as points of difference between it and C. Lefèvrei!
NOTE ON TWO SPECIES OF CUCUMARIA FROM PLYMOUTH.

Coming now to the question of the nomenclature of the two species of *Cucumaria*, which for convenience have hitherto in this paper been referred to merely as species '1' and '2.' It is unfortunate that the name *Montagu* cannot be retained for *sp. 1*, more especially as this form would in consequence appear to be as yet without a legitimate name; to meet this deficiency I would propose that the species be called *Cucumaria Normani*. Regarding the second species, this would appear to be the same as a form described more than thirty years since by Brady and Robertson (1) from the West of Ireland as *Cucumaria saxicola*, but which has since remained a 'doubtful' species.

Cucumaria Normani, n. sp.

Diagnosis. — Body of uniform dirty white or brownish colour, neck and bases of tentacles darkly pigmented, the pigment diffused. Test very coriaceous, densely crowded with deposits. Body-spicule typically lozenge-shaped, nodulous, and with four symmetrically disposed perforations. The foramina on the long axis of the spicule smaller and nearly circular, those of the short axis larger and elliptical in outline, the long axes of the foramina parallel to that of the spicule. Upper body-spicule campanulate, typically with four short arms which, arising from the ends of a short cross-bar, curve down to, and are inserted on a nodulous circular rim.

Habitat. — Plymouth, on rocky ground, L.W.—10 fms. The type-specimen from Blackstone Rocks, Wembury Bay.

Type-Specimen. — Has been acquired by the British Museum.

References.

Marine Biological Association of the United Kingdom.

The Council and Officers.

Four ordinary and two special meetings of the Council have been held during the year, at which the average attendance has been ten. The Council have to thank the Royal Society and the Linnean Society for allowing the meetings to be held in their rooms.

The Council regret to record the death of Sir Henry Thompson, Bart., a Vice-President, as well as that of Mr. J. P. Thomasson, a Governor of the Association, through whose great generosity much of the early work of the Association in connection with fishery research was rendered possible.

Professor J. B. Farmer, f.r.s., resigned his seat on the Council during the year, and the vacancy was filled by the election of Mr. Francis Darwin, f.r.s.

The Laboratories.

Only repairs of an ordinary character have been necessary at the Plymouth Laboratory in order to maintain the buildings, machinery, and equipment in an efficient condition. The Council have still reason to regret that a good deal of the accommodation of the Laboratory, although utilised during the summer months, is unoccupied during a large part of the year owing to the limited number of workers whose services can for financial reasons be retained by the Association. A satisfactory remedy for this state of things would be found if Universities and other teaching institutions would offer scholarships to students anxious to carry on marine investigations at Plymouth.

The Lowestoft Laboratory has proved adequate for the purposes for which it was intended. It has been improved during the year by the addition of a room in which to keep small aquaria and of a dark room for photographic work.

The Boats.

The steamer Huxley, which was fitted out for the International Investigations in the North Sea, has proved an efficient and sue-
cessful vessel for the work. She has been at sea throughout the year, and has experienced weather of all kinds without accident.

The Oithona worked at Plymouth during last summer. In October she was sent to Grimsby, where a new boiler is being placed on board, and the vessel is undergoing a thorough overhaul and refit. Some delay was experienced in commencing these repairs owing to lack of funds for the purpose. The Council have to thank the following persons for generously promising special contributions to enable the work to be proceeded with:—

<table>
<thead>
<tr>
<th>The Court of the Worshipful Company of Fishmongers</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. P. Bidder, Esq.</td>
<td>200</td>
</tr>
<tr>
<td>T. H. Riches, Esq.</td>
<td>50</td>
</tr>
<tr>
<td>J. Shaw, Esq.</td>
<td>13</td>
</tr>
<tr>
<td>Mrs. Bidder</td>
<td>5</td>
</tr>
<tr>
<td>H. F. Bidder, Esq.</td>
<td>3</td>
</tr>
</tbody>
</table>

The Staff.

The only change which has taken place in the Staff of Naturalists employed by the Association since the last general meeting has been the appointment of Mr. J. O. Borley, M.A., as an Assistant Naturalist at Lowestoft in place of Mr. C. Forster Cooper, who has resigned.

Occupation of Tables.

The following Naturalists have occupied tables at the Laboratory during the year:—

- Rev. A. Cole, Berkhamsted (General Zoology).
- A. D. Darbishire, M.A., Manchester (Sponges).
- Miss A. Kelly, Ph.D., Strassburg (Invertibrate Physiology).
- Rev. Dr. A. M. Norman, F.R.S., Berkhamsted (Crustacea).
- Mrs. S. Pace, Plymouth (Polyzoa).
- Miss E. Peacey, Oxford (General Zoology).
- Dr. C. Shearer, Cambridge (Development of Annelida).
- Miss I. Sollas, Cambridge (Echinodermata).
- J. Stuart Thomson, Plymouth (Fishes).
- Prof. W. F. R. Weldon, F.R.S., Oxford (Variation of Mollusca).
- W. Woodland, University College, London (Echinodermata).

Six students attended a course of study in Marine Biology conducted at the Laboratory during the Easter vacation by Mr. L. Doncaster.
The Library.

The thanks of the Association are due for the following books and current numbers of periodicals presented to the Library during the past year:

- Allgemeine Fischerei-Zeitung.
- Annaes de Ciencias Naturae.
- Archiv för Mathematik og Naturvidenskab.
- Bernoula Biological Station. Prospectus.
- Boston Society of Natural History. Proceedings.
- British Association for the Advancement of Science. Report.
- Brown University. Contributions from the Anatomical Laboratory.
- Bryn Mawr College. Monographs, Reprint Series.
- Bulletin Scientifique de la France et de la Belgique. La Cellule.
- College of Science, Tokyo. Journal.
- College voor de Zeevisserijen. Verslag van den Staat der Nederlandsche Zeevisserijen.
- Colombo Museum. Spolia Zeylanica.
- Commissioners of Inland Fisheries, Rhode Island. Annual Reports.
- Dept. of Agriculture, Cape of Good Hope. Marine Investigations in South Africa.
- Delaware Institute of Natural History. Reports.
- Dept. of Agriculture, etc., Ireland. Reports.

Dept. of Marine and Fisheries, Canada. Annual Report.
Deutscher Seefischerei Verein. Mitteilungen.
La Fenille des Jeunes Naturalistes.
Field Columbian Museum. Publications.
The Fisherman's Nautical Almanack; by O. T. Olsen.
The Fishing Gazette.
Fischzucht Anstalt, Nikolsk. Aus der Fischzuchtanstalt Nikolsk.
Geological Society of Cornwall. Transactions.
Indian Museum. Illustrations of the Zoology of the R.I.M.S.S. Investigator.
Commission zur wissenschaftlichen Untersuchung der Deutschen Meere, etc. Wissenschaftliche Meeresuntersuchungen.
Lancashire Sea Fisheries Laboratory. Report.
Lancashire and Western Sea Fisheries. Superintendent's Report.
— Syllabus of the Lessons on Marine Biology given in the Practical Classes for Fishermen.
Liverpool Biological Society. Proceedings and Transactions.
— Mycological Notes.
— Research Seminar.
Mededelingen over Visscherij.
Ministry for Agriculture, Denmark. Fiskeri-Beretning.
Ministry of Industries, Chili. La Seccion de Ensayos Zoològicos i Botànicos del Ministerio de Industria.
Le Mois Scientifique.
Musée du Congo. Annales.
Musée Oceanographique de Monaco. Bulletin.
Museo Nacional de Montevideo. Anales.
— Memoirs.
— Report.
The Museums Journal.
Nederlandsche Dierkundige Vereeniging. Tijdschrift.
— Verslag.
REPORT OF THE COUNCIL.

— Report.
New Zealand Institute. Transactions.
La Nuova Notazione.
Peterborough Natural History, etc., Society. Report.
Quarterly Journal of Microscopical Science. (Presented by Prof. E. Ray Lankester, F.R.S.)
Resultats des Campagnes Scientifiques . . . Albert 1er de Monaco.
Le Réveil Salicole Ostréicole et des Pêches Maritimes, etc.
Rijksinstituut voor het Onderzoek der Zee. Uitkomsten van Meteorologische Waarnemingen.
Rousdon Observatory. Meteorological Observations.
— Transactions.
Royal Society of London. Philosophical Transactions.
— Proceedings.
Royal Society of London. Reports to the Malaria Committee.
— Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Mannar.
— Year-Book.
Selskabet for de Norske Fiskeriers Fremme. Norsk Fiskeritidende.
Smithsonian Institution. Annual Report.
— Proceedings of the United States Museum.
Società di Naturalisti in Napoli. Bollettino.
Société Belge de Géologie, etc. Bulletin.
— Revue Internationale de Pêche et de Pisciculture.
— Mémoires.
Station Zoologique de Cette. Travaux.
Svensk Fiskeri Tidskrift.
Kgl. Svenska Vetenskaps-Akademiens Handlingar.
— Bihang till Handlingar.
— Arkiv för Botanik.
— Arkiv för Zoologi.
Tokyo Imp. University. Calendar.
A Treatise on Zoology; edited by E. R. Lankester.
University of California. Publications.

— Catalogue.
— Provost's Report.

University of Toronto. Studies.

Zoological Society of London. List of the Fellows.

— Proceedings.
— Transactions.
— Zoological Record.

Zoologischer Station zu Neapel. Mittheilungen.

Prof. C. B. Davenport. Variation in the Number of Stripes on the Sea-Anemone, Sagartia Lucie; by G. C. Davenport.

— The Beach Flea: Talorchestia longicornis; by M. E. Smallwood.

Dr. E. G. Gardiner. Science (odd parts).

Prof. S. J. Hickson. The Alcyonaria of the Maldives; by E. M. Pratt.

Prof. C. C. Nutting. Science (odd part).

Owens College. The Mechanics of Development; by S. J. Hickson.

— The Bionomics of Convoluta Roscoffensis, with special Reference to its green Cells; by F. W. Gamble and F. Keeble.

— Ditto, Abstract.

— On the Presence of Mobile Fat in the Chromatophores of the Crustacea (Hippolyte varians); by F. Keeble and F. W. Gamble.

— On a Collection of Turbellaria Polycladida from the Straits of Malacca; by F. F. Laidlaw.

— Suggestions for a Revision of the Classification of the Polyclad Turbellaria; by F. F. Laidlaw.

Dr. H. Fowler. Über den Bau und die morphologische Auffassung der Siphonophoren; by C. Chun.

To the authors of the Memoirs mentioned below the thanks of the Association are due for separate copies of their works presented to the Library:—

Bateson, W. Variation and Differentiation in Parts and Brethren.

Crossland, C. The Coral Reefs of Zanzibar.

— On the Marine Fauna of Zanzibar and British East Africa, etc. Polychaeta I. and II.

— Wonder Horses and Mendelism.
— Colour Inheritance in Mice.
Davenport, C. B. Comparison of some Pectens from the East and the West Coasts of the United States.

— The Collemboles of Cold Spring Beach, with Special Reference to the Movements of Poduride.

Dekhuizen, M. C. Un liquide fixateur isotonique avec l'eau de mer.

Doncaster, L. Experiments in Hybridization, with special reference to the Effect of Conditions on Dominance.

Driesch, H. Kritisches und Polemisches, IV.

— Drei Aphorismen zur Entwicklung physiologie jüngster Stadien.

— Ueber Änderungen der Regulationsfähigkeit im Verlauf der Entwicklung bei Ascidien.

— Ueber Seeigelstarre.

Edwards, C. L. Note on Phrynosoma.

Farran, G. P. Record of the Copepoda taken on the Mackerel Fishing Grounds off Cleggan in 1901.

— The Nudibranchiate Moluscs of Ballynakill and Bofin Harbours, Co. Galway.

Fowler, G. H. Contributions to our Knowledge of the Plankton of the Faeroe Channel. Nos. VII. and VIII.

Giard, A. Caractères dominant transitoires chez certains hybrides.

— Notes Ethologiques sur le Hareng des côtes du Boulogne.

— Exuviations métamorphiques chez les Ascarides des Poissons.

— Dissociation de la Notion de Paternité.

— La Monche de l'Asperge et ses Ravages à Argenteuil.

— Les Faux Hybrides de Millardet et leur Interpretation.

Giles, G. M. On Pre-pupal changes in the Larvae of the Callicidae.

Gough, L. H. Plankton English Channel, February—May, 1903.

— Ditte, August, 1903.

Grosvenor, G. H. On the Nematocysts of Eolid.

Gurney, R. Metamorphoses of the Decapod Crustaceans Egeon (Crangon) fasciatus and Egeon (Crangon) trispinosus.

Hickson, S. J. On the Coelenterata collected by Mr. C Crossland in Zanzibar. I. Ceratella minima.

— The Aleponaria of the Maldives. Part I.

Holt, E. W. L., and Byrne, L. W. On a Young Stage of the White Sole, Pleuronectes cynoglossus.

— The British and Irish Gobies.

Horst, R. On a case of Commensalism of a Fish (Amphipriion intermedius, Schleg.) and a large Sea-Anemone (Discosoma spec.).

— New Species of the Genus Enphraysia from the Siboga Expedition, with a Table of the Species hitherto known.

Kier, H. Dyrdivel i Drobaksund.

Mcintosh, W. C. On the Distribution of Marine Animals.

— The Story of a Pearl.

— Marine Annelids (Polychaeta) of South Africa. Part I.

Man, J. G. de. Nématodes Libres [of the “Belgica” Expedition].

— British Land Isopoda. Supplement.

— New Generic Names for some Entomostraca and Cirripedia.

— Copepoda Calanoida, chiefly Abyssal, from the Faeroe Channel and other Parts of the North Atlantic.
Nutting, C. C. The Bird Rookeries on the Island of Laysan.

Punnet, R. C. The Enteropneusta of the Maldives and Laccadives.

—— Note on the Proportion of the Sexes in Carcinus maenas.

—— On Nutrition and Sex-determination in Man.

Shipley, A. E. On the Ento-Parasites Collected by the Skeat Expedition, etc.

—— Some Foreign Zoological Gardens.

—— The Order of Insects.

—— Some Parasites from Ceylon.

Smith, J. C. The Animal Parasite supposed to be the Cause of Yellow Fever.

—— Discovery of Yellow Fever Germs.

Stenius, S. Der Osmotische Druck im Meerwasser.

Stevens, N. M. Further Studies on the Ciliate Infusoria, Lienophora, and Boveria.

Tattersall, W. M. Notes on the Classification and Geographical Distribution of the Cephalochorda.

Thompson, M. T. The Metamorphosis of the Hermit Crab.

Todd, R. A. Notes on the Invertebrate Fauna and Fish-Food of the Bays between the Start and Exmouth.

Trybom, F. Two New Species of the Genus Euconaxius.

Walker, A. O. Report on the Isopoda and Amphipoda Collected by Mr. G. Murray, etc.

—— Amphipoda of the "Southern Cross" Antarctic Expedition.

Wallace, W. Observations on Ovarian Ova and Follicles in certain Teleostean and Elasmobranch Fishes.

Watson, A. T. Observations on the Habits of the Omphidiaceae, etc.

—— On the Structure and Habits of the Polychaeta of the Family Ammocarididae.

Williams, J. L. Alternation of Generations in the Dictyotaceae.

—— Studies in the Dictyotaceae. Parts I, and II.

Woodcock, H. M. On Myxosporidia in Flat-Fish.

—— Notes on a Remarkable Parasite of Plaice and Flounders.

General Work at the Plymouth Laboratory.

The detailed reports on the trawling experiments in the bays on the South Devon coast, and on the study of fish scales as an index of the age of fishes, have been published in the Journal of the Association.

A report on the local distribution of the invertebrate fauna of the Plymouth neighbourhood, summarising the work which has been done in this direction by the Association, is now nearing completion. This report will, it is hoped, be published during the course of the present year.

At the request of the British Royal Commission, an exhibit has been prepared on behalf of the Association and sent to the St. Louis Exhibition. It illustrates the development and growth of sea fishes, and embodies a representative collection of the principal invertebrate
animals which serve as the food of fishes. This exhibit has been successfully transported to St. Louis and set up in the Exhibition.

The collection and supply of specimens for teaching purposes and for museums has been continued as heretofore. This part of the work of the Laboratory has grown considerably during the last few years, owing to the fact that the teaching of biology is receiving more and more attention in secondary and technical schools, and that local museums are also paying more attention to the subject. It is a matter for regret, however, that the increase in these directions is accompanied by a decrease in the amount of material supplied to the Universities and University Colleges, where the number of zoological students appears to be generally diminishing.

The International Fishery Investigations.

Section I.—NORTH SEA WORK.

A. WORK OF THE S.S. "HUXLEY."

Trawling Investigations.—Except when required for the quarterly hydrographic cruises in the English Channel, the s.s. Huxley has been continuously engaged during the past year in the investigation of the North Sea fishing grounds. In carrying out this work the Association's naturalists have directed their principal attention to the analysis of hauls made on the various grounds with the large commercial trawl, the quantities and sizes of the fishes caught having been systematically recorded in every case.

Up to the end of May, 1904, the Huxley had made thirty-one voyages, often of two or three weeks' duration, and had taken 349 hauls of the great trawls (otter and beam), in addition to other experiments with special apparatus.

In accordance with the scheme of international co-operation, most attention has been paid by the Huxley to the western half of the North Sea south of latitude 56° N.; but all the important trawling grounds south of that latitude have been visited, and special voyages have been made to assist in the survey of the continental grounds where small flat-fish particularly abound. Nearly one-third of the Huxley's hauls (i.e. 110) have been taken upon or on the borders of the English and continental "nursery grounds."

Fish Measured.—On the voyages mentioned over 100,000 fishes have been measured on the grounds where they were caught, as shown in the following table:—

<table>
<thead>
<tr>
<th></th>
<th>Plaice</th>
<th>Haddock</th>
<th>Others</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Sea</td>
<td>34,809</td>
<td>8,388</td>
<td>62,106</td>
<td>105,303</td>
</tr>
<tr>
<td>English Channel</td>
<td>252</td>
<td>—</td>
<td>2,059</td>
<td>2,311</td>
</tr>
<tr>
<td></td>
<td>35,061</td>
<td>8,388</td>
<td>64,165</td>
<td>107,614</td>
</tr>
</tbody>
</table>
Marking Experiments.—Experiments have been systematically carried out in the marking and liberation of fishes, especially plaice and soles, over wide areas, in order to throw light on their migrations and rate of growth, and on the intensity of fishing under modern conditions. Altogether, up to the end of May, 1904, 2,881 fishes had been marked and set free. Of these the majority were liberated in the localities where they were caught, but during the present year about 1,200 marked plaice have been transplanted to the Dogger Bank from the English, Dutch, and Danish nursery grounds, in order to test the possibility of their rate of growth being more rapid in parts of the sea where the competition for food is apparently less keen. If these transplantation experiments should be successful, the possibility of restocking exhausted areas in the North Sea will have entered upon a new phase.

The success of the marking experiments in general is shown by the satisfactory percentage of marked fish which have been returned by the fishermen, by the general consistency of the returns, and by the interesting results obtained in regard to the seasonal migrations of the fish. Of 539 plaice liberated up to the end of May, 1903, the number of recoveries amounted twelve months later to 125, i.e. 23 per cent. The experiments off the north coast of Holland, referred to in the last Annual Report of the Council, were repeated during the autumn and winter of 1903. The movements of plaice again showed the same southward tendency, and a simultaneous migration in the same direction was exhibited off the English coast. Plaice marked and liberated on the Leman Ground (about fifty miles east of Cromer) on December 10th, were recovered in February off the Suffolk coast, and in March in the English Channel off Winchelsea (a minimum distance of 175 miles).

Mr. A. Meek, Lecturer in Biology at the Durham College of Science, and Director of the Marine Laboratory at Cullercoats (since destroyed by fire), has kindly co-operated with the Association's staff in the marking experiments, and, in addition to special experiments, liberated about 200 marked plaice on behalf of the Association off the coast of Northumberland during the summer of last year. Most of the fish recovered were recaptured locally, but several were subsequently recovered in Scottish waters, off St. Andrews Bay and the Isle of May.

Special Experiments.—During the present year special experiments have been made on the vitality of trawl-caught fishes and on the proportion of small fishes which escape through the meshes of the trawl.

In May, drift-bottles were thrown overboard at intervals along lines between Lowestoft and Heligoland, and between the Wash and the
Dogger Bank, in order to determine the direction of drift during the spawning season of the sole and turbot.

The *Husky* has recently completed a special survey of the spawning grounds of the sole in the western part of the North Sea, and an investigation of the distribution and abundance of the eggs of this species in the same area, in co-operation with simultaneous surveys by the *Poseidon* and *Woden* in the German and Dutch areas respectively.

B. LABORATORY INVESTIGATIONS.

AGE OF FISHES.—Considerable attention has been paid in the Laboratory at Lowestoft to the investigation of the age and rate of growth of fishes, especially the plaice, both by Petersen's statistical method based on the periodicity of the spawning season, by Reibisch's method based on the periodicity of growth of the otoliths, and by direct observation of the increase in length of marked fishes. The result of these investigations is to show that the age of individual plaice can now be determined with considerable exactitude—a matter of much importance for the scientific treatment of fishery problems.

FOOD OF FISHES.—Extensive material has been collected and worked up for determining the physical and biological characteristics of the various grounds, and the food-contents of many thousands of fish-stomachs have been studied and recorded.

C. FISHERMEN'S RECORDS.

1903–1904.—The system of fishermen's trawling records has recently been extended to Grimsby, at which port several specially reliable trawling skippers have been selected to take part in the work. The Lowestoft records are being continued. These records deal with individual hauls of the trawl, and have been found useful for supplementing and checking the results of the *Husky's* investigations, and in providing a kind of outside "intelligence department" for keeping the scientific staff informed of the most profitable regions for investigation from time to time.

1881–1882.—Log-books of a somewhat similar character, initiated by Mr. Olsen, of Grimsby, with the co-operation of the late Mr. Frank Buckland, were kept by a number of east coast fishermen in 1881 and 1882, and have been kindly entrusted to the Association by Mr. Olsen for analysis and report.

1892–1893.—Records more closely approximating to those now being kept were again filled up for Mr. Holt, when in the service of the Association, by various Grimsby fishermen in 1892 and 1893.

The Association is thus in the possession of a unique series of
fishermen's records which distinguish the fishing ground, date and duration of fishing, and amount of fish caught for each haul of the trawl. All the records have been tabulated for the purpose of comparison, and it is hoped that light will be thrown by means of them, in conjunction with the scientific survey now in progress, upon any changes which have taken place in the distribution and abundance of fish on particular grounds during the past twenty-three years.

1865-1874.—Records of the Ramsgate trawl-fishing, covering the greater part of the period from 1865 to 1874, have also been placed in Mr. Garstang's hands by the fisherman who kept them. The same boat is still fishing from Ramsgate, and the present master has undertaken to keep a record of his catches for comparison with the old ones referred to.

The thanks of the Association are due to the Eastern and North Eastern Sea Fisheries Committees for the privilege of trawling within the waters under their jurisdiction, and to their Inspectors, Mr. Herbert Donnison and Captain R. E. Simpson, for much friendly assistance; also to the Great Central Railway Company, the Boston Corporation, and the Great Eastern Railway Company, for privileges in connection with harbour facilities at Grimsby, Boston, and Lowestoft.

At several ports the work in connection with the reception and transmission of marked fish recovered by the fishermen has been considerable. The best thanks of the Association are due to their agents in this connection, especially to Mr. O. T. Olsen, F.L.S., of Grimsby, to Mr. W. C. Edwards, Statistical Officer to the Board of Agriculture and Fisheries at Hull, and to Messrs. A. Johnson and J. Roberts, Inspectors of the Fishmongers' Company at Billingsgate.

Last, but not least, the Association is indebted to the fishing-boat owners and fishermen of the east coast for the general interest which they have displayed in the investigations in progress, and for the confidence and friendly spirit with which they have co-operated with the naturalists of the Association in the work.

Section II.—Hydrographic and Plankton Work in the English Channel.

Six quarterly cruises have now been made in the English Channel, viz. in February, May, August, and November, 1903, and February and May, 1904, on each of which the programme of hydrographic and plankton observations described in last year's Report has been carried out. The material collected up to February, 1904, has been worked out and the results forwarded to the Central Bureau in Copenhagen. The observations made up to November, 1903, have already been published in the International Bulletin.
The number of stations at which observations are made has been slightly increased, three stations having been added at the eastern end of the Channel. At the same time the plankton programme has been somewhat reduced at certain of the shallower stations where no marked difference in the organisms found at different depths could be proved by the methods employed.

In addition to the work done on the cruises, samples of sea-water and of plankton are being regularly taken on a number of lightships in the Channel and on the Irish coast, and samples of water are obtained every fortnight from steamers crossing the Channel from Newhaven to Caen and from Plymouth to the Channel Islands. A number of samples have also been taken at the mouth of the English Channel and in the Bay of Biscay by officers of steamships navigating those waters.

The hydrographic observations during 1903 and the first three months of 1904 show that the direction of the flow of the waters of the English Channel is from west to east, and that they are derived from a northerly current of about 35·6°/oo S. from the Bay of Biscay and from a southerly current of about 35·2°/oo S. or less from the Irish Sea and Bristol Channel. The meeting-place of these waters may be roughly fixed as south of the Scilly Islands in mid-channel, and it will be generally found that the salinity of the water increases as we pass this point from west to east.

Owing to the varying salinity and temperature of these two currents it has been found that at the entrance to the Channel the water is often divided into distinct layers, while the changes of their relative velocity, combined with the general drift up Channel, give rise to alternate areas of high and low salinity which follow one another eastward. On the line between the Isle of Wight and Cape Barfleur the salinity has been low on all five cruises, a state of things due in all probability to the amount of fresh water discharged from Southampton Water and the Seine. The presence of denser water south of Beachy Head, however, points to the occasional passage of a high salinity current across this line.

In February (1903) the Channel from the Land's End to the Isle of Wight was filled with water of 35·4°/oo S., bounded by fresher water on the west and east, and by water of 35·5°/oo near Ushant, the general features pointing to a quick movement. No observations were made east of the Isle of Wight.

In May the area of 35·4°/oo S. had diminished in size, being encroached upon by water of 35·6°/oo on the south-west and by fresher water on the east. In this month the area of 35·4°/oo S. south of Beachy Head was first observed, and the increased distance between the isohalines indicated a slower movement.

In August the low-salinity water of the Irish Sea had spread south
and east so as to cut off the 35.4% water of the western part of the Channel from the dense water of the Bay of Biscay on the surface, though there was still a connection by an undercurrent. The general velocity of the currents had reached its minimum, whilst the difference in temperature between the top and bottom was now greatest. The isolated area in the eastern part of the Channel was not well marked, but this may have been due to the want of observations far enough south.

In November there were signs of an increased velocity, and water of high salinity was now found west of Ushant, though there was still a narrow strip of fresher water between this point and the area of 35.4% S. south of Devon and Cornwall. The dense water in the eastern part of the Channel was well marked.

In February, 1904, the conditions were complicated by the great gale at the beginning of the month, and the distribution of salinity for the first ten days, as shown by the analysis of samples taken on liners, lightships, etc., differs considerably from that obtaining from February 16th to March 1st, when the observations on the *Huxley* were made. During the first period a large area of 35.6% S. extended from a point about 100 miles south of the Irish coast easterly to mid-channel south of Land’s End, and thence south-west across the Bay of Biscay. This was quickly obliterated by a southerly flow from the Irish Sea, and during the latter half of the month it only appeared as an isolated area marked by a single sample in mid-channel north of Ushant, the general conditions east of this point resembling those of May in the previous year.

It would appear that during the summer and early autumn the Channel waters were derived largely from the Irish Sea, while during the rest of the year the high-salinity water of the Bay of Biscay preponderated.

An interesting conclusion regarding the effect of gales may be drawn from the work done during the period dealt with in this Report, namely, that they cause considerable variations in the physical conditions at any point, but these variations do not persist for more than a few days. The great gale at the beginning of February, 1904, caused a marked rise in salinity of the surface water at the lightships round the coast from Cardigan Bay to the East Goodwin, with the exception of the *Owens* and *Royal Sovereign* light-vessels, where an equally well-marked fall occurred. In less than a week, however, normal conditions again prevailed, and as it is impossible to make observations on a small steamer like the *Huxley* during or for a few days after a gale, it is almost certain that the results obtained on any cruise show the normal conditions for the season. The variations mentioned show that the
denser waters were driven up Channel and inshore, causing a rise of salinity, the fall at the *Owens* and *Royal Sovereign* being easily explained by the fact that the Isle of Wight is always surrounded by comparatively fresh water, and that a strong gale from the south-west or west would drive this eastwards along the shore.

The plankton observations show that a large proportion of the more oceanic organisms found off the mouth of the Channel do not penetrate for any considerable distance up Channel, even along a central axis, the percentage of oceanic species having on each cruise fallen below forty at the stations on the line from the Isle of Wight to Cape Barfleur. When compared with those taken by other countries in the southern part of the North Sea, the observations indicate that very similar conditions exist in the eastern end of the English Channel (from the Isle of Wight to the Straits of Dover) to those found in the southern part of the North Sea, between a line from the Wash to Heligoland and the Straits of Dover.

The results both of the hydrographic and of the plankton work can only be interpreted on the supposition that during the period under investigation there was on the whole a constant passage of water from the Channel into the southern part of the North Sea, but the rate at which this passage of water took place must have been very slow.

Published Memoirs.

The following papers, either wholly or in part the outcome of work done at the Laboratory, have been published elsewhere than in the Journal of the Association:—

Woodcock, H. M.—*On Myxosporidia in Flat-Fish.* Report for 1903 on the Lancashire Sea Fisheries Laboratory, pp. 46-62.
Donations and Receipts.

The receipts for the year for the ordinary work of the Association include the grants from His Majesty's Treasury (£1,000) and the Worshipful Company of Fishmongers (£400), Special Donations (£271), Annual Subscriptions (£113), Rent of Tables in the Laboratory (£16), Sale of Specimens and Fish (£285), Admission to the Tank Room (£141).

Vice-Presidents, Officers, and Council.

The following is the list of gentlemen proposed by the Council for election for the year 1904-1905:

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.
The Duke of Abercorn, K.G., C.B.
The Earl of St. Germans.
The Earl of Morley.
The Earl of Dule.
Lord Avebury, F.R.S.
Lord Tweedmouth, P.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.
The Right Hon. Joseph Chamberlain, M.P.
Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., M.P., F.R.S.
A. C. L. Günther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.

Rear-Admiral Sir W. J. L. Wharton, K.C.B., F.R.S.

Members of Council.

G. L. Alward, Esq.
G. P. Bidder, Esq.
G. C. Bourne, Esq.
F. Darwin, Esq., F.R.S.
G. Herbert Fowler, Esq.
S. F. Harmer, Esq., F.R.S.
Prof. W. A. Herdman, F.R.S.

Prof. G. B. Howes, F.R.S.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq.
Prof. E. A. Minchin.
Prof. Charles Stewart, F.R.S.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Hon. Treasurer.
J. A. Travers, Esq.

Hon. Secretary.
E. J. Allen, Esq., The Laboratory, Citadel Hill, Plymouth.

The following Governors are also members of the Council:
The Prime Warden of the Fishmongers' Company.
Sir J. Burdon Sanderson, Bart., F.R.S. (Oxford University).
E. L. Beckwith, Esq. (Fishmongers' Company).

Prof. W. F. R. Weldon, F.R.S. (British Association).
Statement of Receipts and Expenditure

<table>
<thead>
<tr>
<th>Dr.</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Current Income:—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H.M. Treasury</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishmongers' Company (including half-year's payment of £200 on account of year to 31st May, 1905)</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Subscriptions</td>
<td>113</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rent of Tables</td>
<td>16</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest on Investment</td>
<td>18</td>
<td>10</td>
<td>11</td>
<td>1,548</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>

... Extraordinary Receipts:—

Donations to Fund for Repair of ss. Oithona—						
Fishmongers' Company	£200	0	0			
G. P. Bidder	50	0	0			
J. Shaw	13	0	0			
Mrs. A. Bidder	5	0	0			
H. F. Bidder	3	0	0	271	0	0

Advance on Loan | 100 | 0 | 0 |
Cheque drawn some years ago, but not presented for payment, written back | 10 | 0 | 0 | 381 | 0 | 0 |

Investment held 31st May, 1904, £500 Forth Bridge Railway 4% Guaranteed Stock.

Examined and found correct,

(Signed) **Edwin Waterhouse, F.C.A.**
Geo. P. Bidder.

E. T. Browne.
E. A. Minchin.

June 28th, 1904.
for the Year ending 31st May, 1904.

<table>
<thead>
<tr>
<th>Description</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Balance from last year, viz.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount due to Bankers</td>
<td>156</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Less Cash in hand</td>
<td>39</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Current Expenditure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries and Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naturalist</td>
<td>250</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Director's Assistant</td>
<td>150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wages</td>
<td>421</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Travelling Expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales of Journal</td>
<td>245</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Buildings and Public Tank Room—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, Water, Coal, etc.</td>
<td>74</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Stocking Tanks, Feeding, etc.</td>
<td>20</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Maintenance and Renewals of Boats</td>
<td>122</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Rent of Land, Rates, Taxes, and Insurance</td>
<td>17</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Less Admissions to Tank Room</td>
<td>244</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Laboratory, Boats, and Sundry Expenses—</td>
<td>141</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Glass, Chemicals, & Apparatus</td>
<td>85</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Less Sales</td>
<td>56</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Purchase of Specimens</td>
<td>35</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Maintenance and Renewals of Boats</td>
<td>122</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Less Sales</td>
<td>121</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Coal and Water for Steamer</td>
<td>84</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Less Sales of Specimens, etc. (including £50 from International Investigations Commission for use of ss. Oithona)</td>
<td>335</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Interest on Bank Overdraft</td>
<td>3</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Extraordinary Expenditure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of Exhibit sent to St. Louis Exhibition—to be refunded by the British Royal Commission</td>
<td>173</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Less Received on Account</td>
<td>52</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Balance, being cash at Bank and in hand, 31st May, 1904, viz.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant, Repairs, and Renewals Fund, including £25 added during year</td>
<td>116</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Donations to Fund for repair of ss. Oithona received per contra</td>
<td>271</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Less Amount overpaid on General Account</td>
<td>387</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>283</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Total £1,929 18 11
PUBLICATIONS OF THE ASSOCIATION.

Old Series.

No. 1, August, 1887 (only a few copies left, reserved for Libraries).
No. 2, August, 1888. Price Is.

New Series (Royal 8vo).

Volume I., 1889-90, 472 pp., 28 plates.
Volume II., 1891-2, 410 pp., 14 plates.
Volume III., 1893-4, xxxviii. and 458 pp., 5 plates and 25 woodcuts.
Volume V., 1897-9, 550 pp. and 16 plates.
Volume VI., 1899-1903, 472 pp., 3 charts and 7 plates.
Volume VII., Nos. 1 and 2.
Separate numbers (generally 4 to one volume), in wrappers, 3s. 6d.; to Members, 2s. 8d.

London Agents: Messrs. Dulau & Co., 37, Soho Square, W.

Cloth 4to, 150 pp., 18 plates (12 coloured).

A TREATISE ON THE COMMON SOLE.

By

J. T. CUNNINGHAM, M.A., F.R.S.E.,
Late Fellow of University College, Oxford; Naturalist to the Association.

Price to Members, 20s.; to Non-Members, 25s.

Medium 8vo, 368 pages. 159 Illustrations and two Maps. Price 7s. 6d. net.
(Macmillan and Co., London.)

THE NATURAL HISTORY OF THE MARKETABLE MARINE FISHES OF THE BRITISH ISLANDS.

Prepared expressly for the use of those interested in the Sea-fishing Industries,

By

J. T. CUNNINGHAM, M.A.,
FORMERLY FELLOW OF UNIVERSITY COLLEGE, OXFORD;
NATURALIST ON THE STAFF OF THE MARINE BIOLOGICAL ASSOCIATION.

With Preface by

E. RAY LANKESTER, M.A., LL.D., F.R.S.,
PROFESSOR OF COMPARATIVE ANATOMY IN THE UNIVERSITY OF OXFORD.
PUBLICATIONS OF THE INTERNATIONAL COUNCIL
FOR THE STUDY OF THE SEA.

BULLETIN
DES RÉSULTATS ACQUIS PENDANT LES COURSES
PÉRIODIQUES.

Published Quarterly. Price per Volume of Four Numbers,
18 Kroner (£1).

RAPPORTS ET PROCÉS-VERBAUX DES RÉUNIONS.

PUBLICATIONS DE CIRCONSTANCE.

No. 3. Die Literatur der zehn wichtigsten Nutzische der Nordsee. In monographischer Darstellung. 112 s., 10 T; August, 1903. Kr. 3.
The Literature of the Ten Principal Food Fishes of the North Sea. In the form of compendious monographs. 108 pp., 10 pl.; August, 1903. Kr. 3.

—— —— Gefrierpunkttable für Meerwasser.
Zusammen 13 s.; September, 1903. Kr. 0.75.
No. 6. Harry M. Kyle: On a New Form of Trawl Net, designed to fish in midwater as well as on the ground. Preliminary notice. 8 pp. November, 1903. Kr. 0.50.

--- --- A New Mark for Fish.

No. 11. Martin Knudsen: σ, Tabelle, Anhang zu den 1901 herausgegebenen hydrographischen Tabellen. 23 pp. May, 1904. Kr. 0.75.

No. 13a. Die Ostsee-Fischerei in ihrer jetzigen Lage. (Erster Teil.)

Published on behalf of the International Council
by
ANDR. FRED. HØST ET FILS,
COPENHAGEN.
OBJECTS
OF THE
Marine Biological Association of the United Kingdom.

THE ASSOCIATION was founded at a Meeting called for the purpose in March, 1881, and held in the Rooms of the Royal Society of London.

The late Professor Huxley, at that time President of the Royal Society, took the chair, and amongst the speakers in support of the project were the late Duke of Argyll, the late Sir Lyon Playfair, Lord Averbury, Sir John Hooker, the late Dr. Carpenter, Dr. Gurney, the late Lord Dalhousie, the late Professor Moseley, the late Mr. Romanes, and Professor Lankester.

The Association owes its existence and its present satisfactory condition to a combination of scientific naturalists, and of gentlemen who, from philanthropic or practical reasons, are specially interested in the great sea fisheries of the United Kingdom. It is universally admitted that our knowledge of the habits and conditions of life of sea fishes is very small, and insufficient to enable either the practical fisherman or the Legislature to take measures calculated to ensure to the country the greatest return from the "harvest of the sea." Naturalists are, on the other hand, anxious to push further our knowledge of marine life and its conditions. Hence the Association has erected at Plymouth a thoroughly efficient Laboratory, where naturalists may study the history of marine animals and plants in general, and where, in particular, researches on food-fishes and molluscs may be carried out with the best appliances.

The Laboratory and its fittings were completed in June, 1888, at a cost of some £12,000. Since that time investigations, practical and scientific, have been constantly pursued at Plymouth. Practical investigations upon matters connected with sea-fishing are carried on under the direction of the Council; in addition, naturalists from England and from abroad have come to the Laboratory, to carry on their own independent researches, and have made valuable additions to zoological and botanical science, at the expense of a small rent for the use of a working table in the Laboratory and other appliances. The number of naturalists who can be employed by the Association in special investigations on fishery questions, and definitely retained for the purpose of carrying on those researches throughout the year, must depend on the funds subscribed by private individuals and public bodies for the purpose. The first charges on the revenue of the Association are the working of the seawater circulation in the tanks, stocking the tanks with fish and feeding the latter, the payment of servants and fishermen, the hire and maintenance of fishing-boats, and the salary of the Resident Director and Staff. At the commencement of this number will be found the names of the gentlemen on the staff.

In the summer of 1902 the Association was commissioned by His Majesty's Government to carry out in the southern British area the scheme of International Fishery Investigations adopted by the Conference of European Powers which met at Christiania in 1901. In connection with this work a laboratory has been opened at Lowestoft.

The purpose of the Association is to aid at the same time both science and industry. It is national in character and constitution, and its affairs are conducted by a representative Council, by an Honorary Secretary and an Honorary Treasurer, without any charge upon its funds, so that the whole of the subscriptions and donations received are devoted absolutely to the support of the Laboratory and the prosecution of researches by aid of its appliances. The reader is referred to page 4 of the Cover for information as to membership of the Association.
CONTENTS OF NEW SERIES, Vol. VII., No. 2.

1. Plymouth Marine Invertebrate Fauna: Being Notes of the Local Distribution of Species occurring in the Neighbourhood. Compiled from the Records of the Laboratory of the Marine Biological Association. *With one Chart* 155

3. Note on two species of *Cucumaria* from Plymouth, hitherto confused as *C. Montagui* (Fleming): *C. Normani*, n.sp., and *C. saxicola* (Brady and Robertson). By S. Pace 305

Balance Sheet, 1903-1904 326

NOTICE.

The Council of the Marine Biological Association wish it to be understood that they do not accept responsibility for statements published in this Journal excepting when those statements are contained in an official report of the Council.

TERMS OF MEMBERSHIP.

<table>
<thead>
<tr>
<th>Membership Type</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Members</td>
<td></td>
<td></td>
<td>per annum 1 1 0</td>
</tr>
<tr>
<td>Life Members</td>
<td></td>
<td></td>
<td>Composition Fee 15 15 0</td>
</tr>
<tr>
<td>Founders</td>
<td></td>
<td></td>
<td>100 0 0</td>
</tr>
<tr>
<td>Governors</td>
<td></td>
<td></td>
<td>500 0 0</td>
</tr>
</tbody>
</table>

Members of the Association have the following rights and privileges: they elect annually the Officers and Council; they receive the Journal of the Association free by post; they are admitted to view the Laboratory at Plymouth, and may introduce friends with them; they have the first claim to rent a place in the Laboratory for research, with use of tanks, boats, &c.; and have access to the books in the Library at Plymouth.

All correspondence should be addressed to the Director, The Laboratory, Plymouth.
PATRON.

HIS MAJESTY THE KING.

OFFICERS AND COUNCIL.

President.

Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.

The Duke of Abercorn, K.G., C.B.
The Earl of St. Germans.
The Earl of Duce, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.

The Right Hon. Joseph Chamberlain, M.P.
Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., M.P., F.R.S.
A. C. L. Günther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.

COUNCIL.

Elected Members.

G. L. Alward, Esq.
G. C. Bourne, Esq.
Prof. T. W. Bridge, F.R.S.
F. Darwin, Esq., F.R.S.
G. Herbert Fowler, Esq.
S. P. Haeger, Esq., F.R.S.

G. W. A. Herdman, F.R.S.
E. W. L. Holt, Esq.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq.
Prof. E. A. Minchin.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Governors.

The Prime Warden of the Fishmongers' Company.
E. L. Beckwith, Esq. (Fishmongers' Company).

G. P. Bidder, Esq.
The University of Oxford.

The British Association for the Advancement of Science.

Chairman of Council.

A. E. Shipley, Esq., F.R.S.

Hon. Treasurer.

J. A. Travers, Esq., Tortington, Arundel.

Hon. Secretary.

E. J. Allen, Esq., The Laboratory, Citadel Hill, Plymouth.

PERMANENT STAFF.

Director.—E. J. Allen, Esq., D.Sc.

Naturalist in charge of Fishery Investigations.
W. Garstang, Esq., M.A., D.Sc.

Assistant Naturalist.—L. R. Crawshay, Esq., M.A.

Assistant Naturalists for the International Investigations—
W. Wallace, Esq., D.Sc. J. O. Borley, Esq., M.A.
R. A. Todd, Esq., B.Sc. W. Bygrave, Esq., B.A.

Hydrographer (International Investigations)—D. J. Matthews, Esq.
Professor W. F. R. Weldon, F.R.S.

By the death of Professor W. F. R. Weldon, F.R.S., Linacre Professor of Comparative Anatomy in the University of Oxford, which occurred on Good Friday, 13 April, 1906, with painful suddenness in the midst of his activities, the Marine Biological Association has lost one of its oldest workers and one of its most earnest and enthusiastic supporters. It was in the autumn of 1887, before the building of the Laboratory was completed, that Professor Weldon first commenced work in connection with the Association, and from that time until his appointment to the Chair of Zoology, at University College, London, in 1891, he resided chiefly at Plymouth, and was engaged in investigations at the Laboratory. Since 1891, although the periods spent at Plymouth have not been so prolonged, visits during his vacations have taken place at frequent intervals, and many of his most important papers have been based upon researches carried out at the Laboratory and material collected there.

Professor Weldon's earlier investigations were directed to the study of the classification, morphology, and development of the Decapod Crustacea, and, although much of what he did remains unpublished, the thoroughness with which his researches upon the whole group were carried out was shown in the special courses of lectures upon it, which he subsequently delivered at University College. At the same time several important papers resulted from the work. In two memoirs, one published in the Journal of the Association on "The Cælom and Nephridia of Palæmon serratus" (N.S., i. p. 162), and the other in the Quarterly Journal of Microscopical Science, on "The Renal Organs of Certain Decapod Crustacea" (vol. xxxii. p. 279), the structure of the green glands of various Decapods was described, and the remarkable development of the bladder of these glands in Palæmon, with its considerable extension backwards into the body cavity, was for the first time pointed out. In a later paper, on "The Formation of the Germ Layers in Crangon vulgaris" (Quart. Journ. Micr. Sc., vol. xxxiii. p. 343), a careful and detailed account of the early development of a typical decapod ovum was given, and this paper well illustrates Professor Weldon's skill, both as a master of histological technique and as a powerful and accurate draughtsman.

Of Professor Weldon's later work, based upon the application of statistical methods to the study of variation, by which he will be chiefly remembered as a biological thinker of originality and force, it is not necessary to dwell at any length here, but it is of interest to record that one of his earliest, if not his first published statement on this...
subject, is the note on "Palæmonetes varians in Plymouth," published in the Journal of the Association (N.S., I., 1890, p. 459), in which the variations of the teeth on the rostrum of this species are recorded from an examination of 915 individuals. Later papers based upon work done at Plymouth or upon material obtained there are:

"Presidential Address to the Zoological Section (on Natural Selection and Variation)" (Report. Brit. Assoc., 1898).

Professor Weldon became a member of the Marine Biological Association in 1884, the year of the inauguration of the Association, and his name first appears in the list of Founders in 1887. In 1888 he was elected a Member of Council, and from that time he continued to serve the Association in this capacity, having been in recent years the representative of the British Association for the Advancement of Science. His time and energy have been freely devoted to the work of the Council, and his personal experience of the various departments of the Association's activity have given special value to his views and recommendations upon many important questions of policy, which the Council has been called upon to determine.

When the Association undertook to carry out for His Majesty's Government the programme of International Fishery Investigations in the English area, Professor Weldon gave particular attention and devoted much time to the vast amount of statistical work, which is entailed by those investigations, and the fact that both the general methods and the results so far published were subjected to his careful and critical examination has added greatly to their value and to the confidence with which the Council was enabled to regard them.

By his enthusiasm, his energy, and the keenness of his intellectual insight, Professor Weldon helped largely in the attainment of the success which has attended the efforts of the Marine Biological Association, and by his ever-ready co-operation with his colleagues on the Council, and with the members of the scientific staff, he so endeared himself to all those with whom he was associated in the work that his death has left a gap which it will hardly be possible to fill.—E. J. A.
Notes on some British Nudibranchs.

By

C. Eliot,

Vice-Chancellor of the University of Sheffield.

With Plates XI and XII.

The following notes are the result partly of an examination of various living specimens at Plymouth in the spring of 1905, and partly of the study of preserved material most kindly placed at my disposal by Mr. E. J. Allen and Mr. W. I. Beaumont, of the Laboratory, Plymouth, Mr. W. E. Hoyle, of the Manchester University Museum, and the Council of the Hancock Museum at Newcastle. I must also express my thanks and obligations to Mr. T. J. Evans, lecturer in Biology at the University of Sheffield, who has prepared for me sections of the smaller specimens and embodied the results in drawings which will add very materially to any value which this paper may have.

The following are the species noticed:—

1. *Tritonia alba*, A. & H.
2. *Staurodoris verrucosa* (Cuvier).
5. *Lamellidoris bilamellata* (L.).
11. *L. marmoratus*, A. & H.
12. *L. flavidus*, A. & H.
15. *Bergchia cerulescens* (Laurillard).
16. *Coryphella rufibranchialis* (Johnst.).
19. *C. beaumonti*, spec. nov.

(= *Cuthona aurantiaca*)
 (= *Cratena olivacea*.)
25. *AntiojjeUa cristata* (Delle Chiaje).
27. *Janolus flagellatus*, sp. nov.
29. *Stiliger bellulus* (d'Orbigny).

Of the above, *Coryphella beaumonti* and *Janolus flagellatus* are new species. The first may be regarded as certain, though it offers so many peculiarities that its place in the genus *Coryphella* is open to question. *Janolus flagellatus* differs from other described species in its genitalia, but cannot be regarded as certain until better preserved specimens are examined. *Berghia ceruleescens* must be removed from the list of the British fauna, for the only recorded specimen is a *Facelina corollata*; but *Stauromoria verrucosa* may be added, for it seems to be certainly, though sporadically, recorded from Devonshire, the Clyde, and West Ireland.

An examination of the type specimen of *Tritonia alba*, A. & H., has enabled me to show that this species, which has been called in question, is valid and well characterized. The valuable material with which I have been supplied has, I hope, enabled me to amplify our knowledge of Lomanotus, Hancockia, Alderia, and Calma. The systematic position of the last genus appears to me to have been misunderstood; *Calma glaucoides* belongs to the same genus as the later *Forestia mirabilis* of Trinchese, but *Calma cavolini* must be removed from this group, as it does not possess the characteristic radula.

I have also attempted to elucidate the synonymy and affinities of Alder and Hancock's *Doris testudinaria*, which appears to be a fairly common form, though often confounded with *Archidoris tuberculata*, and have also examined the classification of the Cratenidae. I think that the genus Amphorina must be referred to this group, and that the animals described as *Cratena olivacea* and *Cuthona aurantiacea* are really referable to Amphorina. *Eolis angulata* is probably a young *Æolidiella glauca*.

TRITONIA.

A species of this genus which has been called in doubt is now shown to be valid by an examination of the type specimen, and the following additions may be recorded to Tritonia and Candilla, of which Bergh recognized sixteen species in the *System der Nudibranchiaten Gastropoden*, 1892. I do not think that the distinction between Tritonia and
NOTES ON SOME BRITISH NUDIBRANCHS.

17. T. alba, A. & H.
18. T. excusans, B.
19. T. incerta, B.
20. T. gigantea, B.
21. T. (Candiella) australis, B.
22. T. (Cand.) ingolfiana, B.
23. T. (Cand.) villafanca, Vayssière.
(=? T. challengeriana, var.)
25. T. olivacea, B.
26. T. irrorata, B.

TRITONIA ALBA, A. & H.

(Monogr. of the British Nudib. Mollusca, part vii. p. 48, and Appendix, p. vi.)

Specimens of this form were found by Alder and Hancock at Cullercoats, near Newcastle, and described by them as having considerable external resemblance to young individuals of T. hombergii, but as differing in dentition from all known Tritonias, inasmuch as the lateral teeth were denticulate or branched. Bergh (Mal. Unt. in Semper's Reisen, Heft xv. pp. 734 and 736) rejects the species as doubtful, and thinks that the denticles were merely an illusion of the microscope. An examination of the original specimens preserved in the Hancock Museum at Newcastle-on-Tyne has shown me, however, that this is not the case, and that the teeth are really denticulate.

The two specimens are respectively 7 and 6 mm. long, and 2-8 and 2-2 mm. broad. One is dark brown, the other yellowish. The hard buccal parts are fortunately well preserved, otherwise few characters either external or internal can be established, which is hardly surprising, as the specimen must be at least fifty years old. There is no reason, however, to doubt the accuracy of Alder and Hancock's descriptions. The dorsal margin is large, and seems to have borne in the one specimen six, in the other eight branchiae of various sizes. No trace of stomach plates was found.

The jaws are yellow, rather long and narrow, and bear near the edge about four rows of small prominences resembling a mosaic. The radula is very transparent, and consists of twenty-five rows, which appear to contain thirty-six teeth on each side of the rhachis when complete. The rhachidian tooth (Pl. x., Fig. 1. a.) is tricuspid, and hollowed out
below. The first lateral (Pl. xi., Fig. 1. b.) is of the usual clumsy shape, but is rather variable in outline. The second lateral (Pl. xi., Fig. 1. c.) is smooth, moderately stout, and simply hamate. The succeeding teeth become longer and slenderer towards the outside. The third lateral bears a prominence or rudimentary denticle, and the remaining laterals in the middle of the half-row (Pl. xi., Fig. 1. d. e. f.), bear from one to three long branch-like denticles, and sometimes one or two accessory shorter ones. Towards the end of the row the denticles are found only at the tip of the teeth, and the outermost (Pl. xi., Fig. 1. g.) are elongate and bifid. This peculiarity is not marked in Alder and Hancock's plate, which otherwise gives a very accurate representation of the radula.

STAURODORIS, BERGH.

It is worthy of consideration if this genus should not bear the Linnaean name of Doris. Bergh (Mol. Unt. in Semper's Reisen, xiv. p. 616) decided to discontinue the use of this name ("besser wäre es, wie hier geschicht, den Namen Doris als generische Bezeichnung ganz zu streichen"). But there seem at least two objections to this course. Firstly, if an old genus is divided into sub-genera, one of these new sub-genera should, according to the rule generally recognized, bear the name of the old genus. Secondly, it would appear that in Staurodoris verrucosa, Bergh, the use of the specific name really admits that the animal is the Linnaean Doris. The type of Doris is Doris verrucosa of the tenth edition of the Systema Naturae. It is true that the animal cannot be recognized from Linnaeus's description, but Cuvier identified it rightly or wrongly with a Mediterranean form, and Cuvier's animal has been renamed Staurodoris verrucosa by Bergh. But this form can bear the specific name verrucosa only on the supposition that it is the Doris verrucosa of Linnaeus. Therefore either it is Doris verrucosa, or else Staurodoris with a new specific name; but it cannot logically be Staurodoris verrucosa.

Further, it seems a pity to abolish a well-known name used by so many eminent naturalists, and in my opinion the use of Doris is not only correct, but convenient. I cannot help thinking that the distinctions between Bergh's genera of the Archidoridæ are somewhat wanting, and that a juster classification would be secured by the use of the genus Doris (type Doris verrucosa), to include as sub-genera at least Staurodoris, Archidoris, Anisodoris, and possibly others.

Staurodoris, Bergh, cannot in my opinion be satisfactorily separated from Archidoris, Bergh, as the two genera are connected by their less typical members. The typical Staurodoris has simply pinnate branchiae and the back studded with clavate tubercles, which form valves round the rhinophores and branchie. But in the less typical form the
branchiae become bi- or tripinnate and the valvular tubercles less distinct.* The following forms would perhaps be referable to the subgenus Staurodoris:—

1. *St. verrucosa* (Cuvier).
 St. pseudoverrucosa, Jher.
 St. januarii, Bergh.
2. *St. bertheloti* (d’Orbigny).
3. *St. d’orbignyi* (Gray).
5. *St. maculata* (Garstang).
8. *St. bicolor*, Bergh.
11. *St. flabelligera* (Cheeseman).

The last two species have a peculiar configuration of the branchiae, which renders their inclusion in this genus doubtful. *St. bertheloti* and *St. d’orbignyi* are only known from very imperfect descriptions.

STAURODORIS VERRUCOSA (CUV.).

Two specimens from the Museum of the Manchester University, labelled as coming from the Firth of Clyde. The larger is 35 mm. long and 21 broad; the other slightly smaller. The details given below refer to the larger specimen, unless otherwise stated.

Both specimens are depressed, rather stiff and hard, uniform whitish yellow in colour. The back is studded with large and small tubercles. There are fifteen of the former, about 3 mm. high and 2 mm. broad. Smaller ones are scattered among them, and the tubercles decrease in size towards the edge of the mantle, which is fairly wide. The foot is broad; no groove or notch is visible on the anterior margin. The tentacles are ridge-like.

The rhinophore pockets are protected by four tubercles (two large and two small) in the smaller specimen and by three in the other, one of the smaller tubercles not being developed. The branchiae are simply pinnate, eighteen in the larger specimen, fourteen in the smaller. The pocket has a thin slightly raised lip, bearing eight tall, slender tubercles about 3.5 mm. high, alternating fairly regularly with quite small ones.

The intestines are yellowish, except the stomach, which is black from

* Vayssière’s figure of the Mediterranean *Archidoris tuberculata* (Opisth. de Marseille, iii. pl. 1, fig. 1) seems to me to have the external characters of Staurodoris.
the colour of its contents. The spermatophoea is very large. The formula of the yellowish radula is $55 \times$ about 60.0.60. The teeth are simply hamate, and rather crowded. The outermost are degraded, but not denticulate. In the anterior, but not in the posterior rows, the innermost teeth project somewhat into the rhachis, which bears longitudinal folds.

St. verrucosa has already been recorded from the British marine area by Mr. G. P. Farran, who found one specimen at Fahy Bar, Ballynakill, West Ireland (*Ann. Rep. Fish. Ireland*, 1902-3, part. ii. app. vii. [1905] pp. 207-8). Bergh in his systematic arrangement of the Nudibranchiata unites with it *St. januarii*, *St. ocelligera*, and *St. pseudo-verrucosa*, and including these varieties the species is now recorded from the Mediterranean and Adriatic, the coast of Brazil, the Atlantic coast of Europe, and South Carolina.

STAURODORIS VERRUCOSA (CUV.), VAR. MOLLIS.

One specimen, labelled Salcombe, R. A. Todd, 3. VIII. 1900. The measurements are: length, 21 mm.; breadth, 12; height, 7. The colour is white, with a faint yellowish tinge; the texture soft. The foot is 17 mm. long and 6 broad, with a longish free tail; it has slight traces of a groove in front, but no notch. The mantle edge is ample, and measures about 4 mm. The tentacles consist of a ridge-like prominence on either side of the mouth; they are attached for the greater part of their length, and show slight traces of a fold. The back is somewhat sparsely tuberculate. Down the centre run six fairly regular longitudinal lines of large tubercles, about 1:5 mm. wide and 1 mm. high. Between them and on the mantle edge are smaller tubercles. A few tubercles near the branchiae are taller and almost clavate. There is no trace of ridges connecting the various tubercles. The rhinophores are deeply perfoliate, and emerge between two tubercles. The rim of the branchial pocket is slightly raised, and bears ten tubercles of various sizes, but all quite distinct. The largest are 1 mm. high. The branchiae are simply pinnate, the pinnæ being alternately long and short. They project about 4·5 mm. from the pocket, and lie flat on the back like a star. Seen thus they appear to be thirteen, but on opening the pocket it is seen that nine are long and separate, and four small, springing from the sides of the longer ones. All the plumes are united at the base in a common circular band, which bears papillae outside. The anal papilla is central.

The intestines are white. In the central nervous system the cerebro-pleural ganglia are above the pedal, which as preserved lie below them at the side. The eyes are black and distinct.
The buccal mass is elongate. In one part of the labial cuticle is
a mass of variously shaped spicules, which are apparently the remains
of a fragment of food embedded in the skin, and do not represent an
armature of the lips. The radula is colourless, with a maximum
formula of $40 \times 45.0.45$. The teeth are rather straight and only
slightly hamate. Towards the end of the rows the spike becomes
reduced and the base increases, with the result that the tooth resembles
a broad, clumsy hook. The two innermost teeth project into the rhachis,
and are lower than the rest, but not denticulate.

The oesophagus is thin, and the salivary glands band-like. The
stomach lies in an upper anterior cleft of the liver, but is separate from
it. Its walls are thickish, with a strong irregular lamination. The
genitalia seem to be as in the typical form. The light-grey hermaphro-
dite gland is spread over the greenish liver. The spermatocyst is
large and spherical; the spermatocyst much smaller and elliptical. No
armature was found.

I have compared this animal with specimens of St. verrucosa from the
Mediterranean. It is lighter in colour, very much softer in consistency,
and the tubercles are lower and, as a rule, not clavate. But these are
all matters of degree, and I do not think a new species can be created
on the evidence of a single specimen.

The present specimen is superficially quite unlike St. maculata
(Garstang), which is very convex, hard, and bears a pattern of knobs
connected by ridges.

ARCHIDORIS TESTUDINARIA (A. & H.).

[Doris testudinaria, Alder and Hancock, Ann. and Mag. II. N., 1862,
vol. x., 3rd series, p. 261.

Archidoris stellifera, H. von Jhering. See Vayssière, Journal de
p. 82, 1903.

by Alder, as stated on p. 27.).]

Both the nomenclature and the specific limits of this form present
many difficulties, and it is with great diffidence that I submit it should
be called Archidoris testudinaria, that it is identical with the Archidoris
stellifera of Vayssière and von Jhering, and that it is probably distinct
from the Doris planata of Alder and Hancock. Two points, however,
seem certain: first, that the specimens from Plymouth here described
are the Doris testudinaria of Alder and Hancock; second, that they are
distinct from Archidoris tuberculata, with which they are often con-
founded in practice.
In 1862 Alder and Hancock described (l.c.) a new British Dorid, which they identified with the *D. testudinaria* of Risso. From some unpublished notes preserved in the Hancock Museum at Newcastle-on-Tyne, it is probable that they based this identification, not on Risso's description, but on specimens sent from the Mediterranean and labelled *D. testudinaria*, which they considered identical with their specimen from Herm Island.* Risso's description is vague, inadequate, and, as pointed out first by Philippi (*Enum. Moll. Sicil.*, vol. ii. p. 78), probably inaccurate. Bergh and others have thought that it refers to *Platydoris argo*. But since Alder and Hancock have given the name to a fully described animal, which is possibly identical with Risso's animal, it would seem that their interpretation of the name must be regarded as authoritative. After Alder and Hancock had assigned the name *D. testudinaria* to an identifiable form, von Jhering gave the name *Archidoris stellifera* to Mediterranean specimens, which seem to me to belong to the same species. His description appears to have been only in MS., and publication dates from the memoirs of Vayssière, who uses the same name. As will be seen from the notes here given, stellate forms are found on the British coast, and appear to be specifically the same as the less ornate variety described by Alder and Hancock. It is remarkable, however, that Vayssière states that the mouth of his specimens is armed with a chitinous ring. I could not discover this structure in the specimen which he kindly sent to me.

Alder and Hancock, in the *Ann. and Mag. of Nat. Hist.*, l.c., expressed the opinion that *D. testudinaria* and *D. planata* are distinct though similar species. Subsequently Alder in *Jeffrey's Conchology* (l.c.) came round to the opposite view, and stated that an examination of further specimens of different sizes from the Clyde proved that *D. planata* is the young of *D. testudinaria*. It is extremely difficult to form any decided opinion on this question. The external characters are likely to vary considerably at different periods of the animal's growth, and it would appear that in *D. testudinaria* (*stellifera*) a labial armature may or may not be developed. Vayssière reports its presence, and Alder and Hancock (*Ann. and Mag. N. H.*, l.c.) say of *D. testudinaria* and *D. planata*, “the character of the tongue is similar in each.” On the other hand, in a number of specimens from Plymouth which I have examined, I have found a decided labial armature in the small flat individuals and none at all in the large plump ones. It is present in the specimen of *D. planata* from Alder and Hancock's collection at Newcastle. On the whole I am inclined to think that there are two separate forms which are very much alike in their younger stages.

* It is even possible that A. & H. may have obtained the specimens from Risso, or from some one who knew the animal which he called *D. testudinaria*. They were writing about Nudibranchs in 1841, but probably began collecting earlier.
(1) *D. planata.* This is a remarkably flat form, which appears not to exceed an inch in length in British waters. The dorsal surface is finely granulated, there is a distinct labial armature, and the radula is decidedly of the type of Geitodoris, Bergh, that is to say, there are two kinds of teeth, the inner teeth being of the ordinary hamate shape, and the outer very thin and crowded together in sheaves. It is possible that some specimens (about 50 mm. long) which I have received from the Cape Verde Islands may be adults of this species. They resemble the Plymouth specimens, except that they are much larger and were red in life. The richer colour may perhaps be due to the climate.

(2) *D. testudinaria.* This is a plump form of considerable size (60 mm.). The back is covered with flat tubercles, which are sometimes arranged in a stellate pattern. In the specimens from Plymouth, which I have myself examined, there is no labial armature, but Vayssière states that it is present in the Mediterranean form, which is otherwise undistinguishable. The radula is not unlike that of the last species, but the differentiation of the teeth is less marked. The outer are thinner than the inner ones, but the change is less abrupt, and the thinner teeth are not gathered together in such distinct sheaves or packets.

The names *Platydoris testudinaria* and *Platydoris planata* would seem to be in any case incorrect, for none of the animals have the characters of Platydoris (which include a peculiar hard consistency and an armature of hooked scales on the reproductive organs). It is possible, but not demonstrable, that the *Doris testudinaria* of Risso was a Platydoris; but, if so, it is neither the *D. testudinaria* nor the *D. planata* of Alder and Hancock.

Alder and Hancock’s type specimen labelled “*Doris testudinaria, Herm,*” has been kindly lent me by the Council of the Hancock Museum, Newcastle.

It is 30 mm. long, 23 broad, and 15 high. The mantle margin is broken in many places, but it apparently covered the sides and the foot entirely in its original condition. The general colour of the animal is greyish yellow. Some of the dorsal tubercles are lighter than the surrounding surface. There are some reddish spots on the under side of the mantle.

The texture is soft, and the specimen is a little decayed. The back is covered with low flat warts of various sizes. No stellate arrangement is visible. The branchial and rhinophorlal pockets are surrounded by tubercles which do not amount to valves. The branchiae are retracted within the pocket, and their number could not be ascertained. The anterior part of the animal is much retracted, but the long linear tentacles are clearly visible.
The buccal parts have been extracted.

No further examination was made in order not to injure the unique specimen.

I have also examined five specimens seen alive at Plymouth in April, 1905. They vary somewhat in external appearance, and may be described separately.

A. One specimen, rather variable in shape, but flattish. When fully stretched out and moving its length is 60 mm. and its breadth 32. It is active in its motions. The main colour of the back is mottled purplish brown of various shades, the deepest of which is almost black. The general colour is lighter towards the margin, though here the darker shades are more conspicuous by contrast. There are a few irregular sandy-grey markings here and there, especially in front of the rhinophores, and twelve sandy-yellow star-like figures arranged symmetrically in four lines between the rhinophores and the branchial pocket. The back is covered with flat tubercles, very slightly prominent, and more or less of the same size (not more than 1 mm. in breadth), except those forming the centre of the stars, which are about twice as large as the others. The tubercles forming the stars appear to be set in a stellate figure, but the pattern is due to pigment rather than to the arrangement of the tubercles. The edge of the rhinophore pockets is set with small tubercles. The rhinophores are elongate, with about fifteen perforations. They are olive coloured, and the stalk is long compared with the laminated part. The branchial pocket is slightly raised and tuberculate. The branchiae are six, tripinnate, sandy yellow, with purplish flecks. The anal papilla is purplish, but the edge is crenulate and distinctly margined with sandy yellow. The foot is grooved in front and the upper lamina notched. The tentacles are cylindrical and elongate, which makes the whole look unlike that of A. tuberculata. The under side is white, but in this and in all the specimens there are a few purplish spots on the under side of the mantle, which is rather ample and overhangs the foot all round.

B. In a second specimen of about the same size the characters are exactly the same, but there are only four stellate figures on each side, and they are less regular both in their formation and their arrangement. The pockets of the rhinophores and the branchiae are very distinctly crenulate and tuberculate.

C. Three similar but rather smaller specimens are paler in colour, and the stellate figures are only imperfectly developed. The branchiae are as many as seven or eight.

The internal characters of all the specimens are much the same. The blood gland is large, double, purple or greyish. The central nervous system is not quite as in A. tuberculata. Seen from the upper
side, the ganglia appear united in a horseshoe-shaped mass in which no divisions are clearly distinguished. Seen from below, the division between the cerebro-pleural and pedal ganglia is plain, but the cerebro-pleural ganglia are not distinctly divided into two portions. The common commissure is thick and very short.

The integuments, especially the tuberculate dorsal surface, are very spiculous, and contain a dense mass of colourless rods, often slightly bent, but not swollen in the middle, jointed, or branched.

No labial armature could be found, but on the labial cuticle in some specimens were granular markings resembling grey dust, but not forming rods or compact plates. The radula consists of about thirty rows, and the number of teeth on each side of the rhachis does not appear to much exceed forty as a maximum; but the whole radula is fragile and difficult to extend. The teeth are transparent and colourless, longer and thinner than in A. tuberculata, and with narrower bases. Near the rhachis (Fig. 2. a, b.) the teeth are low and with comparatively broad bases; but they increase in length and slenderness towards the outside until the last two or three, which are shorter, but often somewhat deformed (Fig. 2. f.). Teeth with abnormal lumps and projections occur in all parts of the radula (Fig. 2. d.).

The oesophagus is narrow at first, but widens and enters the liver. The stomach lies within the liver. The gall bladder is small and pear-shaped. The intestine issues from the liver about the middle of its dorsal surface, runs forward and then turns backward. The liver is of a dull orange colour; the hermaphrodite gland, spread over it, is of a dull opaque white.

The spermatophca is large, greenish or bluish grey, and spherical. The spermatocyst is small, white or orange-white, less distinctly spherical, and sometimes pear-shaped. There is no prostate. The vas deferens is very slender, long, and convoluted. The penis small, conical, and unarmed. The duct seems to issue at the side of the tip.

Though this species is commonly confused with A. tuberculata, it seems to differ in the following points:—

1. The typical coloration is different, though it is very often imperfectly developed. But there are nearly always purple spots on the lower side of the mantle, which seem not to occur in A. tuberculata.

2. The general form is flatter.

3. The shape of the tentacles and anterior part of the foot is markedly different.

4. The tubercles are less prominent and of more equal size.

5. The branchiae are stouter and less voluminous.

6. The shape of the teeth is different.

7. The stomach is enclosed within the liver.
For purposes of comparison I have examined a specimen of _A. stellifera_, most kindly sent me from Marseilles by Professor Vayssière. It is 31 mm. long, 16 broad, and 10 high, flattish and rather smooth, with low even tubercles. The colour of the dorsal surface is dark olive-brown of various shades; the larger tubercles are yellowish, but the stellate appearance is hardly visible. The under side is pinkish, with reddish brown dots on the lower surface of the mantle. The oral tentacles are longish, conical, and somewhat flattened. The anterior margin of the foot is grooved and perhaps notched, but this is difficult to decide. The edge of the rhinophore pockets is set with small inconspicuous tubercles. The branchiae are eight; the edge of the pocket is tuberculate, much like the rest of the back, but has no special tubercles of its own. The formula of the radula is about 18 × 30.0.30 and the shape of the teeth as described above for the Plymouth specimens.

Neither in this specimen, nor in those from Plymouth, could I find any trace of the armature described by Professor Vayssière (i.e.) as "anneau chitineux mandibulaire, complet, assez large, offrant dans la partie interne de petits et très courts bâtonnets prismatiques." Nothing was visible but a thick unarmèd cuticle.

Vayssière refers this form to Archidoris, and I follow him; but if the external teeth are longer and thinner than the internal ones, and if, as Vayssière has found, a labial armature is sometimes present, it is clear that the division between Archidoris and Geitodoris is not so sharp as might be supposed. It would be interesting to have statistics as to the uniform presence or absence of the labial armature in various species. There certainly seems to be ground for suspecting that in some species of Archidoris and Stauродoris it is generally absent, but occasionally present, though not much developed. With reference to this and many other organs, we have little information as to the effect of age and growth on the external and internal characters of Nudibranchs.

GEITODORIS PLANATA (A. & H.).

In the paper cited above I have described specimens caught at Plymouth, and considered in the Laboratory to be _D. planata_, A. & H., and have also given my reasons for referring them to Geitodoris. Since writing this I have examined two other preserved specimens at Plymouth. The back is granulate, with some larger tubercles, and also with some pits, which often give the upper side a honeycombed appearance. The mantle edge is broad, and on the under side veined with anastomosing lines. The branchiae appear to be nine, and in small
specimens are very small indeed and hardly visible. There is a distinct labial armature formed of rods, and the radula consists of two kinds of teeth. In the largest specimen the formula seemed to be $25 \times 6 + 30.0.30 + 6$, the six outermost teeth being long, very thin, and compressed together so as to look almost like a single tooth. I have also examined a specimen from Alder and Hancock's collection at Newcastle labelled "Doris planata. W. R. Hughes. Sidmouth." It is only 5 mm. long and 4 broad, and entirely dried up, having unfortunately not been kept in alcohol. As far as anything can be made out under such unfavourable conditions, the external characters are much as in Alder and Hancock's plate. The colour is yellowish, the back granulated and pitted, the mantle edge very ample, the branchial pocket large and round. There is a distinct yellow labial armature composed of rods. As usual in these old specimens, the radula is decomposed and in confusion; but there are clearly visible (a) ordinary hamate teeth; (b) bundles of long, thin, almost shadowy, teeth. The whole animal is very flat.

Through the kindness of Mr. Crossland I have received from the Cape Verde Islands several specimens which are possibly well-grown adults of this form, and in any case are closely allied to it. The general characters, particularly the tentacles, branchiae, labial armature, and radula (with a formula amounting to at least $10 + 35.0.35 + 10$) are similar. The differences are: (1) the size (50 mm.); (2) the colour, which was in life brilliant vermillion (though some individuals were pale yellow), with numerous black specks apparently visible only under a lens, whereas Alder and Hancock say that $D. \text{planata}$ was reddish brown, with dark brown spots; and (3) the texture of the dorsal surface, which seems to be covered by a reticulate pattern, with pits between the ridges and flat tubercles at their junctions. But age and a warm climate may account for these differences. However, I have thought it safer to describe the Cape Verde specimens under a separate name as Geitodoris reticulata.

LAMELLIDORIS, A. & H.

A considerable number of species are found on the coasts of Great Britain, and seem well characterized externally and by differences in the radula. The Doris beaumonti of Farran (Nudibranchiate Molluscs of Ballynakill, app. viii. to part ii. of Report on Fisheries of Ireland for 1901, p. 4) is, no doubt, Lamellidoris luteocincta (M. Sars), which must thus be added to the British fauna. L. laetca, L. quadriraculata, L. auroropuncta, L. miniata, and L. olivacea, described by Verrill from the Bermudas, are all very doubtful forms,
and in many cases it seems clear from the author's descriptions that they do not possess the characters of Lamellidoris.

In identifying the specimens noticed below as *L. oblonga*, *L. depressa*, and *L. pusilla*, I have been chiefly guided by the labels which they bear in the collection at the Plymouth Marine Laboratory. I see no reason to doubt these identifications, though it might be difficult to establish them from an examination of preserved specimens only.

LAMELLIDORIS BILAMELLATA (L.).

This common species has been fully described by Alder and Hancock and Bergh. The back is covered with distinct, tall, and sometimes clavate tubercles, not unlike those of *Stauroidoris verrucosa*. The tubercles at the side of the rhinophores are not conspicuous.

The inner teeth are large, hamate, smooth, and tapering at the tip. The outer are plate-like, with a rudimentary and not very distinct hook. Between the rows there is a series of car-shaped folds on the rhachis.

LAMELLIDORIS OBLONGA (A. & H.).

(A. & H., Mon. of Brit. Nud., Fam. i., pl. 16, figs. 4–5.)

Three preserved specimens from Plymouth. It would appear that this species is recognizable by its shape. Its measurements are roughly, length, 8 mm.; breadth, 3.7 mm.; whereas *L. bilamellata* measures about 12 mm. in length and 9 mm. in breadth. The animal, as preserved, is yellowish, and covered with low, flat tubercles on the dorsal surface. The branchiae are very inconspicuous, and are not distinguishable from the surrounding tubercles on a superficial examination. The openings of the rhinophores are closed by two tubercles. The rhinophores are exserted and very long. As preserved, the oral veil is remarkably pointed, and the anterior margin of the foot follows its outline.

The buccal crop is large, and divided into two halves by a median band. The radula is very fragile, and consists of twenty-two, thirty-three, and forty-five rows respectively in the three specimens. The inner tooth (Fig. 3. a.) has a broad base, and is divided into three parts by constrictions. The denticulations on the uppermost part are very fine, but clear. The outer tooth (Fig. 3. b.) bears a distinct hook.

LAMELLIDORIS DEPRESSA (A. & H.).

One preserved specimen from Plymouth. The mantle margin is wide, and the dorsal surface bears papillose tubercles and contains very long spicules. The colour is yellowish, with a few black and brown spots.
The radula is small and hard to find. The inner tooth (Fig. 4. a.) is squarish, with three small denticles (not one, as according to Alder and Hancock). The outer tooth (Fig. 4. b.) is a squarish plate with a rudimentary denticle.

LAMELLIDORIS PUSILLA.

(Alerd and Hancock, Mon. Brit. Nat., Fam. i., pl. 13.)

This little species seems to be characterized in life by its white branchiae and rhinophores. The radula is somewhat as in L. oblonga. The inner tooth (Fig. 4. a.) is squarish, with three small denticles, not one, as according to Alder and Hancock. The outer tooth (Fig. 4. b.) is a squarish plate with a rudimentary denticle.

PLEUROPHYLLIDIA.

PLEUROPHYLLIDIA LOVENI, BERGH.

Two specimens from Plymouth. I was informed that the animals were reddish when alive.

The larger is 35 mm. long and 26 mm. broad, tapering rather suddenly at the tail. The colour is dull yellowish brown, with about fifty rather lighter stripes on the back, of which nine are larger than the others. The branchiae are thin, and about twenty. The side lamellae about thirty, very thick, and generally interrupted in the middle.

The smaller specimen is much bent, but would be about 30 mm. long if straightened out and 13 broad. The colour is pale yellowish brown, with a sort of purple glazing in many places, and there are about thirty stripes on the back.

The jaws bear five rows of denticles in one specimen and six or seven in the other.

The formula for the radula is in the first 25 x 35.1.35, and in the second 34 x 32.1.32. In both the median tooth bears seven denticles on each side of the central cusp. The first lateral is larger than the rest, and bears six or seven rather coarse denticles. In the larger specimen the first twelve laterals are denticulate (generally with five to six denticles) and the thirteenth very faintly so. The rest are smooth. In the smaller specimen only eleven teeth are denticulate.

It would appear that the Pleurophyllidia found on the British coast is this species, and not P. lineata, as it is often described. Bergh also appears to have shown that the correct name of the Mediterranean species is P. undulata, not P. lineata, and the latter specific name should be cancelled.

NEW SERIES.—VOL. VII. NO. 3.
P. loveni seems to differ from P. undulata in its colour, in having fewer and thicker side lamellæ, and in its dentition. In P. undulata the central tooth is much broader, and all the teeth, with the exception of the last two or three in each row, are denticulate.

LOMANOTUS, VÉRANY, 1846.

The members of this genus are not common, and large specimens are distinctly rare, though small ones are not infrequent in some localities, e.g. Plymouth. The body appears to be very delicate and easily torn, and most authors report that their specimens were badly preserved. The following species have been described.

7. *L. varians*, Garstang, i.e.

Of these names the last is proposed by Garstang for all the British species (*L. marmoratus*, *L. flavidus*, *L. portlandicus*, and *L. hancocki*), on the supposition that they are really one. But if that supposition is correct, the right course would seem to be not to introduce a new name, but to call all the forms by the earliest of the existing specific names. *L. varians* may therefore be omitted from the list. The remaining six forms may be divided into the large and the small. Of the large forms *L. genei* has undoubted priority as a name, and it is unfortunate that the authors of the remaining three large species, *L. hancocki*, *L. portlandicus*, and *L. cisigii*, did not, in describing them, state definitely in what points they considered them to differ from the typical species. It seems certain that the number of processes on the frontal veil and on the rhinophore sheaths differs in otherwise similar individuals and cannot be made a specific character. *L. portlandicus* does not seem to be distinguished from *L. genei* (i.e.) by any clear character. Norman states that the most marked character of his *L. hancocki* is “the small size of the terminal, simple, conical process, which is projected beyond the calyx-like sheath” of the rhinophores. But it is highly probable that the rhinophores were of the usual type, and that the lower laminated portion was merely hidden within the sheath. Trinchese (i.e.) has
given a somewhat detailed description of *L. cisiigii*, from which it appears that its most remarkable characters are: (1) that the hepatic diverticula do not extend into the marginal papillae; and (2) that the two margins unite at the end of the body and form "una larga pinna che è l'organo principale del nuoto." But a similar organ is found in the specimen described below, and is figured in some unpublished drawings of *L. portlandicus* made by Hancock, and preserved in the Newcastle Museum. Alder and Hancock, as well as Bergh, found the hepatic diverticula in the papillae, but I could not demonstrate their existence with certainty in the specimen which I examined. It is possible that different specimens may vary in this respect, as do *Dendronotus* and *Bornella excepta*. Trinchese also states that in the young *L. cisiigii*, "Ogni papilla conteneva un lobo epatico bene sviluppato."

The small species are *L. marmoratus* and *L. flavidus*, both British. With regard to these the main question is, have they assumed their adult and final form, or are they immature? Trinchese states that the young of *L. cisiigii* differs markedly from the adult; and if we recognize the possibility of modifications occurring during growth, it may be said that the two small species present no characters either externally or in the buccal parts which are incompatible with the idea that they are the young of *L. genei*. On the other hand, if they are mature (on which point the evidence is inconclusive), the differences in size and colour are, no doubt, sufficient specific characters. A further question is whether *L. marmoratus* and *L. flavidus* are distinct forms. If they are adults, they must certainly be regarded as separate species. But if they are immature, then considering that *L. flavidus* is smaller than *L. marmoratus*, and that Trinchese states that the young *L. cisiigii* is sololidiform, it is probable that *L. flavidus* is the youngest stage of the same species. Alder and Hancock note the sololidiform characters of the type specimen.

As mentioned below, Alder and Hancock's published plates of *L. marmoratus* are wrong in representing the dorsal margin as continuous with the oral veil, and the error does not occur in an earlier drawing preserved at Newcastle.

I recognize provisionally three species:—

 = *L. portlandicus*, Thomps.
 L. hancocki, Norman.
 L. cisiigii, Trinchese.

2. *L. marmoratus*, A. & H.

3. *L. flavidus*, A. & H.

It is, however, highly probable that both of these latter will prove to be young forms of the first.
LOMANOTUS GENEI, VÉRANY.

One large specimen from Plymouth Sound, kindly given me by Mr. W. I. Beaumont.

The colour of the preserved specimen is yellowish white suffused with brown, which is deepest on the pericardium, rhinophores, oral veil, mantle margin with papillae, and on the tail. There are no white dots. Some, but not all, of the papillae have colourless transparent tips.

The length is 26 mm., the breadth at most 8, and the height 9, including the raised margin. This margin starts from the rhinophore sheaths and is 2–3 mm. wide. It bears thirty-two papillae on the right, and thirty on the left side, and is bent into six undulations, three upwards and three downwards. The largest papillae are those in the centre of these undulations and are about 4 mm. high; the rest are about half the size. The papillae (Fig. 6) are distinctly spoon-shaped, the convex surface being generally outside, but sometimes inside. At the base of the larger papillae are two folds on the inside. The margin is entire round the tail and forms a horizontal fin. The anus is 15 mm. from the anterior end, and the genital orifices 6 mm., just behind the rhinophores. The oral veil bears four distinct digitations, two on each side, about 2 mm. long. The rhinophore sheaths are about 3 mm. high; the right bears five digitations; the left, though apparently uninjured, has only one. The foot is produced into short pointed angles and grooved. The upper lamina is much stronger and thicker than the lower.

The jaws are yellow, rather soft and flexible, and much as described by Bergh. The edges for some distance inwards are covered by a mosaic of plates or scales with denticulate edges (Fig. 8). The masticatory process is very short.

The radula corresponds in general with the descriptions of Bergh and Vayssière. It consists of thirty-two rows. The teeth are large, crowded, and yellow at the sides of the rows; smaller, spaced, and colourless in the centre. In this specimen, and in all the smaller ones observed, the radula has a great tendency to break and become confused, and it seems impossible to spread it out evenly. It is hard to say whether there is a central tooth or not, as the arrangement appears to be not quite symmetrical. Down the rhachis run four to five irregular and not quite straight rows of very irregularly shaped teeth (Fig. 7 a.), bearing a central cusp and three to seven pointed denticles of various sizes on either side. To the right and left of these teeth the rows be-
come more regular, and there come about ten colourless dagger-like teeth (Fig. 7. b.), with from four to ten fairly regular denticles on either side, the number of denticles increasing as the teeth are further from the rhachis. After this the teeth, as one goes outwards, become larger, yellower, hollowed, and somewhat spoon-shaped (Fig. 7. c.), bearing on either side at least twenty-five denticles, which are shorter and blunter than those of the middle teeth. The outermost teeth of all are somewhat smaller.

The internal organs are not easy to unravel, all the tissues being very thin, soft, and easily torn. The oesophagus leads into a round stomach, which gives off branches (apparently two) at the sides, and is prolonged posteriorly in a diverticulum reaching nearly to the end of the body. On this lie the liver and the hermaphrodite gland, which are both yellowish and difficult to separate from one another. The whole mass is surrounded by a network of transparent tubes, which seem to represent the kidney. The dorsal papillae are hollow and communicate with the interior of the body, but I could not satisfactorily demonstrate the existence of branches of the liver in them (cf. what Trinchesse says about L. eisigii). If such exist, they are represented by flocculent masses of no very definite shape, composed of reddish cells. The mucus and albumen glands are large; the ampulla of the hermaphrodite gland long and thick; the vas deferens thinner and coiled; the penis conical and unarmed; the spermatotheca small and roundish.

If any real distinction can be drawn between L. geci and L. eisigii, this animal should probably be referred to the latter in virtue of the shape of the papillae and the apparent absence of hepatic diverticula in them. But I do not think that the two species are really distinct.

LOMANOTUS MARMORATUS, A. & H.

Four living specimens (A) examined at Plymouth in April, 1905, were about 9 mm. long and 2 mm. broad. The ground colour of the living animals is yellowish white, but largely covered with irregular markings of different shades of brown and olive, and also with small sandy dots. The colour is darkest at the sides and lighter in the centre of the back. The tips of the cerata are whitish; the hepatic diverticula within them yellowish brown.

The foot is cleft, and indented in front with strongly hooked corners. The veil is not large, with four processes, two on each side, which are somewhat bulbous at the tip. The rhinophore sheaths are rather tall for the size of the animal, being about 2 mm. high, and bear four or five processes, the number not being always the same on the right and left sheaths. In one specimen one sheath is entirely smooth. The
dorsal margin starts from the rhinophore sheath; it makes four not very distinct undulations and bears about twenty-two papillae, most of which, especially the taller ones, are carried vertically, though some of the smaller ones point sideward. The taller papillae bear a distinct bulb under the pointed tip, but in the smaller ones the bulb is less developed. Four of the papillae are distinctly larger than the rest and, roughly speaking, mark the divisions between the undulations. The third of these larger papillae is the tallest of all and is about 2 mm. high (Fig. 9, c.).

Another specimen (B), which was about 7 mm. long when at rest and 8 mm. when crawling, was brownish white, with yellowish-brown mottlings down the centre of the back and deep purplish-brown mottlings on the cerata. The other external characters are much as in the specimens already described, but the papillae are not so long and there are only obscure indications of the subterminal bulb. The dorsal margin is more clearly a web connecting the papillae. The rhinophore sheaths bear five processes each.

Three other specimens of about the same size were so macerated that nothing could be done with them except to examine the buccal parts.

The jaws and radula are much the same in all eight specimens. The jaws are not denticulate, but near the edge is a mosaic formed of tile-like prominences denticulate on the anterior edge. The radula is very irregular in appearance and could not be laid out straight in any specimen. There is a wide naked rhachis bearing folds, and on each side of the rhachis fifteen to twenty rows of teeth, each containing eight to ten teeth on either side. More could not be made out with certainty. The teeth are longer than in Alder and Hancock's and Bergh's plates, and more uniform. They are dagger-shaped, but slightly bent at the end, bearing at least twelve denticles on either side and perhaps considerably more, but the denticles are hard to see, even with a high power. The innermost are slightly shorter and stouter; the outermost longer and thinner.

The animals are very delicate. They die in captivity without apparent cause, and the body becomes decayed and macerated very rapidly.

This form, especially the specimen called B, approaches the *L. marmoratus* of Alder and Hancock sufficiently nearly to bear the name. Their plate (*Eumenis marmorata*, Fam. 3, pl. 1 a.) contains one of the few inaccuracies to be found in their works, inasmuch as it represents the dorsal margin as continuous with the oral veil, not as starting from the rhinophores. But in a preliminary study for the drawing preserved in a bound volume of Alder's drawings, belonging to the Hancock Museum at Newcastle-on-Tyne, the disposition of the parts is somewhat
indistinct, and it is quite probable that it was meant to represent the dorsal margin as starting from the rhinophores. When this study was copied for the plate as published, the artists themselves probably mis-interpreted their earlier and rather indistinct drawing. But I do not think that we should insist that the continuity of the dorsal margin and oral veil is really a character of *L. marmoratus*, A. & H.

LOMANOTUS FLAVIDUS, A. & H.

A single small specimen examined alive at Plymouth resembled Alder and Hancock’s figure of this species. It is only 4 mm. long and 1 mm. broad. The general colour is pale buff, due to a multitude of little specks. There are also white spots (particularly on the tops of the cerata) and a few purplish-brown spots. At the sides of the head in front of the rhinophores are two purplish-brown patches. The rhinophore sheaths bear five processes, of which the one behind and pointing outside is longer than the others. There are only about twelve papille on each side. They are much as in Alder and Hancock’s plate—short, thick, and showing no signs of a bulb. Those in the middle are the largest. They mostly have an irregular brown ring or marking.

The animal is not like *L. marmoratus* superficially, but no difference could be found in the buccal parts. The foot, veil, and other external characters not mentioned above are also similar.

HANCOCKIA, GOSSE.

= *GOVIA*, Trinchese.

Bergh *(System der Nudib. Gost., p. 1048)* adopts *Govia* (Trinchese, 1886) as the name of this genus in preference to *Hancockia* (Gosse, 1877), apparently on the ground that Gosse’s description is inadequate. But though Gosse does not deal with the anatomy of the animal, his description is amply sufficient for its identification. There can be no reasonable doubt that his *Hancockia dactyloota* is the animal described below, and that it is generically and perhaps specifically the same as the later *Govia* of Trinchese. The name is therefore entitled to stand.

The genus appears to be rare, and is recorded from the south of England, Brest, and the Mediterranean. Four described species are probably referable to it: *Hancockia dactyloota*, Gosse; *Govia rubra*, Trinchese; *Govia viridis*, Trinchese; * and *Doto uncinata*, Hesse. In the *Jour. de Conchyl.*, 1872, p. 34, Hesse described under this name a Nudibranch captured at Brest, but Garstang seems to have proved that it is a Hancockia. Whether there is really more than one species is a

* References to the literature are given on following page.
matter of some doubt. Perhaps Trinchese's two species are distinct, and perhaps his Govia viridis is identical with both Doto uncinata and Hancockia dactylota, so that the genus may be tabulated as follows:—

2. H. uncinata (Hesse), Brest.
3. H. viridis (Trinchese), Mediterranean.
4. H. rubra (Trinchese), Mediterranean.

Hesse regarded his specimen as a Doto, and Bergh somewhat doubtfully refers the genus to the Dotonidae. It would seem to be intermediate between that family and Lomanotus. The narrow radula indicates affinity to Doto and the true Eolidids. The cerata show analogies to those of Doto, though they have not their characteristic shape. But the perfoliations on the rhinophores, the processes on the oral veil, and the manner in which the cerata arise from the dorsal margin recall the characters of Lomanotus rather than of Doto.

HANCOCKIA DACTYLOTA, GOSSE.

Two specimens labelled "Plymouth district, Sept. '97 and '98." They are of much the same size, one being rather more elongate than the other. Measurements in millimetres:—

<table>
<thead>
<tr>
<th>Length</th>
<th>Breadth</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 7</td>
<td>1.2</td>
<td>2</td>
</tr>
<tr>
<td>(2) 6</td>
<td>1.5</td>
<td>2</td>
</tr>
</tbody>
</table>

The colour is greyish green, and the shape rather stiff and rectangular. The animals are not very well preserved either externally or internally; but a small specimen subsequently given me by Mr. Allen proved to be in better condition and was sectioned.

The foot is truncate in front; no groove is visible on the anterior margin; the tail is not pointed behind, and is slightly bifid.

The oral veil is smooth in the middle and curves inwards, but the two sides are much expanded and each bears four digits, of which the second from the inside is the longest. The rhinophore sheaths, which are set on the dorsal margin, are about 1 mm. high and 5 mm. broad, straight, cylindrical, not expanded at the top, but divided into eight to ten low lobes. The upper part of the rhinophores is a smooth column; at the base are a few obliquely vertical perfoliations. From the rhinophore sheaths runs backwards a not very distinct marginal ridge, on
which are set five processes on the left side and four on the right. The processes in the first pair are opposite one another. Then they gradually become alternate. They bear lobes with a rather irregular outline, so that the whole process looks like a short, thick branchial plume. The first pair have eight lobes, four on each side, and are folded along the median line, the concave surface being turned outwards. The second, third, and fourth pairs are similarly folded, but bear only seven lobes, three on each side and one terminal. The fifth process (found on the left side only) has five lobes and is irregular in shape. The genital orifices are close to one another, on the flank of the body, between the rhinophores and the first process. The vent is between the first and second processes, close to the dorsal margin.

The nervous system is yellowish. The ganglia are hard to separate, but as seen from above appear to be as described by Trinchese. The cerebro-pleural ganglia are large and triangular, showing no sign of division. The pedal ganglia, which are smaller, lie at their side on a lower level. The buccal ganglia are large. The eyes are large and of an intense bluish black.

The jaws bear a row of distinct but irregularly shaped denticles on the masticatory process. Higher up on the jaw itself there seem to be numerous projections near the edge. The radula resembles that of Galvina, and consists of thirty-one rows of three teeth each. The median teeth (Pl. xi., Fig. 10. a.) are very strong and distinct, with four well-developed denticles on each side of a large raised median cusp. The laterals (Fig. 10. b.) are very thin and hard to see, but are much as in Galvina, broad, but with a sharply pointed summit.

The animals being small and indifferently preserved, it was difficult to make out the digestive system by ordinary dissection, and the following details are derived almost entirely from the specimen which was sectioned. A fairly long esophagus (Pl. xii., Fig. 11. a.) leads from the buccal mass to the stomach and gives rise about midway to a curved diverticulum (Fig. 11. b.). The stomach (Fig. 11. c.) is roundish and not very large. From the top of it rises the intestine (Fig. 11. d.), which sends out a tube to the anal papilla (Fig. 11. e.) on the right. The anterior lower part of the stomach is prolonged into two diverticula (Fig. 11. f.), which supply the first pair of cerata and then run straight forward, terminating in the anterior part of the foot. The termination is trifid. Posteriorly the stomach gives rise to a long and fairly wide tube (Fig. 11. i.), which extends to the hinder part of the body and sends off branches (Fig. 11. g.) to the cerata. These branches are at first simple, but before they enter the cerata they divide into as many ramifications (Fig. 11. h.) as there are lobes to supply. These secondary ramifications arise at different levels. At their termination they open externally by
orifices (Pl. xii., Fig. 13. c.) which appear to be enidocysts. They consist of a fairly broad tube, which is narrowed by a constriction when it reaches the integuments and forms outside the constriction a cup-shaped aperture. There are traces of similar openings on the anterior margin of the foot; but it is unusual to find enidocysts in this position, and the structure of the organ is not clear. Abundant mucous glands are scattered over the whole surface of the body, and the mucus can be seen under the microscope in the act of exuding.

The hermaphrodite gland (Pl. xii., Fig. 12. 1, n.) is large and fills all the posterior part of the body cavity with large yellowish packets. The anterior genital mass is also well developed, but hardened and not well preserved. No trace of armature was found, and the spermatotheca appeared to be surrounded by the albumen gland.

DOTO, OKEN.

A considerable number of species have been referred to this genus, but it is greatly in need of a revision based on a study of a large series of living animals. The internal characters offer few points of difference, and the external characters, such as coloration and the shape of the rhinophore sheaths, are somewhat variable, and liable to be either distorted or obliterated in preserved specimens. Bergh, in his *System der Nudib. Gast.*, registers sixteen species, described chiefly by Alder and Hancock, Hesse, and Trinchese. Of these it would appear that *D. arbuseula*, Agassiz, and *D. minuta*, Forbes, are mere names. *D. australis*, Agasii, is perhaps a *Melibe* and not a *Doto* at all, and the later *D. ocellifera* of Simroth (*Die Gasteropoden der Plankton Expedition, 1895*, pp. 168–70) is of very doubtful affinities. The forms which probably belong to the genus may be enumerated as follows:

1. *Doto coronata* (Gm.).
3. *D. cuspidata*, A. & H.
11. *D. pinnatifida* (Mtg.).
16. perhaps = *Dotilla (?) pygmaea*, Bergh.

DOTO PINNATIFIDA (MOII.), VAR. PAPILLIFERA.

Three specimens from Plymouth, nearly a centimetre long. The coloration, cerata, etc., seem typical of the species as described by Alder and Hancock, but there are numerous papillae on the back, each with
NOTES ON SOME BRITISH NUDIBRANCHS.

a black spot at the tip; and there are two or in some places three rows of such papillae on the sides. The rhinophore sheaths are ample in front, but slit behind, and bear two or three papillae (Fig. 14.). All these papillae are too much developed to be called tubercles, and are half or even three-quarters of a millimetre in height. The anal papilla is very large.

The buccal mass is very small and the radula minute, though it contains more than 100 closely fitting teeth. The teeth bear at least three denticles on each side of the central cusp and perhaps other accessory denticles and ridges; but it is difficult to get a distinct view of any tooth, even under the highest power.

This form is probably a variety of *D. pinnatifida* with the tubercles more developed. All the proportions of the animal are larger than those described by A. & H., and it is possibly merely the normal adult form.

BERGHIA CERULESCENS (LAURILLARD).

The specimen preserved at Plymouth under this name is really a *Facelina coronata*, and has neither the rhinophores nor the dentition of *Berghia*. *Berghia* should probably be removed from the list of the British fauna, as there appears to be no other record of its occurrence.

The cerata are set in eight groups. At the interior end of several of them (that is at the sides of the clear space in the middle of the back) are a number of quite small tubercular papillae, hardly half a millimetre high, and similar ones are found here and there in the middle of the rows. These tubercles probably represent cerata which have been bitten off and are in process of reproduction. See Bergh, *Beiträge zur Kenntniss der Åolidiaden*, v. p. 826. Alder and Hancock mention that the animals of this species (*F. coronata*) have the habit of eating one another's cerata.

ÆOLIDIELLA, BERGH.

EOLIS ANGULATA, A. & H.

I think that the *Eolis angulata* of Alder and Hancock (*Monogr., Fam. 3, pl. 23*) is really referable to this genus, and merely a broad and probably immature specimen of *Æolidiella glauca*. Professor Herdman kindly gave me a specimen from Port Erin in the Isle of Man which was identified by him when alive as possessing the external characters of *Eolis angulata*. The preserved specimens also seemed to have these characters, as far as they could be recognized, except that the cerata were more numerous. When dissected it was found to possess the jaws and characteristic radula of *Æolidiella glauca*.
If this specimen is really Alder and Hancock’s *Eolis angulata*, I do not think that species can be separated from *Eolidiella glauca*. As shown in Alder and Hancock’s plates the coloration and general appearance are much the same, and it is noticeable that in both the rhinophores are represented as showing indications of slight annulation. Since *Eolis angulata* was four lines long and *Eolidiella glauca* nearly two inches, differences in shape and the number of cerata cannot be regarded as safe specific characteristics.

The anatomy of *Eolidiella glauca* is described by Bergh in his *Beitr. zur Kenntn. der Eolidiaden*, viii., 1885, pp. 24–8. The known distribution of the species extends from Scandinavia to the Mediterranean.

Coryphella.

This genus consists of *Eolids*, with a triseriate radula, somewhat elongate bodies, and unperfoliated rhinophores. It is noticeable, however, that in several species the rhinophores show traces of rings or wrinkles, or bear minute lumps. The details submitted below seem to show that *C. gracilis* and *C. smaragdina* are varieties of one species. *C. beamonti*, now first described, offers many peculiarities, and almost merits generic rank.

Bergh in his *System der Nudibranchiaten Gasteropoden* recognizes twenty-three species, of which several must be regarded as doubtful (e.g. *C. alderi*, *C. parvula*, *C. semidecora*, *C. forelisi*, *C. ocellata*), since the radula is unknown. To this list may be added:—

C. cooperi, Cockerell (Journ. of Mal., 1901, viii. 3, p. 85).

C. californica, Bergh (Mal. Unt. in Semper’s Reisen, vi. 1, 1904, p. 6).

C. sarsi, Friele (Bergen’s Museums Aarbog, 1902, No. 3, p. 12).

Cockerell (J. of Malac., 1901, p. 121) considers Cooper’s *Eolis iodinea* to be a Coryphella, but Bergh refers it to *Flabellina*. Verrill’s Coryphella (?) pallida is somewhat doubtful.

Coryphella Rufibranchialis (Johnst.).

(Alder and Hancock, Monog. of British Nudib., Fam. 3, pl. 14.)

One living specimen, Plymouth, April, 1905. The animal is very elongate, 15 mm. long and only 3 mm. broad. The foot is produced in front into fairly long tentacular angles, which are very distinctly grooved. The oral tentacles are 5 mm. or more long, and are carried in a curved position. The rhinophores are 7 mm. long, straight, and covered with rows of little lumps set in fairly regular rings. There are about twenty-five rings, and about eight lumps in each.
The cerata look less thick than in Alder and Hancock's plate. They are slender and cylindrical, but often irregularly constricted near the tips, as if injured. The last two are set medianly on the caudal ridge. The anus is lateral, but high up. The tail not long.

The body is transparent and colourless, with only a very little opaque white on the oral tentacles and rhinophores. The hepatic ramifications within the cerata are of a bright, light scarlet, and somewhat irregular in outline. Above the scarlet is a broad opaque white ring, and above that a pellucid point. There is a faint yellow tinge in the rhinophores and down the centre of the back.

The jaws bear eight to nine rows of irregular denticles. The radula consists of thirteen rows. The median tooth has a strong central cusp, and seven rather long and thin denticles, curving slightly inwards. The side teeth bear twelve longish slightly curved denticles. Alder and Hancock (*Tongues of the Eolididae*) say that the apex of the side teeth points outwards, but this did not seem to be the natural position in the present specimen, though the teeth are easily displaced.

In spite of this and some other small points of difference, I think this specimen must be referred to *C. rufibranchialis*. It can hardly be *C. pellucida*, which it also resembles, as that animal is said to have smooth lateral teeth.

CORYPHELLA GRACILIS (A. & H.).

One living specimen, Plymouth, April, 1905, 6 mm. long, and rather elongate. The body is of a not very transparent white, with a good deal of opaque white, especially on the oral tentacles, rhinophores, and tail. The cerata have opaque white pigment at the top, which sometimes, but not always, forms a distinct ring. The hepatic diverticula are of a reddish orange. The anterior angles of the foot are produced, but are not very long. The oral tentacles are distinctly longer than the rhinophores, which are smooth. The cerata are rather thick and elliptical, and are set in four groups, containing on each side eight, five, five, and three cerata respectively.

The radula consists of eleven teeth. The central tooth bears four to six (generally five) denticles on each side of the median cusp. The laterals bear six denticles.

This appears to be a fairly typical specimen of *C. gracilis*. Alder and Hancock say it has four denticles on the central tooth, Bergh that it has five.

Another living specimen seen at Plymouth at the same time was 9 mm. long and 2.5 broad. It was very active, and fond of swimming foot uppermost.

The tail is long; the anterior angles of the foot are produced into
distinct but short horns. The oral tentacles are moderately long, with a few scattered opaque white dots. The rhinophores are long, wrinkled, but not perfoliate, transparent and colourless, except that the tips are covered with opaque white dots. The eyes are small, but black and distinct. The cerata are set in five groups, composed on the right side of three, four, two, four, three, and on the left of three, three, four, two, three cerata respectively. These five groups are all seen to be distinct when the animal is moving and stretched out. Otherwise the first and second and the fourth and fifth appear to coalesce, though the third always remains distinct. The general impression produced is that the cerata are few and scattered irregularly. The innermost are the largest and are rather swollen. The body is colourless and transparent. On the tail is a line of irregular bright white spots. The yellowish-grey hermaphrodite gland can be seen through the integuments. The hepatic diverticula within the cerata consist of two elements, one bright green, the other brownish yellow. As a rule the green predominates and gives the general colour, but in some of the cerata the brown pigment prevails.

The jaws are thin and colourless, with at least six rows of denticles. The radula consists of thirteen rows. The central tooth has as a rule four denticles on each side of the median cusp, but sometimes five, and only once six. The laterals have the apex turned inwards and bear five or six denticles.

A third specimen was dead when examined. Though much macerated and mutilated, it appeared to have resembled the one just described externally. The cerata were green with white tips. The radula consisted of twelve rows. The central teeth have uniformly seven denticles on each side of the median cusp. The laterals bear three to six denticles. The tips of several laterals seem to point outwards.

According to Alder and Hancock, who created both species, C. gracilis has orange-red cerata and four denticles on the central teeth, whereas C. smaragdina has green cerata and seven denticles. The second of the forms described above appears to be intermediate both in colour and dentition between C. gracilis and smaragdina, and suggests that the animals in which the green pigment predominates should be called C. gracilis, var. smaragdina.

Vayssière (Recherches sur les Moll. Opisth. du Golfe de Marseille, ii. p. 76), regards C. henshawii, C. rufibranchialis, C. pellucida, C. smaragdina, and C. gracilis as being all synonyms. This appears to me excessive, as besides other characters the forms vary in their dentition. But it must be admitted that we require much more information to enable us to judge how far the number of denticulations may vary within the limits of one species.
NOTES ON SOME BRITISH NUDIBRANCHS.

CORYPHELLA LANDSBURGHII, ALDER & HANCOCK.

One living specimen, Plymouth, April, 1905. Very slender and elongate, 7 mm. long and only about 1 mm. broad. Cerata nearly 2 mm. long; rhinophores 2.3 mm. long. Foot produced into distinct tentacular angles. Oral tentacles fairly long and slightly wrinkled; rhinophores longer and more distinctly wrinkled. They bear low rings of rather irregular outline, but not perfoliations or knobs. The cerata are set in eight short rows arranged as follows on each side:

\[
\begin{align*}
2 & \quad \text{Three rows close together.} \\
2 & \quad \text{One row which is} \\
3 & \quad \text{Two rows close together.} \\
2 & \quad \text{Three distinct rows.}
\end{align*}
\]

The body, rhinophores, and tentacles are of a clear amethyst, with which the orange-red ramifications of the liver within the cerata form a striking contrast. The cerata bear a ring of opaque white below the pellucid tips. The foot is whitish.

The jaws bear six to seven rows of denticles near the top, but the number decreases lower down. The radula consists of thirty rows. The central tooth is rather broad and arched. It bears five denticles on each side of the central cusp, which is not much larger than the rest. The laterals are of a fair size, but somewhat difficult to see, as they are quite colourless. They have a long apex and five to six small denticles.

This appears to be a fairly typical example of Alder and Hancock’s *C. landsburghii*. They do not mention that the rhinophores are wrinkled, though it is indicated in their plate, and they describe them as distinctly shorter than the oral tentacles, which is not the case here.

The most striking characteristic of this form is its strangely contrasted coloration. It is very doubtful if the specimen from Vardø referred to this species with a query by Bergh (l.c.), really belongs to it.

CORYPHELLA BEAUMONTI, spec. nov.

Mr. W. I. Beaumont, to whom the species is dedicated, has kindly furnished me with the following notes on the living animal.

“Eolid from Barn Pool (Plymouth). Length, 16 mm., but looks as if the
posterior part of the body had been lost, as it ends abruptly only 3-4 mm. behind the heart. The outline of the anterior end of the foot is like Eolis mana, except that the sides are produced into small angular projections kept tucked in and consequently inconspicuous. Head nearly as wide as the foot. The oral tentacles very minute; merely short processes of angles of the oral veil. The rhinophores are long and smooth, held erect with tips bent back. The eyes do not show. Papillae very numerous and extremely long, slender and tapering to fine points, constantly in motion, curling and uncurling, and when at rest convoluted. A group of small papillae, apparently three rows, is wholly in front of the rhinophores on each side. Then a row on each side abreast of rhinophores. Another row between this and the next, which is abreast of the anterior end of the heart. Then a row level with the posterior end of the heart. The outer ends of the rows are not double.

"The colour of the body is red, tending to orange on the rhinophores, but elsewhere more rosy." The colour seems to be situate in the superficial tissues. The papillae are superficially flesh-coloured. The hepatic cerata are in most of the papillae rosy purple throughout, but in a few pale greenish purple, except at the tip, which is rosy purple in all and more deeply coloured than the rest of the organ. The cerata are slender, especially at the distal ends, and much corrugated. The extreme tips of the papillae beyond the end of the cerata are yellowish flesh colour, deeper than the superficial colour of the rest of the papillae."

I have examined two preserved specimens given me by Mr. Beaumont, 20 mm. and 14 mm. long respectively. The colour is dead white, not very transparent. The hepatic diverticula are yellowish white and corrugated. The external characters agree with Mr. Beaumont's description. The front of the foot is broad and expanded, but the tentacular angles are small and bent downwards and inwards. The anterior margin is not grooved. Over the mouth is a broad oral veil (5-3 mm.) expanded into short tentacles (1-7 mm.) at the sides. The rhinophores are long (7-5 mm.), thin, not perfoliate, and placed close together on a slight prominence. There are three rows of cerata distinctly in front of them. The cerata are set on eight narrow, curved ridges, which are single and do not form horseshoes. The first three rows are close together, the next three not far apart, but the last two are more distant. In the perfect specimens the length of the cerata obscures this arrangement. There are four to six cerata in each row. The cerata in front of the rhinophores are short, cylindrical, and 2-4 mm. long. The posterior cerata are very long; in the specimen, which has a body 20 mm. long, they measure as much as 15 mm. and are about 1 mm. broad at the base.

* The specimens here described are much the same.—C.E.
The jaws bear two or three rows of denticles. The radula is triseriate, and consists of twenty and fourteen rows respectively in the two specimens. The central tooth (Fig. 15. a.) has a strong central cusp, which bends slightly downwards, and hence sometimes appears asymmetrical when pressed flat in a slide. On each side of it are a number of small denticles of varying shape and size. The smallest number observed was sixteen and the largest twenty-four. The laterals (Fig. 15. b.) are also broad, with slightly lower cusps, and twenty to thirty accessory denticles on the inner side. No denticles were visible on the outer side of the laterals.

The penis, which is partially protruded in one specimen, is sickle-shaped and very deeply grooved, consisting of a lamina folded down the middle and probably capable of assuming a foliaceous expansion. This part is unarmed, but the base of the penis and the end of the spermatic duct bear numerous yellow cones (Fig. 16.) terminating in a short bent appendage. They appear to be soft and not spiculous or chitinous. The spermatotheca is large and spherical.

As this species has smooth rhinophores and the radula of Coryphella, I provisionally refer it to that genus in order to avoid multiplying genera. But in many of its characters—such as the shortness of the oral tentacles, the length of the cerata, the position of some of the cerata in front of the rhinophores, and the conformation of the penis—it differs markedly from the described Coryphella, and it may ultimately prove better to make it the type of a new genus.

CRATENIDÆ, BERGH.

As the authors cited above observe, Bergh's classification of this group raises many difficulties in practice, on account of the minuteness of the generic distinctions and the doubt whether the forms really possess the characters which he attributes to them. He divides the sub-family into five genera—*Cuthona, Cuthonella, Cratena, Hervia, and Phestilla*. Of these the last named differs from the others in several particulars. *Hervia* also may be set aside as characterized by the corners of the foot being prolonged into tentacular processes. It is not recorded from British waters, though as the habitat of one species is the Northern Atlantic it may some day be added to our fauna. The other three genera, *Cuthona, Cuthonella, and Cratena*, are closely connected, and to them must be added in my opinion *Amphorina*. Bergh classes
Amphorina under the Galvinide, which hardly form a natural sub-family, the only character common to the component genera being that the cerata are more or less inflated. In Amphorina this feature is not very marked, and its other characters ally it to Cratena. The tropical genera Zatteria, Myia, and Ennoia are also probably allied, but need not be considered here.

With regard to nomenclature, Bergh appears to have proved that the names Carolina and Montagna must be rejected.

The animals which compose the four genera Cratena, Cuthona, Cuthonica, and Amphorina are small and inconspicuous, though often beautifully coloured. The rhinophores are not perfoliate, the corners of the foot are not developed into tentacular processes, and the radula is uniseriate. There is an absence of any very striking characteristics either internal or external. The most distinct genus is Amphorina. It has slightly inflated cerata, a style on the penis, and a long tapering radula containing from fifty to eighty teeth, which gradually increase in size. The denticles on the teeth, particularly the median cusp, arise far back, and hence have a peculiar elevated appearance. To this genus at least the following species must, in my opinion, be referred:—

1. Amphorina alberti, Quatrefages.
2. A. corulea (Mtg.).
3. A. molios, Herdman.*

Perhaps Cratena viridis will prove to be an Amphorina, as may also E. glottensis. In separating the other genera Bergh makes use of the structure of the auditory capsule, which he says contains a single otolith in Cuthona, but several otoconia in Cuthonica and Cratena. Beaumont, however, denies this, and reports the existence of single otoliths in species classified by Bergh under Cratena (e.g. Cr. amena). In any case, the character is so minute and so difficult to determine in preserved specimens that it seems undesirable to use it, unless absolutely necessary. Setting aside possible differences in the auditory capsule, it would appear that the only clear distinction between Cuthona and Cratena formulated by Bergh is that the head is broad in the former, but not in the latter. This character seems to be clear and conspicuous, though, as it is merely a question of degree and development, one may doubt if it is really of generic value. If it is accepted, it would appear that the following are referable to Cuthona:—

1. Cuthona vanu, A. & H.
2. C. pavilho, Bergh (Sargasso Sea).

* I agree with Mr. Beaumont (l.c.) in thinking that the specific distinctness of this species from A. corulea is doubtful.
3. *C. bicolor*, Bergh (Japan).
4. *C. pocchii*, A. & H. (see Beaumont, l.c.).

The genus *Cuthonella* was founded by Bergh for a single specimen obtained by the *Challenger* in the Faroé Channel. Like *Cuthona* it has a broad head, but it differs from both *Cuthona* and *Cratena* in having the foot truncated in front, jaws armed with several series (not a single series) of denticles, and the anus opening on the back, not on the side. It will be seen that all these characters, except the last, are very slight. Friele (l.c.) examined specimens from the North Atlantic which had the general characters of the *Cratena* and a dorsal anus, but a rounded foot and a rather irregular denticulation of the jaw. Not wishing to create a new genus for these trifling deviations, he referred the form to *Cuthonella*, the characteristic of which thus becomes the position of the anus, which is dorsal, but somewhat to the right of the median line.*

The genus thus contains—

1. *Cuthonella abyssicola*, Bergh.
2. *C. ferruginea*, Friele.

All from the North Atlantic, but not from British waters.

There remains the large genus *Cratena*, in which can be included most of the forms not assigned to *Cuthona*, *Cuthonella*, and *Amphorina*, though some of the less-known species of this group, such as *Eolis northumbriae*, present remarkable peculiarities. In *Cratena* the head is not broad, the cerata are not inflated, and the anal papilla is on the side, not on the back. The radula is generally (but not always) short and not markedly tapering. The teeth bear a few (rarely more than ten) denticles on each side of a central cusp which is often not prominent. As a rule the penis is unarmed, but in some cases, for which it hardly seems worth while to create a new genus, it bears a style. The following species seem referable to this genus with more or less certainty:—

2. *Cr. olrikki* (Mörch). Greenland.

* I understand this to be the case in *Cuthonella abyssicola*, but Bergh's statements in the *Challenger Report*, on p. 24 and p. 25, are not quite consistent.
6. Cr. concinna (A. & H.).
7. Cr. pilata (Gould). North-West Atlantic.
11. Cr. cavea, Bergh. Chile.

Cr. viridis (Forbes) and Cr. glottensis are probably Amphorinas, and it seems difficult to separate Cratena gymnata (Gould) from Amphorina aurantiaca, Cr. arenicola (Forbes), Cr. veronicae (Verrill), Cr. couchii (Coeks), and Cr. purpurascens (Fleming) are imperfectly described. Cr. cingulata is placed by Alder in Jeffrey's Conchology, vol. v. p. 53, under Galvina, which implies that it has a triseriate radula. Cr. ingubris, Bergh, is referred to this genus with a query by the author himself.

In Jeffrey's Conchology, vol. v. p. 45, etc., Alder distributes the British forms between Cathona and Cavolina. The former, which is defined as having the branchiae close set and a uniseriate radula with a central spine and lateral denticulations, includes C. pechii, C. nana, C. stipata, C. angulata, C. inornata, C. concinna, C. olivacea, C. aurantiaca, and C. purpurascens. Cavolina, which is defined as having the branchiae set in rather distant rows and a uniseriate denticulated radula with the central spine a little prominent, includes C. couchii, C. amena, C. northumbria, C. arenicola, C. glottensis, C. corulla, C. viridis, and C. purpurascens. Though something may be said for this division, it ignores the existence of Amphorina (Quatrefages, 1844), and the point on which stress is laid—whether the branchie are close set or in distant rows—is often difficult to determine in preserved specimens, and might be doubtful in living ones.

In the above remarks I have merely considered how the described species can be most naturally distributed among the described genera. Whether those genera are valid and necessary is another question. I doubt myself if Bergh's whole subfamily of Cratenidae, including Amphorina (but perhaps excluding Phestilla) offers more than one good generic type; and if nature provides a great number of similar forms it seems unscientific to separate them into many genera on the strength of small points of difference. It is convenient, no doubt, to divide a large genus into sections or subgenera, but to split it into several genera if the differences between them are of less than ordinary generic value obscures the real uniformity of the animals classified.

* Cr. concinna. Since writing the above I have had an opportunity of examining a specimen of this species from the Menai Straits, given me by Prof. Herdman. The characters agree with A. & H.'s description. No style was found on the penis. The teeth of the radula are remarkably long, narrow, and pointed.
AMPHEORINA AURANTIACA (A. & H.).

(ALDER and Hancock, Mon. Brit. Nud., Fam. 3, pl. 27.
Beaumont, i.e., pp. 836-7.)

One living specimen examined at Plymouth, April, 1905. The animal, which was active and seemed to resent being touched, measured 8 mm. in length and 3·5 in breadth when extended. Mr. Beaumont observes that specimens as highly coloured as Alder and Hancock's plate are rare, and the present one was decidedly less brilliant. The tentacles and rhinophores were colourless, the latter with a faint red tinge. The body was colourless and transparent, with very minute, hardly visible opaque white dots. Behind the black eyes was a reddish spot, possibly caused by some internal organ showing through the skin. The general effect of the cerata was that they were reddish with white tips. The integuments of the cerata were colourless, as could be seen at the tips, where there is no liver; below this colourless tip was a broad band of opaque white, formed by an aggregation of minute dots. The hepatic diverticula were reddish brown.

The foot is expanded anteriorly into a disk, but there are no tectacular angles. The tail does not project beyond the cerata behind. The rhinophores are somewhat longer than the tentacles. In the living animal the cerata show no distinct arrangement in rows; a bare space is visible anteriorly behind the rhinophores; further back the cerata close over and hide the dorsal surface. When stripped off, the cerata are seen to be arranged in ten rows, each containing two to four.

The jaws bear several series of minute denticles. The radula consists of a single series of seventy-six teeth, tapering markedly in breadth. They bear two or three main denticles (Fig. 17.) on each side of the median cusp, and one or two secondary smaller denticles occasionly and irregularly interposed between the main denticles. All the denticles, especially the median cusp, arise unusually far back. Mr. Beaumont states that the penis is armed with a style.

Verril in Proc. U. S. National Mus., iii., 1880, p. 390, observes that Cuthona aurantiaca, A. & H., is very closely allied to Cratena gymnota (Gould), which has been described by Bergh in Beiträge zur Kenntniss der Aeolidiaden, viii., 1885, pp. 33-5. The dentition agrees exactly, but the form and arrangement of the cerata are different, and Bergh found no armature on the penis. It may therefore perhaps be well to keep the forms provisionally distinct.

This form must, I think, be referred to Amphorina, for it has all the main characters of that genus. The cerata are stout (see Alder and Hancock), the penis is armed with a style (according to Beaumont), the radula is tapering, and the denticles on the teeth arise far back. Loman
in his paper *Anteekening over twee voor de nederlandsche Fauna nieuwe Nudibranchiata*, published in the *Tijdschrift der Nederlandsche Dierkundige Vereeniging*, 1893, p. 35, has already called the animal *Amphorina aurantiaca*.

AMPHORINA OLIVACEA (A. & H.).

Beaumont, i.e., p. 834.)*

One living specimen was seen at Plymouth in April, 1905, which I should have hesitated to identify with Alder and Hancock’s *E. olivacea* on account of the differences in tint and markings; but Mr. Beaumont considered it referable to this species, and stated that the coloration is very varying. As the other characters of the animal proved to agree with *E. olivacea*, I have no doubt he is correct.

The animal is only 4 mm. long, stoutly built, with a short tail. The body colour is whitish; the tentacle, the rhinophores, and the region behind them are yellowish. There are no red markings, but the cerata and body, especially the head, are sprinkled with conspicuous dots of bright, opaque yellow. The tips of the cerata are whitish and the hepatic diverticula are olive-coloured.

The front of the foot is slightly expanded into round lobes, but there are no tentacular angles. The cerata are rather thick; the branches of the liver within them are of loose and irregular shape. The cerata are set in eight rows, fairly close together, containing three to four each.

The jaws bear a row of minute but distinct blunt denticles. The radula tapers somewhat, but not conspicuously; it consists of a single series of fifty-three teeth, with six denticles on each side of the median cusp (Fig. 18.). This cusp is elevated and rises further back than the others. I found the verge armed with a hooked style (Fig. 19.) as already described by Mr. Beaumont.

I think that this species, like *Eolis aurantiaca*, A. & H., must be referred to *Amphorina*, for it has thick papilla, a spine on the penis, and a long somewhat tapering radula, in which the teeth have the central cusp rising far back.

CRATENA AMENA (A. & H.).

Beaumont, i.e., p. 834.)*

One living specimen, Plymouth, April, 1905. The animal when fully extended is about 7.5 mm. long. The body is of a not very clear white, with opaque white spots, especially on the head and tail. The angles of the foot are rounded in front. The tentacles and rhinophores are as in
Alder and Hancock's plate, spotted with white and with a reddish-brown band about a third of the way down. The cerata are spotted with opaque white and brown and have white tips, below which is often, but not always a distinct reddish-brown ring; they are carried as represented by Alder and Hancock, but there are only five or at most six groups, arranged as follows:—

1) 4
 4
 4
 4
 3

The hepatic diverticula are not nearly as green as represented by Alder and Hancock, but greyish brown with only a faint greenish tinge.

The jaws bear a single row of small but distinct blunt denticles. The radula consists of a single series of seventeen teeth, not tapering conspicuously; there are five denticles on each side of the central cusp, which is not much higher than the rest. Beaumont found the verge to be armed with a colourless spine, but I was unable to discover it.

If Cratena and Amphiornina are maintained as separate genera, it is difficult to say to which this species should be referred. Beaumont found that it had a single otolith and a style on the penis, characters which belong to Amphiornina; but the cerata are not inflated, the radula is short, and the denticulation of the teeth is not like that found in Amphiornina. I therefore describe the animal, though with considerable hesitation, as Cratena amena.

CALMA, A. & II.

Much confusion has arisen about this genus, for later authors have not paid sufficient attention to the statements made about it by Alder and Hancock, and these statements, which are scattered in various parts of the monograph, are not always plain if taken separately, though if taken all together they are clear enough. Alder and Hancock described the type species first in the letterpress to plate 22 (under the name of Eolis glaucoides) as a very curious Eolis which will probably constitute a new generic type, and pointed out the remarkable characters of the "gastro-hepatic vessel" and "the ovary." Their language about the radula in this passage is wanting in precision, but in the letterpress to plate 47 (Tongues of the Eolididae) they say that the tongue is very slender, resembles a continuous band, and can only be seen in profile. The figure clearly represents the tongue as I have found it, a continuous chitinous ribbon in which the teeth are fused
together and only appear as minute serrulations. On page 21 of the Appendix they create the genus *Calma* for *Eolis glaucoideus*, but unfortunately mention only the external characters and do not refer to the anatomy.

Hence Trinchese, followed by Bergh (*Beit. zur Kennt. der Æolid.*, iii., 1876, pp. 643–7, and vii., 1882, pp. 61–4) and Vayssière (*Opisth. de Marseille*, ii., 1888, 81–8), regarded the genus as akin to *Flabellina*, and referred to it the *Eolis cavolini* of Vérany.

Later (*Rendiconti Accad. Sci. Fis. Mat. di Napoli*, xx. 5, 1881, pp. 121–2, and *Mem. Ac. Sci. Istit. di Bologna*, S. iv. T. x. pp. 57–61) Trinchese described under the name of *Forestia mirabilis* a Mediterranean Æolid having all the main characters of Alder and Hancoc's *Calma glaucoideus* —the thread-like undivided radula, the broad, simple hepatic system, and the hermphrodite gland arranged along the two sides of the body. Friele and Hansen had also (*Bidrag til Kundskaben om de nordiske Nudibranchier*, 1875, pp. 78–9) described another species from the Northern Atlantic, calling it merely *Eolis albicans*, but indicating its affinities to the genus *Calma*, A. & H. Bergh, in his *System der Nudib. Gasteropoden* (p. 1025 and p. 1034) puts *Eolis albicans* under *Forestia*, and makes the genus *Calma* consist of *C. glaucoideus*, A. & H., and *C. cavolini* (Vérany).

There can, however, be little doubt that the really important characters of *Calma* are those mentioned above, and that the genus is equivalent to the later (1881) *Forestia*. It will then contain three species.

C. albicans appears closely allied to *C. glaucoideus*. *C. mirabilis* differs in having a few separate teeth, as well as the continuous chitinous band, and it would seem that the groups of papillæ do not rise from a common stalk.

It seems probable that *Calma cavolini* does not belong to this genus. It is regarded by Bergh and Vayssière as related to *Flabellina*, from which it differs in having no perforations on the rhinophores. The radula is not like that of *Calma glaucoideus*, but has separate teeth of the usual pattern. There is some doubt whether it is triseriate or uniseriate, the laterals being in any case very small. It would seem that in some points the digestive and reproductive organs resemble those of *C. glaucoideus*, but neither Bergh nor Vayssière suggest that it resembles *Forestia mirabilis*. They had perhaps not seen Trinchese's paper at the time they wrote. Whatever may be the true affinities of the form, the differences in the buccal parts prevent its being referred to *Calma*, and I would propose that it should be rebaptized *Calmella*.
I do not think that the inflated shape of the cerata and their arrangement on low pedestals are really important characters in *Calma*, and would define the genus as at present known in the following way.

Animal flattish, cerata arranged in rows and sometimes rising from a pedestal. No cnidocysts. Rhinophores simple. Corners of anterior margin of foot prolonged into tentacular processes. Penis unarmed. Jaws not denticulate. Radula a continuous band not divided into separate teeth and merely bearing serrulations on the upper surface. Digestive system much simpler and less ramified than is usual in the *Aeolididae*; kidney also simple and not ramified. Hermaphrodite gland symmetrically arranged on the two sides of the body.

Though the anatomy of *Calma* is characterized by a certain simplicity, this simplicity is no doubt not primitive, but secondarily acquired and connected with the unusual diet of the animal, which feeds on the eggs of fish. The nature of the food no doubt explains the degeneration of the radula and perhaps also the absence of cnidocysts (see Grosvenor, "On the Nematocysts of *Æolids*" *Proc. Roy. Soc.*, 1903, vol. lxxii. No. 486, p. 469). Several of my specimens seemed to be gorged and distended with gelatinous matter, and probably the creatures' habit of thus stuffing themselves accounts for the breadth and simplicity of the alimentary passages.

CALMA GLAUCOIDES, ALDER & HANCOCK

Seven specimens received from the Plymouth Laboratory. Two of them resemble Alder and Hancock's figures more than do the others, which are flatter and have swollen, almost ovate cerata. But no differences of structure were found, and as all the specimens were identified at the Laboratory with *C. glaucoides*, it is probable that they were all alike externally when alive.

The length varies from 10 to 4 and the breadth from 4 to 2 mm. The general colour is whitish or drab, but varies in detail, because the transparent integuments allow the contents both of the body and of the cerata to be seen. The broad digestive tract with its diverticula is generally coloured a pale dull yellow, but contains here and there blackish masses in the cerata as well as in the main alimentary tract. In two specimens these black portions are so large that the general colour appears to be bluish black. At the sides of the body between the cerata the white follicles of the hermaphrodite gland are distinctly visible. The integuments are generally brownish at the sides of the body and at the bases of the cerata.

The margin of the foot is expanded both in front and at the sides, so as to be considerably wider than the head and body; anteriorly the foot is rounded, and is produced on each side into a short tentacular process,
which is almost invisible in many specimens. The cerata are set in from nine to twelve rows, the most common number being ten. Each row contains two or three cerata, more rarely four. The stalk or common base on which they are set is not at all conspicuous, but when an attempt is made to detach them they come off in twos or threes, and not separately. They are not at all caducous. In most specimens they are oblong-ovate in shape; but in two (as in Alder and Hancock's figures) they are cylindrical. The tentacles and rhinophores are both small, without a trace of perfoliations.

The jaws are thin, smooth, and colourless. The radula consists of a colourless, continuous ribbon, bent into a roughly semicircular shape (Fig. 20.), and bearing 60–100 denticulations like the teeth of a saw, and gradually increasing in size.* No trace of any loose, detached teeth was found. The oesophagus leads into a dilatation (Fig. 21. d.) of moderate size, which may be called the stomach. From it extends a diverticulum on either side which supplies two cerata. Posteriorly the stomach is prolonged into a very wide sacculated gut (Fig. 21. a.), which extends to the extreme end of the body and gives off simple diverticula, each of which supplies a single group of cerata. These diverticula fill the cerata entirely, and no cnidocysts were found. The contents of the digestive tract, including the cerata, resemble hardened jelly, and are probably composed of the eggs of fish, which the animal is said to eat. In this jelly are embedded moderately hard black lumps, detachable from their surroundings and easily friable, which the jelly is not. As mentioned above, in some specimens this black substance forms the major part of the contents of the digestive tract.

The lobes of the hermaphrodite gland are white, and visible through the dorsal integuments. They are composed of small pouches containing ova, scattered rather irregularly round a larger and more elongate pouch containing spermatozoa, and they alternate with the diverticula proceeding from the alimentary canal to the cerata. There is no armature on the penis. The renal organ (Pl. xii., Fig. 22.) consists of a simple sac with a few constrictions. It does not in my specimens extend as far backwards as indicated by Hecht's figures (Contribution à l'étude des Nudibranches, Mem. Soc. Zool. de France, viii. 1895, pl. iv. figs. 47, 48), but terminates soon after the commencement of the posterior third of the body.

JANIDÆ, BERGII.

This family superficially resembles the true Aéolids, but offers several differences of organization. Except in *Madrillo*, the radula is multi-

* Below the row of denticulations (a) there can be seen under a high power three or four series of minute pits and projections (b).
seriate, which would seem to be a more primitive arrangement than the extremely narrow radula of the Aëolidis; but the anal papilla is situated near the end of the back in the median line, which seems to be an instance of secondarily acquired symmetry. The digestive system offers peculiarities of its own; and the cerata, together with the hepatic diverticula, extend in front of the rhinophores along the anterior margin. There is generally a crest between the rhinophores.

Three British genera are known—Antiopea, Janolus, and Proctonotus. The nomenclature of the first genus is confusing. Vérany described it as Janus in 1844, and this name is used by Bergh, Trinchese, and Vayssière on the ground that it has priority over Antiopha, the name used by Alder and Hancock in 1855. But the objection to the name Janus (as pointed out by Alder and Hancock in the text for plate 43) is that it has been in use for a genus of Hymenoptera since 1835. But Mr. Hoyle states (Journal of Conchology, 1902, p. 214) that Antiopa is in its turn invalid for a similar reason, namely, that it was used for a genus of Diptera as early as 1800. He proposes to call the animal Antiopella, and it would seem that this name must stand, unless some one proves that it also is preoccupied.

Antiopella has perfoliate rhinophores with a crest between them, and jaws with denticulate edges. Only one species is properly authenticated, A. cristata, which is recorded from the Mediterranean and British waters. Janus sanguineus, Angas, is somewhat doubtful. The plate suggests that it may be an unusually red variety of Madrelia ferruginosa, which has also the habit mentioned by Angas of discharging a yellow secretion which colours the water round it.

The genus Janolus was created by Bergh for a specimen obtained by the Challenger, and differing from Antiopella in having a very broad margin to the foot and remarkably large undenticulate jaws. Bergh has since shown that Alder and Hancock's Antiopa hyalina belongs to this group. A third species, Janolus coerulopictus, Eliot, is recorded from California; and a fourth, somewhat doubtful, species is described below.

The genus Proctonotus was created by Alder and Hancock for two specimens found near Dublin, and is also recorded from West Ireland and Arran. The rhinophores are not perfoliate (though they bear wrinkles and tubercles), and there is no crest between them. The radula is broad and the jaws are not denticulate.

ANTIOPELLA CRISTATA (DELLE CHIAJE).

Four living specimens at Plymouth, April, 1905, the largest 30 mm. long and 8 broad. Alder and Hancock's figure of this species is not very good, and that of Trinchese (Eolidae del Porto di Genova, pl. 44) is in
some respects superior. The general colour is transparent white with a faint yellowish tinge. The rhinophores and the crest between them are very large and distinctly yellowish. On the back and sides of the body and on the tips of the cerata are very vivid metallic spots which appear blue in some lights and pink in others. There is a streak of the same colour on the tail. The hepatic system is of a deep, rich brown, and its ramifications can be seen clearly through the transparent skin.

The cerata are very deciduous, and in these specimens many, or even the majority, are quite small and tubercular. These are evidently new growths replacing lost appendages.

JANOLUS HYALINUS (A. & H.).

Two preserved specimens from Plymouth, one 8 mm. long, the other only 4.3 mm. They agree as to external characters with Alder and Hancock’s description. The colour is yellowish, with traces of lighter and darker mottlings. The cerata are crowded and irregularly set. There are generally four to five in a transverse row. The innermost are the largest and about 5 mm. high; they decrease in size outwards, and the outermost are mere tubercles. They bear knobs, as described by Alder and Hancock. The anterior margin of the foot is somewhat undulated, with a bend inwards in the middle. It is not grooved in the ordinary way, but the sides of the head are developed into lappets which extend downwards towards the sides of the foot and form a ridge parallel to them. There is a small fold round the head bearing two distinct tentacles. The rhinophores bear irregular perfoliations which do not go all round the club. The interrhinophorial crest is elongate.

The jaws are large and smooth, with no denticles. The radula consists of fifteen rows varying from 11.1.11 to 13.1.13. The teeth are hamate and increase in size from the rhachis outwards, the last but one being the largest, and the outermost of all smaller (Fig. 23.). They bear three to five (rarely seven) long ridge-like denticles, which are not very small, but difficult to see on account of the extreme transparency of the teeth. These denticles seem to have escaped the notice of both Alder and Hancock (*Tongues of the Eolididae*) and Bergh, who describe the teeth as smooth. The denticulation is probably variable.

Alder and Hancock’s figures of this species (*Monograph,* pl. 44, figs. 8 to 12) are not good, but much better unpublished drawings by Hancock are preserved in the Newcastle Museum.

JANOLUS FLAGELLATUS, sp. nov.

One specimen from Plymouth labelled “*Antiope hyalina nr. Eddystone*”...
25. vi. 97." As preserved, it is of a uniform dull-white colour, slightly transparent on the back, but elsewhere opaque. The length is 15·5 mm.; the breadth 8; the height to the top of the pericardium 7·5 mm., but the end of the body has burst open, and the hermaphrodite gland is protruding. The foot is broad (as much as 9·5 mm. in one place), with ample and undulated mantle margins. It is notched in front, and connected with the head by two very distinct intermediate fleshy plates. Above them are two small but distinct tentacles, forming the extremities of a narrow oral veil. The rhinophores are straight, cylindrical, moderately stout, and bear irregular but distinctly vertical perfoliations, which often join one another or end abruptly before they reach the summit. Between them is a very distinct crest, consisting of about ten transverse perfoliations, which are themselves crinkled and again perfoliate.

The only cerata preserved are minute, not more than 1 mm. high, more numerous on the right than on the left, and set in one to two rows. There are also several small cerata in front of the rhinophores. There is no trace of larger cerata, but they have probably been lost and replaced by young ones in the first stages of growth. The anus is medio-dorsal, set very far back, and cup-like. There appear to be a few tubercles on the broad tail.

The genital orifices are about 5 mm. from the head and surrounded by strong folds. The verge is exserted and extremely long. It consists of a straight cylindrical column, not tapering, 4 mm. long, and bearing at the end a flagelliform appendage 5 mm. long, so that the whole organ measures 9 mm.

The digestive organs are much compressed by the greatly developed reproductive glands and are not very well preserved, but appear to agree with Alder and Hancock's account of A. cristata. The oesophagus is short and opens into a large laminated stomach, from which the intestine runs backwards and which receives the two principal hepatic trunks. Owing to the cerata being minute and rudimentary the course of the hepatic diverticula in them cannot be traced; but beneath the dorsal skin, and especially at the sides, there is a thick network of tubes out of which the hepatic trunks seem to arise.

The central nervous system is like that described by Bergh for Janolus australis, and the eyes have long connectives.

The buccal mass is large (5 mm. × 4 mm.) and yellowish white. The jaws bright, deep orange, very thick and strong, as in J. hyalinus. The radula consists of fifteen rows, with a maximum formula of 20.1.20. The lateral teeth (Fig. 24. b.) are yellow, hamate, low, with a large, broad base. The median teeth (Fig. 24. a.) are small, with a low inconspicuous hook. No denticulations could be seen.
The hermaphrodite gland is very large, and fills the whole posterior part of the body with numerous packets of yellowish-white follicles. The anterior genital mass is enormous (10 mm. x 7 mm.) for the size of the animal, and both the mucous and albumen glands are greatly swollen. The spermatophore is elliptical. The verge is as described above; the canal follows the whole length of the flagellum to the very end.

It would seem that the flagelliform character of the verge distinguishes this species from *J. hyalinus*. No such formation is indicated in Bergh's description of *J. hyalinus*, nor have I found it myself in that animal. Also there seem to be some differences in the radula; and though the shape of the cerata is unfortunately unknown, the general appearance and dead-white colouring do not resemble *J. hyalinus*. But the species is open to doubt unless confirmed by other specimens.

ALDERIA, ALLMAN.

Three species of this genus have been described.
1. *A. modesta* (Loven).

Alder and Hancock published some account of the anatomy of *A. modesta* in their monograph, but only the external features of the other two species are known. *A. comosa* is green, with numerous long cerata, and the anal papilla lies behind the pericardium. It must be regarded as very doubtful if *A. harvardiensis* is really distinct from *A. modesta*, which differs in being darker, in having fewer and smaller cerata, and, if Gould's figure may be trusted, in the more angular shape of the head. But the description and the figure do not quite agree as to the disposition of the cerata, and the colour of *A. modesta* is very variable.

Alerdea seems allied to *Limapontia*, from which it differs chiefly in having cerata and a much greater ramification of the hepatic system. The lateral expansions of the foot remind one of the wings of *Elysia*.

ALDERIA MODESTA, LOVEN.

(Alder and Hancock, *Monog., Genus 17, Fam. 3, pl. 41.)*

I am indebted to Mr. W. I. Beaumont for several specimens of this interesting form, labelled "Ardfry, County Galway, May 1904." In some unpublished MSS. of Albany Hancock preserved in the Hancock
Museum at Newcastle-on-Tyne I have found the following notes on the living animal:—

"The foot exhibited beautiful dendritic markings.* The glands in the papillæ are considerably branched. The animal yields a quantity of mucus, has a strong sugar smell, and is sluggish in its motions. The papillæ are remarkable for their rhythmical pulsations. They dilate and contract simultaneously between thirty and sixty times a minute. The contraction is very forcible, the posterior surface of the papillæ being most contracted. This pulsation has all the appearance of being connected with the circulation. The papillæ are much depressed when in a state of contraction."

The colour of the preserved specimens varies from white to yellow, with darker mottlings on the back and upper side of the cerata. The variations in shade are considerable. Sometimes the ground colour is yellowish and the mottlings light, leaving a general impression of yellowish brown. Sometimes the mottlings are thick and dark and the ground colour opaque white. The upper surface then appears to be purplish black, with a few white markings.

The animals are stoutly built, the largest specimens measuring 5·5 mm. by about 3·5. In front the dorsal surface is bare, the cerata being set only at the sides, but behind they close over the body. The foot is white, broader than the body, with an expanded margin, but rather straight in front. No anterior groove is visible.

At the sides there is a groove between the body and this margin, so that the body, though narrower than the foot, partly overhangs it. On this lateral projection of the body are set the cerata in three not very regular longitudinal rows. As a rule only two rows are fully developed, and the third, which consists of smaller cerata, has the appearance of being crowded in. The total number of cerata on either side does not appear to exceed fifteen, which is less than the number shown in Alder and Hancock's plates. The cerata are somewhat ovate in shape. Those behind are larger and more inflated than those in front. They contain ramified hepatic diverticula which bear primary and sometimes short secondary branches.

The head bears on each side a rounded prominence, but there are neither rhinophores nor tentacles in the ordinary sense. The anus is on a prominent papilla in the medio-dorsal line and nearly terminal.

There is no trace of jaws. The radula is ascoglossan and short, containing five or six teeth in the ascending, and about as many in the descending portion. In an irregular heap lie about seven teeth of varying size, and with them a mass of minute spines, apparently repre-

* Due apparently to the ramified diverticula of the alimentary canal being seen through the semi-transparent sole.
senting the first teeth. The mature teeth (Pl. xil, Fig. 25.) are large and spoon-shaped. The outline is rather irregular, and there are generally two more or less distinct projections on the back.

There is no crop attached to the buccal mass, but from it issues a thin tube (Fig. 26. a.) which must apparently be regarded as equivalent to a stomach as well as to an oesophagus, at least in its posterior part, for from it arises the intestine (Pl. xil, Fig. 26. b.). This is a larger tube which bends slightly to the right and then runs directly backwards at first on the right under the side of the pericardium and finally above the renal organ to the anal papilla (Fig. 26. c.). The thin tube issuing from the buccal mass bears two folds inside. At its posterior extremity these folds become more numerous, and the tube bends downwards and dilates into a large stomach-like pouch (Fig. 26. e.). It is clear, however, that the intestine does not issue from this pouch, but from the narrower tube. It is probable that the animal lives on vegetable juices, and that the two folds in the tube act as strainers and valves, establishing communication alternately between the mouth and the pouch and between the pouch and the intestine, only one line of communication being open at a time. The pouch is prolonged anteriorly under the oesophagus and divides into two diverticula (Fig. 26. d.) which enter the anterior lobes of the foot. Posteriorly it extends almost to the end of the body and gives off two sets of ramifying diverticula (Fig. 26. f.). The upper diverticula (about four in number) enter the cerata and are also ramified in the body. The lower diverticula (also about four) extend downwards through the hermaphrodite gland and do not enter the cerata, but their ramifications within the body create the peculiar dendritic markings (Fig. 28. i.) visible through the sole of the foot.

The central nervous system (Pl. xil, Fig. 30.) forms a collar round the oesophagus consisting of seven principal ganglia close to one another and connected by very short commissures, the longest being that connecting the cerebral ganglia. They should probably be regarded as two cerebral, two pedal, and three visceral ganglia. Connected with the cerebral ganglia are two smaller ganglia, probably rhinophorial in function and innervating the most sensitive part of the head, although no external rhinophores are developed.

The hermaphrodite gland is large and ramified throughout the whole lower part of the body, filling up the interstices between the other organs. The ampulla and duct of the gland are short. After the bifurcation of the male and female branches (Pl. xil, Fig. 27. b.) the former runs to an orifice at the right anterior corner of the head. The vas deferens (Fig. 27. d.) is not very long or much convoluted. A rather large prostate (Fig. 27. c.) opens into it by several ducts. The penis is armed with a rather long curved spine which in some specimens at any rate
points inwards when the organ is retracted. Shortly after the bifurcation the female branch receives a long duct (Fig. 27, g.) into which open the follicles of the albumen gland (Fig. 27, h.). This gland, like the hermaphrodite gland, is extensively ramified, especially in the last fourth of the body. Close to the entry of this duct and lying anteriorly is a pouch-like diverticulum (Fig. 27, f.) which is probably a spermatotheca. No second spermatotheca was found. The female branch here makes a sharp turn and runs backwards nearly to the end of the body; it then doubles on itself and runs forwards, opening anteriorly close to the male orifice. All this section (Fig. 27, i.) of the female branch after the spermatotheca is very much larger than the other parts and provided with remarkably thick glandular walls. It should probably be regarded as the uterus passing through the mucus gland. It is one of the largest and most conspicuous organs in the animal, and when sections are cut it generally expands and overlaps the heart and kidney.* This, however, appears to be the result of the disturbance caused by the cut, and not a natural arrangement. It is noticable that near the bifurcation of the male and female branches there arises a coecum which extends anteriorly and reaches the integument, but without forming any orifice. Pelseneer states (Recherches sur divers Opisthobranches, p. 62) that in Elysia the second female orifice is developed later than the others and is not found in young individuals. It is conceivable that this coecum in Alderia may ultimately open externally.

The pericardium appears to be as usual and is medio-dorsal. The renal organ (Fig. 28, k.) lies below it and is entire in the front, but the posterior portion gives off ramifying tubes, some of which extend into the cerata.

Blood lacunae are distributed throughout the body, including the foot. The largest lie one on either side of the renal organ below the cerata, into which they send up long diverticula; the main portion of these diverticula lies on the posterior side of the cerata, which no doubt accounts for the peculiar pulsation and contraction noticed by Alder and Hancock in this part.

STILIGER BELLULUS (D'ORBIGNY).

\[=\textit{Calliopea bellula, d'Orbigny.} \quad \textit{Mag. de Zool., 1837, pp. 12 to 14.}\]

\[\text{Stiliger mariei, Bergh.} \quad \text{\textit{Mal. Unt. in Semper's Reisen, Heft iii, 1872, pp. 137, 144; Id. Beit. zur Kennt. der \textit{A}OLID., v. pp. 12 to 17.}}\]

Bergh has published two detailed description of this species, which I notice here merely to mention that it apparently ought to be called \textit{St. bellulus} and not \textit{St. mariei}.

* This dislocation seems due to the elasticity and expansive power of the tissues which form the walls of the uterus.
The genus was created by Ehrenberg (1831) for an animal found in the Red Sea and having the same external characters as this species, though the radula is unknown. Until the original *Stiliger ornatus* (not *modestus*, as it is sometimes quoted) is re-examined, some doubt must exist as to the identity of *Calliopea* and *Stiliger*, though that identity is highly probable.

In 1837 d’Orbigny gave the name of *Calliopea bellula* to a mollusc whose external characters are quite recognizable from his description. In 1865 Meyer and Möbius (*Fauna der Kieler Bucht*) described an apparently identical animal as *Embletonia mariae*, wrongly regarding it as an *Æolid*. Bergh refers both forms to *Stiliger* and brackets them together, but gives the preference to Meyer and Möbius’s name, although d’Orbigny’s name has undoubted priority if his species is admitted to be a *Stiliger*.

Through the kindness of Mr. Farran I have received three specimens from Ballynakil, Co. Galway. They are indifferently preserved, and have lost some or all of the cerata. The best specimen is 7 mm. long and has thirteen cerata remaining. They were apparently set in two rows, and are of an ovoid shape. The posterior cerata of the inner row are relatively very large (2 mm. high). The rhinophores are distinct and white.

The ground colour is greyish white, with brownish or olive markings on the cerata and body. The foot is greyish white without markings. The opaque white internal organs, especially the hermaphrodite gland, can be seen through the integuments.

The radula contains five teeth in the ascending and twelve in the descending slightly spiral portion. They are as represented by Bergh, but so transparent that they are seen only with difficulty.

The species is recorded from Kiel, West Ireland, the Atlantic coast of France, and Trieste.

LIST OF FIGURES.

(Plates XI. and XII.)

1. *Tritonia alba.*
 a. rhachidian tooth;
 b. first lateral;
 c. second lateral;
 d. e. f.
 laterals from middle of half-row;
 g. outermost tooth.

2. *Archidoris testudinaria.*
 a. b. c. teeth from the inner part of the half-row;
 d. tooth with an abnormal projection;
 e. f. teeth from the outer part of the row.

 a. inner tooth;
 b. outer ditto.

4. *Lamellidoris depressa.*
 a. inner tooth;
 b. outer ditto.
5. Lamellidoris pusilla. Inner tooth.
7. Lomanotus generi. Teeth. a. a. a. from the middle of the radula; b. b. further from the middle; c. still further from the middle.
8. Lomanotus generi. Edge of jaw with denticulate scales.
9. Lomanotus marmoratus. a. b. teeth; c. a large papilla.
10. Hancockia dactylota. A row from the radula. a. median tooth; b. b. laterals.
11. (Plate xii.) Hancockia dactylota. Diagram of the digestive system. The intestine and upper part of the stomach are drawn in yellow, the rest of the digestive system in black. a. oesophagus; b. b. diverticulum on oesophagus; c. stomach; d. intestine; e. anus; f. f. anterior diverticula; g.1-g.4 branches supplying the cerata; h. secondary ramifications in the cerata existing on all the main branches, but only drawn here; i. posterior prolongation of the stomach.
12. (Plate xii.) Hancockia dactylota. Transverse section through the anal papilla and renal opening. a. intestine; b. stomach; c. d. anterior diverticula; e. anal papilla; f. kidney; g. renal orifice; h. heart; i. blood lacunæ; k. pericardium; l. hermaphroditic gland; m. duct of albumen gland; n. two lobes of hermaphroditic gland.
13. (Plate xii.) Hancockia dactylota. A longitudinal section through one of the cerata. a. the intestine running forward; b. oesophagus; c. anterior hepatic diverticulum; d. d. branches of ditto within the cerata; e. external orifice of one of these branches and endodore (#@); f. blood lacunæ; g. kidney.
15. Coryphella beaumonti. a. central tooth; b. lateral tooth.
17. Amphorina aurantiaca. Teeth.
18. Amphorina olivacea. a. a tooth.
21. Calma glaucoides. Diagram of digestive system. a. a. a. the gut and its prolongations into the cerata; b. integuments of body and cerata; c. buccal mass, & hermaphroditic gland; d. stomachic dilatation.
22. Calma glaucoides. Renal organ (shown in black) with the heart and pericardium (shown in red). r. e. renal orifice; vent. ventricle; aur. auricle; pc. pericardium; r. p. o. reno-pericardial orifice.
24. Janolus flagellatus. a. median tooth seen from side; b. a lateral tooth.
26. Alderia modesta. Diagram of digestive system. a. oesophagus; b. intestine; c. anal papilla; d. d. anterior diverticula; e. stomachic pouch; f. f. posterior diverticula.
27. Alderia modesta. Diagram of reproductive system. a. ducts of hermaphroditic gland; b. bifurcation of the male and female branches; c. prostate; d. vas deferens; e. penis; f. a pouch which is probably the spermateotheca; g. the duct of the albumen gland; h. the albumen gland; i. main channel of the female organs, which should probably be regarded as the uterus passing through a mucus gland. The hermaphroditic portion of the organs is coloured orange, the male portion black, and the female red. The arrow indicates the point at which the section represented in Fig. 29 is cut.
28. *Alderia modesta.* A longitudinal section cut slightly to the left of the median line and not quite sagittal. It does not show the mouth and buccal mass very distinctly, but gives a better view of the rest of the digestive tract than is obtained by a median section. a. left side of mouth; b. left side of buccal mass; c. left side of central nervous system; d. oesophagus; e. tube with laminated walls running into the stomachic pouch; f. point where the intestine commences, the intestine runs somewhat to the right but reappears for a moment at f'; g. stomachic pouch; h. anterior diverticulum of the pouch; i. i. lateral diverticula in the foot and cerata; j. albumen gland; k. renal organ; l. uterus (the organ marked i. in Fig. 27), which on being cut has expanded and spread dorsally at the expense of the renal organ and pericardium; m. portions of the hermaphrodite duct containing masses of spermatozoa; n. prostate. The remaining parts of the drawing are mostly lobes of the hermaphrodite gland.

29. *Alderia modesta.* Transverse section cut at the point marked by an arrow in Fig. 27. e. h. l. n. as in the longitudinal section (Fig. 28); f. the intestine passing over to the right side; i. i. latero-dorsal diverticula of h.; m. a prolongation of the hermaphrodite duct; o. the female branch running forward into a pouch (? spermatotheca); p. ditto running backwards from the pouch; r. vas deferens; s. one of the prostatic tubules entering into the vas deferens.

30. *Alderia modesta.* Central nervous system. a. right cerebro-pleural ganglion; b. right pedal ganglion; c. right visceral ganglion; d. median visceral ganglion; e. left pedal ganglion; f. left visceral ganglion; g. left cerebro-pleural ganglion.
First Report of the Council of the Marine Biological Association of the United Kingdom on work carried out in connection with the International Fishery Investigations.*

Chairman of the North Sea Fisheries Investigation Committee.

Sir,

I am instructed by the Council of the Marine Biological Association to submit for the information of the North Sea Fisheries Investigation Committee the first Report on work done in connection with the International Investigation of North Sea Fisheries, dealing chiefly with researches carried out during the years 1902 and 1903, together with the detailed reports upon that work which have been drawn up under the Council's direction by those members of the scientific staff to whom the different sections of the investigations have been entrusted.

The Council desire to report as follows:

I.—General.

At the request of His Majesty's Government, the Council of the Marine Biological Association undertook to conduct the scientific part of the scheme of fishery investigation adopted by the International Conference held at Christiania in 1901 in the southern portion of the area assigned to Great Britain, subject to such modifications as might be introduced by the International Council subsequently established, and in accordance with the general regulations of that Council.

The following is a list of members who have served on the Council since the commencement of the investigations in 1902:

President—Professor E. Ray Lankester, LL.D., F.R.S.

Governors—Messrs. the late J. P. Thomasson, The Prime Warden of the Worshipful Company of Fishmongers and E. L. Beckwith (representing the Fishmongers' Company), Prof. Sir J. Burdon Sanderson, Bart., F.R.S. (representing the University of Oxford), A. E. Shipley, F.R.S. (representing the University of Cambridge), Professor W. F. R. Weldon, F.R.S. (representing the British Association for the Advancement of Science).

Hon. Treasurer—Mr. J. A. Travers (late Prime Warden of the Worshipful Company of Fishmongers).

Secretary—Mr. E. J. Allen.

The section of the international work which was undertaken by the Marine Biological Association fell into two main divisions, (1) a survey of the fishing grounds in the southern part of the North Sea, together with an investigation of the life-histories of the principal food fishes found upon them, and (2) an investigation of the physical conditions and of the plankton or minute floating organisms of the waters of the English Channel.

The following is a list of the scientific staff employed by the Council to carry out these investigations:—

Director and Secretary to the Council.—E. J. Allen, D.Sc.
Naturalist in charge of Fishery Investigations (who is also in charge of North Sea Survey)—W. Garstang, M.A.
Assistant Naturalists for Invertebrates—C. Forster-Cooper, B.A. (until August, 1903), R. A. Todd, B.Sc., J. O. Borley, M.A.
Assistant Naturalist for Plankton—L. H. Gough, Ph.D.
Hydrographer—D. J. Matthews

The Council desire to report that in their opinion the naturalists entrusted with the different branches of the investigations have carried out their duties with efficiency and success.

In order to undertake the necessary experimental work at sea, the Council hired the steam trawler "Huxley," a vessel 115 feet long and of
191 tons gross, for a period of three years from August 21st, 1902. Some difficulty was experienced in obtaining a vessel suitable for the work with the funds available, but the Council had the good fortune to be assisted in the matter by one of its members, Mr. G. P. Bidder, who purchased the "Huxley" from her former owners and let her to the Association upon very favourable terms. The alterations required to fit her for the work of scientific exploration were made to the vessel, suitable cabins for the use of the naturalists were built in the fish hold, and a small laboratory was provided on deck. The "Huxley" made her first voyage to the fishing grounds on November 1st, 1902. Since that time she has been constantly employed in the North Sea and English Channel, and has proved suitable and efficient for the work required of her.

To carry out the North Sea work adequately, the Council found it necessary to establish a laboratory on the east coast of England. After careful consideration, and in view of the area in which the investigations were for the most part to be conducted, the port of Lowestoft was selected as the one offering the best facilities. Premises were hired near the trawl-market and fitted out temporarily to suit the requirements of the work. The laboratory work connected with the investigations in the English Channel has been done in the Association's laboratory at Plymouth, their steamer "Oithona" being used to make the observations at sea during the summer months, whilst for the winter observations the "Huxley" has come round from the North Sea.

The detailed memoirs prepared by the naturalists to whom the carrying out of the different portions of the investigations has been assigned are printed in the present volume. These memoirs deal chiefly with the work done during the first year of the commission of the Association (1903), though certain special experiments carried out in the second year (1904) also receive attention.

In considering the record of results contained in these memoirs, it is first of all essential to remember that they deal with operations undertaken in connection with one portion only of an extensive scheme of co-operative work. They must therefore be looked upon primarily as a statement of observed facts, contributed to the common stock of information which is being gradually brought together. For this reason it has been necessary to print the records of observations in considerable detail and in a form which shall be as convenient as possible for the use of other workers, but until the work done in other countries has been published in a similar way and the whole of the observations have been duly co-ordinated and considered, it will not be possible to estimate the results derived from the international undertaking.

At the same time, considering the English work alone, as it is set forth in the series of special reports by the naturalists, the Council of
the Association feel confident that our knowledge of a number of the most essential matters, upon a proper understanding of which any attempts to improve the yield of the deep sea fisheries must in future be based, has already been considerably extended, and they are not without hope that at no distant date practical measures founded on a rational appreciation of the problems involved may be undertaken with certain profit to the fishing industry. Meanwhile the Council draw attention to the following points raised in the special memoirs, which in their opinion seem worthy of particular consideration.

II.—Fishery Investigations in the North Sea.

Experiments made by marking fishes, more especially Plaice, with numbered labels and returning them to the sea, where they have subsequently been recaptured by fishermen, have furnished much information on three important subjects—the migrations of the fishes, the growth of the fishes, and the intensity of the commercial fishing in the North Sea. The experiments have shown that the larger Plaice are capable of very extensive migrations in a comparatively short time. The extent and variety of the possible journeys may be illustrated by two instances. A Plaice, 33 centimetres (13 inches) long, liberated on December 12th, 1903, on the Leman Ground, in the latitude of Lincolnshire, was recovered by a Hastings trawler off Winchilsea, in the English Channel, on March 23rd, 1904, having travelled a minimum distance of 175 miles in a little over three months, whilst another fish, marked and liberated on August 12th, 1903, off the Lincolnshire coast, near Mablethorpe, was recaptured in April, 1904, eight months afterwards, in St. Andrew's Bay, having travelled 210 sea miles from the point of liberation. Such extensive migrations, however, appear to be confined chiefly to Plaice of larger size, the smaller fishes (below 8 inches) being seldom found to travel long distances at a rapid rate. During the summer months there seemed to be a general tendency for the Plaice on the shallow-water "nurseries" off the coast of Holland to move into deeper waters towards the north and west, whilst the fish marked in the southern bight of the North Sea showed a disposition to move in a northerly direction. In the winter (1902–3 and 1903–4), on the other hand, many of the larger fish (above 9 inches) moved southwards from the Leman Ground and the north-west coast of Holland towards the southern bight of the North Sea.

The intensity of commercial trawling in the North Sea is indicated by the fact that out of 855 marked Plaice above 20 centimetres (8 inches) in length liberated outside territorial limits the number recaptured within twelve months yields a total of 21 per cent, whilst
experiments on the Dogger Bank in the spring of 1904 resulted in the recapture of more than 40 per cent of the Plaice exceeding 25 centimetres (10 inches) in less than twelve months. From this result it seems clear that the total annual catch of the fishermen no longer forms an insignificant proportion of the total stock of Plaice.

Trawling experiments in the area under investigation with an otter- and a beam-trawl of the ordinary commercial patterns have given extensive information as to the distribution of fishes of different sizes, and the results obtained, when combined with those of the marking experiments, have done much towards furnishing a preliminary view of the natural history of the fishes in the southern half of the North Sea, and of the Plaice in particular, its distribution at different sizes, and the seasonal movements which it undertakes.

A series of experiments on the transplantation of small Plaice from the inshore nurseries to the open waters of the Dogger Bank in the middle of the North Sea, carried out in 1904, has thrown much new light upon the condition of the fishing grounds. The increase of weight of small plaice marked and transplanted in early spring from the crowded inshore grounds to the Dogger Bank was found in the following winter to be six times the normal increase of marked fishes of the same size left on the inshore grounds. Such a result suggests that the central grounds of the North Sea possess a larger food supply suitable for the nourishment of the Plaice than is at present made use of, and that they may therefore be capable of maintaining a much larger population of Plaice than now exists upon them, whilst on the nursery grounds owing to undue competition for the food available the Plaice are unable to attain their maximum rate of growth. Whether transplantation on a commercial scale from the small-fish grounds to the Dogger Bank or other suitable localities would be a practical method of increasing the total weight of Plaice available for capture in the North Sea is a problem concerning which further information and experiment will be required. Quite apart from this question, such a result as that already indicated is of the greatest significance for the proper understanding of the condition of the Plaice fishery and of the methods proposed for improving it by the prevention of the capture of immature fish.

Particular attention has been paid to the study of the age of fishes of particular sizes and to their rate of growth. It has now been shown that by an examination of the otoliths or ear-stones a precise estimate of the age of individual fishes can be arrived at, the otoliths showing alternate white and dark rings, the white rings formed in spring and early summer, the dark in late summer and autumn. This method has been applied in detail to a considerable number of Plaice from fishing
grounds in the North Sea and English Channel, and by its means it has been possible to form an estimate of the average rate of growth in different localities, a result which has direct bearings on many practical problems.

A large quantity of information has also been collected as to the food of fishes of different species and at different stages of their growth upon the various fishing grounds of the North Sea, the information being derived in part from the examination of the food-contents of many of the fishes captured in the trawl, and in part by an investigation of the fishing grounds with special apparatus.

III.—Hydrographical and Plankton Investigations in the English Channel.

Before the commencement of the International Investigations it had been shown that the character of the water filling the North Sea varied greatly from season to season and from place to place. A knowledge of such changes was obviously of the first importance in seeking to understand the migrations of the fishes and the fluctuations of the fisheries. The international programme therefore provided for a co-operative study of these phenomena over the whole area under investigation. To the English investigators was assigned the study of the waters of the English Channel, which were important not only in connection with the fisheries in the Channel itself, but also as constituting one of the sources of origin of the waters of the North Sea.

It was arranged that simultaneous periodic cruises should be undertaken by the different co-operating countries, during which observations should be made at fixed stations scattered over the whole area, and that these observations should be as far as possible supplemented by others taken between the stations and in the intervals between the cruises. There are three chief kinds of evidence which, when known over an extended area, are capable of giving an indication of the course of the prevailing currents, and the probable origin of the water at any particular place. These are (1) the salinity of the water, (2) its temperature, and (3) the character of the plankton or minute floating organisms which it contains. At each of the stations visited on the periodic cruises, therefore, samples of the sea-water were collected at different depths and brought to the laboratory, where their salinity was determined; the temperature of the water at different depths was observed, and samples of the plankton were collected for subsequent examination. Intermediate samples were taken between the fixed stations, and frequent meteorological observations were also made.

Four quarterly cruises, as arranged in the international programme, were carried out in the English Channel in February, May, August, and
November, 1903, simultaneously with similar cruises undertaken elsewhere by other countries. Samples of the surface water were obtained from time to time in the periods between the quarterly cruises, chiefly through the co-operation of officers of the mercantile marine.

Complete records of the observations made on the periodic cruises have been sent to the Bureau of the International Council, and have been published in the quarterly bulletins issued by that authority.*

The hydrographical observations during 1903 appear to show that the direction of the flow of the waters of the English Channel was from west to east, and that they were derived from a northerly current of about 35.6 per thousand salinity from the Bay of Biscay and from a southerly current of about 35.2 per thousand salinity or less from the Irish Sea and Bristol Channel. The meeting place of these waters may be roughly fixed as south of the Scilly Islands in mid-channel, and it was generally found that the salinity of the water increased as this point was passed from west to east.

Owing to the varying salinity and temperature of these two currents, it has been found that at the entrance to the Channel the water is often divided into distinct layers, whilst the changes of their relative velocity, combined with the general drift up Channel, give rise to alternate areas of high and low salinity which follow one another eastward. On the line between the Isle of Wight and Cape Barfleur the salinity has been low on all four cruises, a state of things due, in all probability, to the amount of fresh water discharged from the Hampshire basin and the Seine. The presence of denser water south of Beachy Head, however, points to the occasional passage of a high salinity current across this line.

It would appear that during the summer and early autumn of 1903 the Channel waters were derived largely from the Irish Sea, while during the rest of the year the high-salinity water of the Bay of Biscay preponderated.

The plankton observations show that a large proportion of the more oceanic organisms found off the mouth of the Channel do not penetrate for any considerable distance up Channel, even along a central axis, the percentage of oceanic species having on each cruise fallen below 40 at the stations on the line from the Isle of Wight to Cape Barfleur. When compared with those taken by other countries in the southern part of the North Sea, the observations indicate that conditions very similar to those found in the southern part of the North Sea, between a line from the Wash to Heligoland and the Straits of Dover exist in the eastern

end of the English Channel (from the Isle of Wight to the Straits of Dover).

The results both of the hydrographical and of the plankton work suggest that during the period under investigation there was on the whole a constant passage of water from the Channel into the southern part of the North Sea, but the rate at which this passage took place must have been very slow.

In conclusion, the Council of the Marine Biological Association would take this opportunity of expressing their indebtedness to all who have assisted them during the course of these investigations, to those who have acted as their agents for the receipt of marked fish returned by the fishermen at the different ports, and more especially to the fishermen themselves, as well as to those officers of the mercantile marine who have supplied samples of sea water and taken observations of its temperature in different localities.

I am, Sir,

Your obedient Servant,

MARINE BIOLOGICAL LABORATORY, E. J. ALLEN,
Plymouth, Director and Secretary to the Council.

2 August, 1905.

List of Memoirs which accompany the above Report.

Marine Biological Association of the United Kingdom.

The Council and Officers.

Four ordinary meetings of the Council have been held during the year, at which the average attendance has been ten. Committees of the Council have visited the Laboratories at Plymouth and Lowestoft and carried out a detailed examination of the work which is being done. The thanks of the Council are again due to the Royal Society, in whose rooms their meetings have been held.

The Council record with regret the death of the Right Hon. the Earl of Morley, a Vice-President of the Association, as well as that of Professor G. B. Howes, F.R.S., a member of Council.

Professor T. W. Bridge, F.R.S., was elected a member of Council to fill a vacancy caused by the resignation of Professor Charles Stewart, F.R.S.

The Laboratories.

No alterations of importance have been made to the buildings or fittings at the Plymouth Laboratory, which continues to be maintained in an efficient state. Particular attention has been paid to the rearing of marine organisms under laboratory conditions, and a considerable measure of success has been attained.

The building rented at Lowestoft is now becoming somewhat congested, and if the amount of work to be done continues to grow, additional accommodation will be necessary.

The Boats.

The *Olithora* has this year undergone an extensive refit, a new boiler and new decks having been put in, in addition to general repairs. She is now in first-class condition, and has been used extensively in the English Channel and along the East Coast of England. She has on two occasions made the voyage from Plymouth to Ushant and Parson's Bank.
The collecting at Plymouth during the winter was done with the sailing boat Anton Dohrn.

The work in the North Sea in connection with the International Investigations has been again carried out by the Huxley.

The Staff.

Mr. S. Pace, who for the last three years has efficiently occupied the post of Assistant Naturalist for Invertebrates at Plymouth, was recently appointed Director of the Marine Biological Laboratory at Millport on the Clyde, and is consequently leaving the service of the Association. There have been no other changes in the staff.

Occupation of Tables.

The following Naturalists have occupied tables at the Laboratory during the year:

- A. D. Cotton, Kew (Algae).
- T. V. Hodgson, Plymouth (Pycnogonida).
- J. J. Lister, F.R.S., Cambridge (Foraminifera).
- Prof. E. W. MacBride, F.R.S., Montreal (Echinoderma).
- Mrs. S. Pace, Plymouth (Polyzoa).
- J. Lloyd Williams, Bangor (Algae).

Six students attended a course of study in Marine Biology conducted at the Laboratory during the Easter vacation by Mr. G. H. Grosvenor.

The Library.

The thanks of the Association are due for the following books and current numbers of periodicals presented to the Library during the past year:

- Allgemeine Fischerei-Zeitung.
- — Memoirs.
- Annaes de Sciencias Naturaes.
- Bergens Museum. Aarbog.
- — Hydrographical and Biological Investigations in Norwegian Fiords.
- — An Account of the Crustacea of Norway, etc.; by G. O. Sars.
— Report of Meeting of Fisheries Representatives.
Boston Society of Natural History. Proceedings.
British Association for the Advancement of Science. Report.
— Memoirs of Natural Sciences.
— Science Bulletin.
Bryn Mawr College. Monographs, Reprint Series.
Bulletin Scientifique de la France et de la Belgique.
La Cellule.
College of Science, Tokyo. Journal.
Colombo Museum. Spolia Zeylanaica.
The Commissioners of Fisheries, N. S. Wales. Report.
— Publications de Circonstance.
— Rapports et Procès-Verbaux des Réunions.
Cuerpo de Ingenieros de Minas del Peru. Boletin.
— Skrifter.
Dept. of Agriculture, etc., Ireland. Reports.
Dept. of Marine and Fisheries, Canada. Annual Report.
Deutsche Zoologische Gesellschaft. Verhandlungen.
Deutscher Fischerei Verein. Zeitschrift für Fischerei.
Deutscher Seefischerei Verein. Mitteilungen.
La Feuille des Jeunes Naturalistes.
Field Columbian Museum. Publications.
The Fisherman's Nautical Almanack; by O. T. Olsen.
The Fishing Gazette.
— Report.
— Transactions.
Isle of Man Fish Hatchery. Third Annual Report.
Kommission zur wissenschaftlichen Untersuchung der Deutschen Meere, etc. Wissenschaftliche Meeresuntersuchungen.
REPORT OF THE COUNCIL.

Kommisionen for Havundersøgelser, Copenhagen. Meddelelser, series Fiskeri, Hydrograf, Plankton.
— Skrifter.
Lancashire Sea Fisheries Laboratory. Report.
Lancashire and Western Sea Fisheries. Superintendent's Report.
Leland Stanford Jr. University. Contributions to Biology from the Hopkins Seaside Laboratory.
Liverpool Biological Society. Proceedings and Transactions.
— Research Seminar.
Mededelingen over Visscherij.
Le Mois Scientifique.
Musée du Congo. Annales.
Musée Oceanographique de Monaco. Bulletin.
Museo Nacional de Montevideo. Anales.
— Memoirs.
— Report.
The Museums Journal.
Natural History Association of Miramichi. Proceedings.
Nederlandsche Dierkundige Vereeniging. Tijdschrift.
— Report.
New Zealand Institute. Transactions.
La Nuova Notarisi.
Quarterly Journal of Microscopical Science. (Presented by Prof. E. Ray Lankester, F.R.S.)
Le Réveil Salicole Ostéricole et des Pêches Maritimes, etc.
Rijksinstituut voor het Onderzoek der Zee. Jaarboek.
— Uitkomsten van Meteorologische Waarnemingen.
Rousdon Observatory. Meteorological Observations.
Royal Society of London. Philosophical Transactions.
— Proceedings.
— Reports of the Evolution Committee.
— Reports of the Malaria Committee.

Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Mannar.

Year-Book.

Selskabet for de Norske Fiskeriers Fremme. Norsk Fiskeredende.

Smithsonian Institution. Annual Report.

Special Bulletin.

Proceedings of the United States Museum.

Sociadad Geográfica de Lima. Boletín.

Societa di Naturalisti in Napoli. Bollettino.

Meddelanden.

Société Belge de Géologie, etc. Bulletin.

Liste des Membres.

Revue Internationale de Péche et de Pisciculture.

Vestnik Pishpovshchennosti.

Mémoirs.

Station de Pisciculture, etc., Toulouse. Bulletin.

Station de Recherches Maritimes, Ostend. Jets over Zeevaart.

Travaux de la Station de Recherches relative à la Péche Maritime à Ostende.

Kgl. Svenska Vetenskaps-Akademien.

Arkiv för Botanik.

Arkiv för Zoologie.

Tokyo Imp. University. Calendar.

A Treatise of Zoology; edited by E. R. Lankester.

Tuft's College. Studies.

Report of the Commissioner.

Universidad de La Plata. Publicaciones.

University of California. Publications.

University of Iowa. Bulletin from the Laboratories of Natural History.

Catalogue.

Provost's Report.

Contributions from the Botanical Laboratory.

Contributions from the Zoological Laboratory.

University of Toronto. Studies.

Zoological Society of London. List of the Fellows.

Proceedings.

Transactions.
Zoological Society of London. Zoological Record.
Zoologiske Museum, Copenhagen. The Danish Ingolf Expedition.

Dr. E. J. Allen. Beiträge zur Kenntnis der Spermatogenese bei den Coelenteraten ; by W. M. Aders.
— Matériaux relatifs à la faune des Polypes Hydraires des mers arctiques, Part I. ; by A. Schydowsky.
— Über die Theilung von Protohydra Lencartsi ; by W. M. Aders.
The Secretary, Danish Legation. Fiskeri-Beretning for Finanssaret, 1903-1904.
Dr. S. F. Harmer and Mr. A. E. Shipley. The Cambridge Natural History, Fishes, Ascidians, &c.
Mr. R. G. Harrison. Catalogue of the Collection of Human Embryos in the Anatomical Laboratory of the Johns Hopkins University. by F. P. Mall.
Honolulu Museum. Fauna Hawaiensis.
Owens College. The Aleyonaria of the Cape of Good Hope, Part II. ; by S. J. Hickson.
— The Aleyonaria of the Maldives, Part III. ; by S. J. Hickson.
— On the Bearing of Mendelian Principles of Heredity on current theories of the Origin of Species ; by A. D. Darbishire.
— Report on the Polyclad Turbellaria collected by Professor Herdman at Ceylon in 1902 ; by F. P. Laidlaw.
— The Stylasterium of the Siboga Expedition ; by S. J. Hickson and H. M. England.
— On the Supposed Antagonism of Mendelian to Biometric Theories of Heredity ; by A. D. Darbishire.
— Variations ; by S. J. Hickson.
— Les Courants de l'Atlantique nord et du Golfe de Gascogne ; by C. Bénard.
— Quelques Essais sur les Liquides Conservateurs des Animaux et des Organismes Marins ; by C. Bénard and Manley-Bendall.

To the authors of the Memoirs mentioned below the thanks of the Association are due for separate copies of their works presented to the Library:

Ashworth, J. H. and Annandale, N. Observations on some Aged Specimens of Sagartia troglodytes, and on the Duration of Life in Coelenterates.
Baudouin, M. Le Lernaeicbus Sprattei, parasite de la Sardine en Vendée.
— Scyphomedusae [of the Maldives and Laccadives].
Chadwick, H. C. Report on the Crinoidea collected by Professor Herdman, at Ceylon, in 1902.
— On the Supposed Antagonism of Mendelian to Biometric Theories of Heredity.
Duncker, G. Ueber Asymmetric bei ‘Gelasimus pugilator’ Latr.
— Junge Goldbutt (Pleneonectes platessa, L.) in der Neustädter Bucht
— Symmetrische und Asymmetric bei bilateralen Thieren.
REPORT OF THE COUNCIL.

— Notes on the Anatomy of Gazelletta.
— Sur une faunule caracteristique des sables à diatomées d’Ambletense. Parts I., II., and III.
— Rapport sur la Pretendue Nocevité des Huitres ...
— Sur la pathéno génésee artificielle par desséchement physique.
— Touganic ; la chose et le mot.
— A propos des travaux de Miss Harriet Richardson sur les Bopyriens.
Gough, L. H. Plankton, English Channel : November, 1903.
— Plankton Animals and Plants.
Harrison, R. G. Neue Versuche und Beobachtungen über die Entwicklung der peripheren Nerven der Wirbeltiere.
Hartmeyer, R. Ascidien von Mauritius.
Hickson, S. J. The Alcyonaria of the Maldives. Part I.
Hodgson, T. V. Preliminary Report of the Biological Collections of the "Discovery."
— On a new Pycnogonid from the South Polar Regions.
— Scotia Collections.—On Decalopoda australis, Eights—an old Pycnogonid rediscovered.
Hoyle, W. E. The Cephalopoda of the Maldiv and Laccadive Is.
Krogli, A. On the Tension of Carbonic Acid in Natural Waters and especially in the Sea.
Lister, J. J. Astroscera Willeyana, the Type of a new Family of Sponges.
— Contributions to the Life-History of the Foraminifera.
— Ditto (abstract).
— A possible explanation of the quinqueloculine arrangement of the chambers in the young of the microspheric forms of Triloculina and Biloculina.
— Note on a (? Stonatopod) Metanauplius Larva.
— A Visit to the Newly Emerged Falcon Island, Tonga Group, South Pacific.
— Notes on the Geology of the Tonga Islands.
— and Fletcher, J. J. On the Condition of the Median Portion of the Vaginal Apparatus in the Macropodilie.
Man, J. G. de. Ein neuer freilebender Rundwurm aus Patagonien. Plectus (Plectolidae) palagoniens n. sp.
Moore, J. P. and Busch, K. J. Sabellidae and Serpulidae from Japan with Descriptions of New Species of Spirorbis.
Norman, A. M. British Isopoda of the families *Echiene*ce, *Cirolanidae*, *Idoteidae*, and *Arcturiidae*.
— and Brady, G. S. British Land Isopoda. Second Supplement.
— and Scott, T. Crustacea Copepoda new to Science from Devon and Cornwall.
Osborn, H. F. Ornitholestes Hermanni, a New Compsognathoid Dinosaur from the Upper Jurassic.
Punnett, R. C. Merism and Sex in “Spinax niger.”
Shipley, A. E. *Cladorchis Watsoni* (Conyngham), a Human Parasite from Africa.
— Notes on Parasites [from the Maldives and Laccadives].
Smith, J. C. A Preliminary Contribution to the Protozoan Fauna of the Gulf Biologic Station.
— Syncheta bicornis: a new Rotifer from the brackish waters of Lake Pontchartrain, Louisiana.
Stephens, J. A List of Irish Ccelenterata, including the Ctenophora.
Storey, T. A. Tonus Rhythmus in Normal Human Muscle and in the Gastrocnemius of the Cat.
Trybom, F. Åtgärder för Fiskerinäringen i Sverige år 1903.
— Biologiske Undersökningar 1901–1904.
Worth, R. H. Hallands and Start Bay.

General Work at the Plymouth Laboratory.

A report on the local distribution of the marine invertebrate fauna occurring in the neighbourhood of Plymouth, which has been in preparation for several years, has now been published in the Journal of the Association.

In the compilation of this report, the Director of the Laboratory has been ably assisted by Mr. R. A. Todd and by Mr. S. Pace, as well as by a large number of workers who have occupied tables in the Laboratory from time to time. The Council desire to thank those naturalists who have thus voluntarily assisted in this work.

The Director has continued to devote special attention to the Polychetes found at Plymouth, and in addition to the list contained in the report above referred to, has published a paper on the anatomy of *Pecilochcetus* (Quart. Journ. Micr. Sci., vol. 48, 1904) and a description of a new British Sabellarian, *Pallasia murata*, n. sp.

Mr. Pace has worked chiefly at Echinoderms and Molluscs, and has published a paper on the local Cucumariidae in the Association’s Journal.

The exhibit which, at the request of the British Royal Commission, was prepared by the Association for the St. Louis Exhibition, proved very successful, and was awarded a Grand Prize, whilst a gold medal was given for publications.
The International Fisheries Investigations.

Section I.—North Sea Work.

A. Work of the S.S. "Huxley."

Trawling Investigations.—The survey of the North Sea trawling grounds has been steadily continued during the year. From June 1904 to the end of May 1905 the Huxley made 35 voyages, during which 304 hauls of the large commercial trawls (otter and beam) were taken, and the quantities and sizes of the fishes caught systematically recorded.

From the commencement of the investigations 66 voyages have been completed, and the results of 653 hauls with the large trawls analysed and recorded.

The work of the Huxley was supplemented during July 1904 by a series of investigations by the s.s. Oithona in the shallower waters of Bridlington Bay, the Wash, and the Thames estuary.

Fish Measured.—The investigation of the relative numbers of fishes of different sizes on various fishing grounds in the North Sea and of their seasonal distribution has been continued. In this connection during the past year about 100,000 fishes have been measured on the fishing grounds where they were caught, viz. 95,000 caught with the large commercial trawls of the Huxley, and nearly 5,000 caught with the smaller trawls of the Oithona and Huxley.

More than 210,000 fishes have been measured in this way since the commencement of the investigations, as shown in detail in the following table:

I.—Commercial Travels.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyages I—XXXI, 1902-4</td>
<td>35,061</td>
<td>8,388</td>
<td>64,165</td>
</tr>
<tr>
<td>XXXII—LVI, 1904-5</td>
<td>27,577</td>
<td>7,561</td>
<td>60,141</td>
</tr>
<tr>
<td>Totals</td>
<td>62,638</td>
<td>15,949</td>
<td>124,306</td>
</tr>
</tbody>
</table>

II.—Small Travels.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyages I—XXXI, 1902-4</td>
<td>1,813</td>
<td>—</td>
<td>764</td>
</tr>
<tr>
<td>XXXII—LVI, 1904-5</td>
<td>215</td>
<td>1</td>
<td>1,305</td>
</tr>
<tr>
<td>S.S. Oithona, July 1904</td>
<td>843</td>
<td>—</td>
<td>2,400</td>
</tr>
<tr>
<td>Totals</td>
<td>2,871</td>
<td>1</td>
<td>4,469</td>
</tr>
</tbody>
</table>

III.—Grand Totals.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65,509</td>
<td>15,950</td>
<td>128,775</td>
<td>210,234</td>
</tr>
</tbody>
</table>

Marking Experiments.—During the year 2,660 marked plaice have been set free in different parts of the North Sea, of which 187 have already been recaptured.

Prior to June 1904, 2,455 marked plaice had been liberated, of which
401 have since been recaptured, making a total of 5,115 liberated and 588 recaptured up to date.

In the great majority of cases the fishermen have been able to give trustworthy particulars concerning the date and locality of recapture, and the fishes themselves have been forwarded to the laboratory at Lowestoft for examination and measurement.

These experiments have been eminently successful in throwing light upon the seasonal migrations of this species, and upon differences in the rate of growth on different fishing grounds.

The experiments in the transplantation of small marked plaice from the inshore grounds to the Dogger Bank, in the spring of 1904, which were briefly referred to in the last annual report, have yielded results of considerable scientific importance, and suggest the possibility of practical applications. The average year's growth of small marked plaice, about 20 cm. (8 ins.) in length, on the coastal grounds of the southern and eastern parts of the North Sea, has been found to be not more than 5 cm. (2 ins.); whereas on the Dogger Bank the average growth of similar fishes has been found to be 15 cm. (6 ins.) in the same time. In other words, small 8-inch plaice, weighing about 3 oz., which after a year's growth on the coastal grounds become 10-inch fish, weighing 5¼ oz., are transformed in the same time into 14-inch fish weighing 1 lb. each, by transplantation to the Dogger Bank.

As small plaice do not naturally occur upon the Bank, the problem is raised whether the yield of plaice from the North Sea could not be materially increased by the annual transplantation of large numbers of such fish on a commercial scale from the coastal grounds to the Dogger Bank.

Experiments in transplantation on a more extensive scale have been carried out during the past few months in various parts of the English area in order to provide additional information bearing upon this subject.

The marking experiments during the past year have also been extended to a considerable number of other species, including Turbot, Brill, Soles, Lemon Soles, Flounders, Dabs, and Cod.

SPECIAL EXPERIMENTS.—While the investigations at sea have proceeded, in general, on the same lines as during the previous year, increased attention has been paid to special experiments upon particular problems. Among these may be mentioned—

(i) Experiments on the vitality of trawl-caught plaice.
(ii) Experiments on the proportion of small fishes which escape through the meshes of the commercial trawl.

(iii) Investigations on the rough grounds unsuitable for commercial trawling.

(iv) Collection of samples of bottom deposits.

(v) Experiments on bottom currents by means of Mr. Bidder's drift-bottles.

(vi) Collection of fish-stomachs, for determining the food of fishes.

(vii) Collection of otoliths from trawled fish for investigations on the age of fishes at different sizes.

B. LABORATORY INVESTIGATIONS.

AGE OF FISHES.—Considerable progress has been made with the otolith investigations. The growth-rate of the Plaice during the first few years of its life has been definitely determined for several different parts of the coast. The results show a substantial agreement over the southern part of the North Sea, but a much more rapid growth in the western part of the English Channel than in the former area. The determination of the relation between age and size during the later years is beset with difficulties connected with the existence of local differences of growth on the offshore grounds, complicated by the migrations of the fish. These points are being carefully investigated. The method of study has been extended during the year to other suitable species, especially the Cod.

FOOD OF FISHES.—Records of the general fauna of the different trawling grounds have been kept systematically, and have been supplemented from time to time by the results of special hauls with the dredge and other implements.

The contents of over 6,000 stomachs of fishes have been examined and recorded in detail.

The age and food of all marked fishes recaptured has been regularly recorded.

BOTTOM DEPOSITS.—Samples of the sea-bottom from about 200 localities have been collected from time to time, and are under analysis with the object of determining the influence of this factor on the distribution of fishes and of the organisms upon which they feed.

C. FISHERMEN'S RECORDS.

The system of fishermen's trawling records has been continued without interruption. Three or four Lowestoft and Ramsgate smacks,
and five or six Grimsby steam trawlers have been constantly engaged in providing these supplementary records of individual hauls. The number of returns provided by the fishermen during the past year amounts to a total of nearly 7,000, as follows:—

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Hauls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smacks</td>
<td>1,350</td>
</tr>
<tr>
<td>Steamers</td>
<td>5,437</td>
</tr>
<tr>
<td>Total</td>
<td>6,787</td>
</tr>
</tbody>
</table>

Section II.—Hydrographic and Plankton Work in the English Channel.

The quarterly hydrographic cruises required by the International Programme were made in the English Channel in August and November 1904, and in February and May 1905. The usual routine work was carried out, and in addition current measurements were made with the Ekman-Nansen current-meter on Station 2 (47 miles S.W. of the Eddystone), in 50 fathoms, during the November and following cruises.

In addition to the observations made on the quarterly cruises, samples of surface water and temperature records have been received every fortnight from four steamers crossing the English Channel—from Newhaven to Caen, from Southampton to Havre and St. Malo, and from Plymouth to the Channel Islands and St. Brieuc. These, together with samples obtained from lightships, have made it possible to draw up fortnightly surface charts for the Channel east of the line joining Plymouth to Guernsey.

Since September 1904, samples have been collected over the North Atlantic between Lat. 20° N. and Lat. 56° N. every noon by the kindness of the captains of fifteen of the larger passenger steamers sailing from English and Scotch ports.

In May 1904, water of 35-30°/oo S. and over extended up the Channel as far as the Isle of Wight. During the summer the salinity gradually fell, and in July the highest value found on the Plymouth-Guernsey line was 35-25°/oo S., which in August had diminished to 35-00°/oo S. During the cruise in this month, surface water as high as 35-40°/oo S. was only found at one place—near Ushant, but this high-salinity water extended west as an undercurrent to Parson’s Bank, and thence north nearly to mid-Channel.

The salinity remained low, with only slight variations, until the first week in October, when water of 35-30°/oo S. was found for a short time between Plymouth and Guernsey. A decline then set in until
November 16th, when 35.30 \%/o S. again appeared on the Plymouth-Guernsey line. During the cruise in November, a narrow tongue of surface water of 35.40 \%/o S. and over was found stretching north from Ushant to near mid-Channel, when it took a sharp turn to the west. This apparent movement from east to west, against the general Channel drift, was due to a sheet of fresher water entering from the west and nearly covering a broad layer of denser water which extended at the bottom from Ushant at least as far as Parson's Bank.

About the middle of December the flow of high-salinity water increased, and during the first week in January 1905, water of 35.40 \%/o S. appeared in the Channel between Plymouth and Guernsey for the first time since February 1904. In February there was a slight fall here, but the presence of water of 35.50 \%/o S., or possibly 35.60 \%/o S., a few miles to the west showed that the Atlantic flow was still increasing, displacing the whole of the fresher water from surface to bottom. This flow reached its maximum towards the end of February with water of 35.59 \%/o S., between Plymouth and Guernsey, though it had not fallen below 35.40 \%/o S. at the end of April. The samples collected since that date have not been worked out. The general results show an increased Atlantic flow during the first few months of 1905.

The specific gravity of various samples collected in the North Atlantic between Lat. 56° N. and Lat. 20° N. has been determined directly, and so far no reason has been found for doubting the accuracy of the ratio of total halogens to specific gravity as given by Knudsen's Tables. These experiments are still in progress.

The results of the two years of hydrographic work which have now been carried out show that the western portion of the English Channel is sometimes filled with warm Atlantic water of high density entering from the south, whilst at other times the water is of low density, being derived chiefly from the Bristol Channel and St. George's Channel, and in the case of the coastal waters being diluted to a certain extent with river water. Occasionally water of both kinds may be found as distinct layers—the water of high salinity usually forming the bottom layer. These changes take place somewhat irregularly and vary in different seasons and from year to year. It seems clear that such changes must have a fundamental influence on all problems connected with the life-history and distribution of the organisms inhabiting the area—including the food fishes.

Samples of Plankton were collected at each station on the four
quarterly cruises in the English Channel, whilst regular samples at weekly and fortnightly intervals have been obtained off Plymouth, between Plymouth and the Channel Islands, and from different lightships off the English and Irish coasts. The principal species found in these samples have been identified, and tables showing the results for the stations worked on the Channel cruises have been published in the Bulletin of the International Council for the study of the sea.

The Plankton observations in 1904–5 have confirmed the conclusion arrived at from the work of the preceding year, that the proportion of oceanic to neritic species decreases in the English Channel very regularly from west to east. At the same time it has been found that the absolute number of oceanic as well as the absolute number of neritic species is highest in the western basin of the Channel, decreasing both towards the open ocean in the west and towards the meridian of the Isle of Wight in the east. It is suggested that this rise in the number of species, in a region where newly-arrived Atlantic water meets water which has been lying over a shallow bottom and has received the outflow of rivers, may be due to an increase of soluble food-substances which are necessary for the development of various organisms.

Published Memoirs.

The following papers, either wholly or in part the outcome of work done at the Laboratory, have been published elsewhere than in the Journal of the Association:

Dannevig, H. C. On the First Successful Experiment with Importation of European Sea Fishes to Australian Waters. Fisheries of New South Wales. Annual Report for 1902. II.

Donations and Receipts.

The receipts for the year for the ordinary work of the Association include the grants from His Majesty's Treasury (£1,000) and the Worshipful Company of Fishmongers (£400), Special Donations (£55), Annual Subscriptions (£108), Rent of Tables in the Laboratory (£19), Sale of Specimens (£322), Admission to the Tank Room (£133).

Vice-Presidents, Officers, and Council.

The following is the list of gentlemen proposed by the Council for election for the year 1905-6:

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.

The Duke of Abercorn, K.G., C.B.
The Earl of St. Germans.
The Earl of Dule, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth, P.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.
The Right Hon. Joseph Chamberlain, M.P.

Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., M.P., F.R.S.
A. C. L. Günther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.
Rear-Admiral Sir W. J. L. Wharton, K.C.B., F.R.S.

Members of Council.

G. L. Alward, Esq.
G. P. Bidder, Esq.
G. C. Bourne, Esq.
Prof. T. W. Bridge, F.R.S.
F. Darwin, Esq., F.R.S.
G. Herbert Fowler, Esq.
S. F. Harmer, Esq., F.R.S.

Prof. W. A. Herdman, F.R.S.
E. W. L. Holt, Esq.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq.
Prof. E. A. Minchin.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Hon. Treasurer.
J. A. Travers, Esq.

Hon. Secretary.
E. J. Allen, Esq., The Laboratory, Citadel Hill, Plymouth.

The following Governors are also members of the Council:

The Prime Warden of the Fishmongers' Company.

The Prime Warden of the Fishmongers' Company.

Prof. Sir J. Burdon Sanderson, Bart., F.R.S. (Oxford University).

E. L. Beckwith, Esq. (Fishmongers' Company).

Prof. W. F. R. Weldon, F.R.S. (British Association).

Dr.

Statement of Receipts and Expenditure

<table>
<thead>
<tr>
<th>Description</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Balance from last year, being Cash at Bank and in hand, viz.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Plant, Repairs and Renewal Fund Account</td>
<td>116</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Donations to Fund for Repair of ss. Oithona received last year</td>
<td>271</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Less Amount overpaid on General Account</td>
<td>337</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Current Income:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. M. Treasury</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishmongers' Company (half-year's payment)</td>
<td>200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Subscriptions</td>
<td>108</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rent of Tables</td>
<td>19</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Interest on Investment</td>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Extraordinary Receipts:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. H. Riches, Donation to Fund for Repair of ss. Oithona</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>The late G. Brebner, per E. A. Batters</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>British Royal Commission, for Repayment of Balance of Expenses in connection with Exhibit at St. Louis Exhibition</td>
<td>120</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Ditto for Sale of Exhibit, including Specimens</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amount realized by Sale of £500 Forth Bridge Railway 4% Guaranteed Stock</td>
<td>582</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Balance, being amount due to Bankers</td>
<td>146</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Less Cash in hand</td>
<td>20</td>
<td>19</td>
<td>4</td>
</tr>
</tbody>
</table>

(Note.—This liability is exclusive of the amount of £100 due to Mr. G. P. Pigler in respect of advance made last year, and of the amount held to be necessary as a Plant, Repairs, and Renewals Fund which, with £25 added during the year, should stand at £141 10s. 8d.)

£2,424 9 1

Examined and found correct,

(Signed) **Edwin Waterhouse, F.C.A.**

R. Norris Wolfenden.

G. Herbert Fowler.

L. W. Byrne.

27th June, 1905.
for the Year ending 31st May, 1905.

<table>
<thead>
<tr>
<th>Description</th>
<th>£</th>
<th>s</th>
<th>d</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Current Expenditure:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries and Wages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naturalist</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director’s Assistant</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>118</td>
<td>16</td>
<td>3</td>
<td>1,018</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Travelling Expenses</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td>79</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal—Printing and Illustrating</td>
<td>159</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales of Journal</td>
<td>18</td>
<td>16</td>
<td>0</td>
<td>141</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Buildings and Public Tank Room—</td>
<td></td>
<td></td>
<td></td>
<td>212</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Gas, Water, Coal, etc.</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stocking Tanks, Feeding, etc.</td>
<td></td>
<td>31</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Renewals</td>
<td></td>
<td>53</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rent of Land, Rates, Taxes, and Insurance</td>
<td></td>
<td>17</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Admissions to Tank Room</td>
<td>133</td>
<td>18</td>
<td>5</td>
<td>78</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Laboratory, Boats, and Sundry Expenses—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationery, Office Printing, Postages, etc.</td>
<td>152</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass, Chemicals, and Apparatus</td>
<td>499</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales</td>
<td>44</td>
<td>2</td>
<td>3</td>
<td>55</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Purchase of Specimens</td>
<td></td>
<td>29</td>
<td>14</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Renewals of Boats,</td>
<td></td>
<td></td>
<td></td>
<td>585</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nets, Gear, etc.</td>
<td>292</td>
<td>18</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales of Specimens, etc. (including £50 from</td>
<td></td>
<td></td>
<td></td>
<td>213</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>International Investigations Commission for use of ss. Oithona)</td>
<td>1,018</td>
<td>16</td>
<td>3</td>
<td>213</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Coal and Water for Steamer</td>
<td></td>
<td>89</td>
<td>16</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance of Steamer (two years)</td>
<td></td>
<td>44</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales of Specimens, etc.</td>
<td></td>
<td>372</td>
<td>0</td>
<td>4</td>
<td>213</td>
<td>1</td>
</tr>
<tr>
<td>Bank Interest</td>
<td></td>
<td>1</td>
<td>19</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraordinary Expenditure:</td>
<td></td>
<td></td>
<td></td>
<td>1,577</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Cost of New Boiler and Repairs to ss. Oithona, less £15 received</td>
<td></td>
<td></td>
<td></td>
<td>846</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>for Sale of Old Boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Note.—This expenditure has been met as to £221 by</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>special donation, and as to £525 1s. 6d. by part proceeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of Sale of Investment, per contra.]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: £2,424 9 1
Marine Biological Association of the United Kingdom.

LIST

OF

Governors, Founders, and Members.

31st MAY, 1906.

I.—Governors.

The British Association for the Advancement of Science, Burlington House, W. ... £500
The University of Oxford .. £500
The University of Cambridge ... £500
The Worshipful Company of Clothworkers, 41, Mincing Lane, E.C. £500
The Worshipful Company of Fishmongers, London Bridge, E.C. £7705
Bayly, Robert (the late) ... £1000
Bayly, John (the late) .. £600
Thomasson, J. P. (the late) .. £970
G. P. Bidder, Esq., Cavendish Corner, Cambridge £800

II.—Founders.

* Member of Council. † Vice-President. ‡ President.

1884 The Corporation of the City of London £210
1884 The Worshipful Company of Mercers, Mercers' Hall, Cheapside £341 5s.
1884 The Worshipful Company of Goldsmiths, Goldsmiths' Hall, E.C. £100
1884 The Royal Microscopical Society, 20, Hanover Square, W. £100
1884 The Royal Society, Burlington House, Piccadilly, W. £350
1884 The Zoological Society, 3, Hanover Square, W. £100
1884 Bulteel, Thos., Radford, Plymouth .. £100
1884 Burdett-Coutts, W. L. A. Bartlett, 1, Stratton Street, Piccadilly, W. £100
1884 Crisp, Frank, M.A., B.A., Treas. Linn. Soc., 17, Toynburn Avenue, E.C. £100
1884 Daubeny, Captain Giles A., The Vicarage, Tottington, Bury, Lancs. £100
1884 Eddy, J. Ray, The Grange, Carlton, Skipton £100
1884 Gassiot, John P. (the late) ... £100
‡1884 Lankester, Prof. E. Ray, F.R.S., British Museum (Natural History), South Kensington, S.W. £100
1884 The Rt. Hon. Lord Masham (the late) £100
1884 Moseley, Prof. H. N., F.R.S. (the late) £100
III.—Members.

Ann. signifies that the Member is liable to an Annual Subscription of One Guinea.
C. signifies that he has paid a Composition Fee of Fifteen Guineas in lieu of Annual Subscription.

1900 Aders, W. M., Zeitoun, Cairo, Egypt Ann.
1884 Alger, W. H., 8, The Esplanade, Plymouth C.
1892 Asheton, R., M.A., Riversdale, Granchester, Cambridge £20

1902 Baker, R. J., Glen View, Mannamead, Plymouth Ann.
1884 Balfour, Prof. Bayley, F.R.S., Royal Botanic Gardens, Edinburgh C.
1884 Bayliss, W. Maddock, D.Sc., F.R.S., St. Cuthberts, West Heath Road, Hampstead Ann.
1884 Bayly, Miss, Seven Trees, Plymouth £50
1884 Bayly, Miss Anna, Seven Trees, Plymouth £50
1885 Beck, Conrad, 68, Cornhill, E.C. C.
1894 Beddington, Alfred H., 8, Cornwall Terrace, Regent’s Park, N.W. C.
1895 Bridge, Prof. T. W., D.Sc., F.R.S., University of Birmingham Ann.
1886 Brooksbank, Mrs., Leigh Place, Godstone, Surrey C.
1884 Brown, Arthur W. W., 62, Carlisle Mansions, Carlisle Place, London, S.W. C.
LIST OF GOVERNORS, FOUNDERS, AND MEMBERS.

1893 Browne, Edward T., B.A., 141, Uxbridge Road, W. Ann.
1896 Bulstrode, H. T., M.D., 1, The Mansions, Earl's Court, S.W. Ann.
1889 Burnard, Robert, 3, Hillsborough, Plymouth Ann.
1897 Byrne, L. W., B.A., 7 New Square, Lincoln's Inn, London, W.C. ... Ann.
1887 Caldwell, W. H., Birnham, Chaucer Road, Cambridge C.
1884 Christy, Thomas Howard, 199, Bramhall Lane, Stockport C.
1884 Clay, Dr. R. H., Windsor Villas, Plymouth Ann.
1885 Clerk, Major-General H., F.R.S., "Mountfield," 5, Upper Maze Hill, St. Leonards-on-Sea, Sussex £21
1886 Coates and Co., Southside Street, Plymouth C.
1885 Collier Bros., Old Town Street, Plymouth C.
1900 Cooper, W. F., B.A., Ashlys Hall, Berkhamsted Ann.
*1885 Darwin, Francis, F.R.S., 13, Marlingley Road, Cambridge C.
1885 Darwin, W. E., Ridgemonnt, Bossett, Southampton £20
1884 Dewick, Rev. E. S., M.A., F.G.S., 26, Oxford Square, Hyde Park, W. ... C.
1890 Driesch, Hans, Ph.D., Philosophenweg 5, Heidelberg, Germany C.
*1889 Ducie, The Rt. Hon. the Earl of, F.R.S., Tortworth Court, Falfield, R.S.O. £50 15s.
1891 Ellis, Hon. Evelyn, Rosenaix, Datchell, Windsor C.
1893 Enys, John Davies, Enys, Pearya, Cornwall Ann.
1884 Evans, Sir John, D.C.L., F.R.S., Nash Mills, Henel Hempstead £20
1885 Ewart, Prof. J. Cossar, M.D., University, Edinburgh £25
1894 Ferrier, David, M.A., M.D., F.R.S., 34, Cavendish Square, W. Ann.
1884 Fison, Sir Frederick W., Bart., 64, Pont Street, London, S.W. C.
1897 Foster, Richard, Windswothh Looe, R.S.O. Ann.
1884 Fox, George H., Woolhouse Place, Fulham Ann.
1886 Freeman, F. F., Abbotsfield, Taristock, S. Devon C.
1884 Fry, George, F.L.S., Carlin Brae, Berwick-on-Tweed £21
1892 Galton, F., F.R.S., 42, Rutland Gate, S.W. Ann.
1885 Gaskell, W. H., F.R.S., The Uplands, Shelford, Cambridge C.
1899 Gardiner, Dr. Edw. G., Woods Hole, Mass., U.S.A. C.
1901 Giles, Col. G. M., Biffdy, Mamnacved, Plymouth C.
1884 Grove, E., Norlington, Preston, Brighton Ann.
1889 Guinness, Hon. Rupert, Eileen, Thetford £35 15s.
LIST OF GOVERNORS, FOUNDERS, AND MEMBERS.

1884 Günther, Dr. Albert, F.R.S., 2, Lichfield Road, Kew Gardens Ann.
1900 Garney, E., Sprowston Hall, Norwich Ann.

1884 Halliburton, Prof. W. D., M.D., F.R.S., Church Cottage, 17, Marylebone Road, London, W. Ann.
1884 Hannah, Robert, 82, Addison Road, Kensington, W. Ann.
1885 Harmer, S. F., D.Sc., F.R.S., King's College, Cambridge C.
1889 Harvey, T. H., Cattedown, Plymouth Ann.
1888 Haselwood, J. E., 3, Lennaz Place, Brighton C.
1884 Haslam, Miss E. Rosa, Ravenswood, Bolton £20

1884 Heap, Walter, Heywood, Chancel Road, Cambridge C.
*1884 Herdman, Prof. W. A., F.R.S., The University, Liverpool Ann.
1884 Herschel, Col. J. R.E., F.R.S., Observatory House, Slough, Berks C.
1889 Heywood, Mrs. E. S., Light Oaks, Manchester C.
1884 Hickson, Prof. Sydney J., M.A., D.Sc., F.R.S., Ellesmere House, Wileaslow Road, Withington, Manchester Ann.
1897 Hodson, T. V., 24, Kingsley Road, Plymouth Ann.
*1905 Holt, E. W. L., 15 Castle Avenue, Clontarf, Dublin Ann.

1891 Indian Museum, Calcutta Ann.
1888 Inskip, Capt. G. H., R.N., 22, Torrington Place, Plymouth Ann.

1893 Jago, Edward, Coldrenick, Liskeard, Cornwall Ann.
1887 Jago-Trelawny, Major-Gen., F.R.G.S., Coldrenick, Liskeard C.

1897 Lanchester, W. F., B.A., The Knott, Lady Margaret Road, Cambridge C.
1885 Langley, Prof. J. N., F.R.S., Trinity College, Cambridge C.

1885 Macalister, Prof. A., F.R.S., St. John's College, Cambridge Ann.
1884 MacAndrew, James J., Lukesland, Ieybridge, South Devon Ann.
1900 Mackie, J. W. Scott, Rovton Hall, Chester C.
1884 Mackrell, John, High Trees, Clayham Common, S.W. C.
1902 Major, Surgeon H. G. T., 24, Beech House Road, Croydon C.
1889 Makovski, Stanislaus, Suffrons Corner, Eastbourne C.
1885 Marr, J. E., M.A., F.R.S., St. John's College, Cambridge C.

NEW SERIES.—VOL. VII. NO. 3.
1884 McIntosh, Prof. W. C., F.R.S., Nevsey Park, Meivde, N.B. C.
1884 Michael, Albert D., Cadogan Mansions, Sloane Square, S.W. C.
1885 Mocatta, F. H., 9, Connaught Place, W. C.
1886 Mond, Ludwig, F.R.S., 20, Avenue Road, Regent’s Park, N.W. C.
+1884 Newton, Prof. Alfred, M.A., F.R.S., Magdalen College, Cambridge £20
1885 Phillips, Chas. D. F., M.D., 10, Henriette Street, Cavendish Square, W. C.
1887 Phipson, Mrs., Dasak Bungdon, Nasik Road, Deccan, India Ann.
1885 Pritchard, Prof. Urban, Combe Hurst, Nutley Terrace, Hampstead Ann.
1884 Pye-Smith, P. H., M.D., 48, Brook Street, W. C.
1893 Quintin, St. W. H., Scampstone Hall, Rillington, Yorks Ann.
1884 Ralli, Mrs. Stephen ... £30
1885 Ransom, W. B., The Pavement, Nottingham C.
1897 Sandeman, H. D., 4, Elliot Terrace, Plymouth Ann.
1888 Scharff, Robert F., Ph.D., Science and Art Museum, Dublin Ann.
1901 Schiller, F. W., 9, Carlton Road, Blackheath, London, S.E. Ann.
1885 Scott, D. H., M.A., Ph.D., F.R.S., Old Palace, Richmond, Surrey C.
1903 Scott, S. D., Nevinch House, Bath Road, Cheltenham Ann.
1884 Sedgwick, A., M.A., F.R.S., Trinity College, Cambridge C.
1888 Serpell, E. W., 19, Hill Park Crescent, Plymouth £50
1904 Shaw, Joseph, Bryanston Square, London, W. £213
1885 Sheldon, Miss Lilian, The Murmurs, Eccmuth Ann.
*1884 Shipley, Arthur E., M.A., F.R.S., Christ’s College, Cambridge C.
1885 Sinclair, F. G., Friday Hill, Chingford, Essex C.
1891 Sinclair, William F., 102, Cheyne Walk, Chelsea, S.W. C.
1884 Skinners, the Worshipful Company of, Skinners’ Hall, E.C. £42
1889 Slade, Commander E. J. Warren, Phoenix Farm, Great Bookham, Surrey C.
1888 Spencer, Prof. W. Baldwin, M.A., F.R.S., University of Victoria, Melbourne Ann.
1884 Stewart, Prof. Chas., F.R.S., Royal College of Surgeons, Lincoln's Inn Fields, W.C. .. Ann.
1884 Sutherland, The Duke of, Stafford House, St. James', S.W. C.
1894 Thomas, W. F., Bishopshall, Hillington, Middlesex Ann.
*1899 Thompson, Prof. D'Arcy W., C.B., University College, Dundee Ann.
1903 Torquay Natural History Society, Torquay Ann.

1891 Vaughan, Henry, 325, High Holborn, London C.
1884 Venning, Mrs. J., Wingfield Villas, Stoke, Devonport £50
1884 Walker, Alfred O., Ullcome Place, Maidstone Ann.
*1895 Walsingham, The Rt. Hon. Lord, F.R.S., Merton Hall, Thetford ... £20
1884 Wilson, Scott B., Heathen Bank, Weybridge Heath C.
1898 Worth, R. H., 42, George Street, Plymouth Ann.

IV.—Associate Members.

1900 Bignell, G. C., F.E.S., The Ferns, Home Park Road, Saltash, Cornwall.
1889 Caux, J. W. de, Great Yarmouth.
1904 Edwards, W. C., Mercantile Marine Office, St. Andrew's Dock, Hull.
1904 Freeth, A. J., Fish Quay, North Shields.
1904 Harrell, H. E., 25, Regent Street, Yarmouth.
1889 Olsen, O. T., F.R.S., Fish Dock Road, Great Grimsby.
1904 Patterson, Arthur, Isis House, Great Yarmouth.
1889 Ridge, B. J., Newlyn, Penzance.
1901 Sanders, W. J., St. Elmo, Brizhham.
1889 Shrubsole, W. H., 19, Vancouver Road, Cutford, London.
1889 Sincl, Joseph, 8, Springfield Cottages, Springfield Road, Jersey, C.I.
1890 Spencer, R. L., L. and N.W. Depot, Guernsey.
1890 Wells, W., The Aquarium, Brighton.
OBJECTS
OF THE
Marine Biological Association of the United Kingdom.

The Association was founded at a Meeting called for the purpose in March, 1884, and held in the Rooms of the Royal Society of London.

The late Professor Huxley, at that time President of the Royal Society, took the chair, and amongst the speakers in support of the project were the late Duke of Argyll, the late Sir Lyon Playfair, Lord Averbury, Sir John Hooker, the late Dr. Carpenter, Dr. Günther, the late Lord Dalhousie, the late Professor Moseley, the late Mr. Romanes, and Professor Lankester.

The Association owes its existence and its present satisfactory condition to a combination of scientific naturalists, and of gentlemen who, from philanthropic or practical reasons, are specially interested in the great sea fisheries of the United Kingdom. It is universally admitted that our knowledge of the habits and conditions of life of sea fishes is very small, and insufficient to enable either the practical fisherman or the Legislature to take measures calculated to ensure to the country the greatest return from the "harvest of the sea." Naturalists are, on the other hand, anxious to push further our knowledge of marine life and its conditions. Hence the Association has erected at Plymouth a thoroughly efficient Laboratory, where naturalists may study the history of marine animals and plants in general, and where, in particular, researches on food-fishes and molluscs may be carried out with the best appliances.

The Laboratory and its fittings were completed in June, 1888, at a cost of some £12,000. Since that time investigations, practical and scientific, have been constantly pursued at Plymouth. Practical investigations upon matters connected with sea-fishing are carried on under the direction of the Council; in addition, naturalists from England and from abroad have come to the Laboratory, to carry on their own independent researches, and have made valuable additions to zoological and botanical science, at the expense of a small rent for the use of a working table in the Laboratory and other appliances. The number of naturalists who can be employed by the Association in special investigations on fishery questions, and definitely retained for the purpose of carrying on those researches throughout the year, must depend on the funds subscribed by private individuals and public bodies for the purpose. The first charges on the revenue of the Association are the working of the seawater circulation in the tanks, stocking the tanks with fish and feeding the latter, the payment of servants and fishermen, the hire and maintenance of fishing-boats, and the salary of the Resident Director and Staff. At the commencement of this number will be found the names of the gentlemen on the staff.

In the summer of 1902 the Association was commissioned by His Majesty's Government to carry out in the southern British area the scheme of International Fishery Investigations adopted by the Conference of European Powers which met at Christiania in 1901. In connection with this work a laboratory has been opened at Lowestoft.

The purpose of the Association is to aid at the same time both science and industry. It is national in character and constitution, and its affairs are conducted by a representative Council, by an Honorary Secretary and an Honorary Treasurer, without any charge upon its funds, so that the whole of the subscriptions and donations received are devoted absolutely to the support of the Laboratory and the prosecution of researches by aid of its appliances. The reader is referred to page 4 of the Cover for information as to membership of the Association.
CONTENTS OF NEW SERIES, Vol. VII., No. 3.

1. Professor W. F. R. Weldox, f.r.s. 331

3. First Report of the Council of the Marine Biological Association of the United Kingdom on work carried out in connection with the International Fishery Investigations . 383

 Balance Sheet, 1904-1905 406

5. List of Governors, Founders, and Members. 31st May, 1906 . 408

NOTICE.

The Council of the Marine Biological Association wish it to be understood that they do not accept responsibility for statements published in this Journal excepting when those statements are contained in an official report of the Council.

TERMS OF MEMBERSHIP.

<table>
<thead>
<tr>
<th>Category</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Members</td>
<td></td>
<td></td>
<td>per annum 1 1 0</td>
</tr>
<tr>
<td>Life Members</td>
<td></td>
<td></td>
<td>Composition Fee 15 15 0</td>
</tr>
<tr>
<td>Founders</td>
<td></td>
<td></td>
<td>100 0 0</td>
</tr>
<tr>
<td>Governors</td>
<td></td>
<td></td>
<td>500 0 0</td>
</tr>
</tbody>
</table>

Members of the Association have the following rights and privileges: they elect annually the Officers and Council; they receive the Journal of the Association free by post; they are admitted to view the Laboratory at Plymouth, and may introduce friends with them; they have the first claim to rent a place in the Laboratory for research, with use of tanks, boats, &c.; and have access to the books in the Library at Plymouth.

All correspondence should be addressed to the Director, The Laboratory, Plymouth.
Journal

OF THE

MARINE BIOLOGICAL ASSOCIATION

OF

THE UNITED KINGDOM.

THE PLYMOUTH LABORATORY.

PLYMOUTH:
PRINTED FOR THE MARINE BIOLOGICAL ASSOCIATION BY W. BRENDON & SON, LTD.,
AND
PUBLISHED BY THE ASSOCIATION AT ITS OFFICES ON THE CITADEL HILL.
SENT FREE BY POST TO ALL MEMBERS OF THE MARINE BIOLOGICAL ASSOCIATION:
ANNUAL SUBSCRIPTION FOR MEMBERSHIP, ONE GUINEA.
Agents in London:—Messrs. DULAU & Co., 37, Soho Square, W.
PATRON.
HIS MAJESTY THE KING.

OFFICERS AND COUNCIL.

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.
The Duke of Abercorn, K.G., C.B.
The Duke of Bedford, K.G.
The Earl of St. Germans.
The Earl of Ducie, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth, P.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.
The Right Hon. Joseph Chamberlain, M.P.
Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., F.R.S.
A. C. L. Gunther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.
Edwin Waterhouse, Esq.

COUNCIL.

Elected Members.
G. L. Alward, Esq.
Prof. T. W. Bridge, D.Sc., F.R.S.
F. Darwin, Esq., F.R.S.
Sir Charles Eliot, K.C.M.G.
G. Herbert Fowler, Esq., Ph.D.
J. Stanley Gardner, Esq., M.A.
S. F. Harmer, Esq., Sc.D., F.R.S.
E. W. L. Holt, Esq.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq., D.Sc.
Prof. E. A. Minchin, M.A.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Governors.
G. P. Bidder, Esq., M.A.
Sir Richard B. Martin, Bart. (Prime Warden of the Fishmongers' Company).
E. L. Beckwith, Esq. (Fishmongers' Company).
G. C. Bourne, Esq., D.Sc. (Oxford University).
Prof. W. A. Herdman, D.Sc., F.R.S. (British Association).

Chairman of Council.
A. E. Shipley, Esq., F.R.S.

Hon. Treasurer.
J. A. Travers, Esq., Tortington, Arundel.

Hon. Secretary.
E. J. Allen, Esq., D.Sc., The Laboratory, Citadel Hill, Plymouth.

PERMANENT STAFF.

Director—E. J. Allen, Esq., D.Sc.

Naturalist in charge of Fishery Investigations.
W. Garstang, Esq., M.A., D.Sc.

Assistant Naturalist—L. R. Crawshay, Esq., M.A.

Assistant Naturalists for the International Investigations—
W. Wallace, Esq., D.Sc.
J. O. Borley, Esq., M.A.
R. A. Todd, Esq., D.Sc.
W. Bygrave, Esq., B.A.
A. E. Hefford, Esq., B.Sc.

Hydrographer (International Investigations)—D. J. Matthews, Esq.
Marine Biological Association of the United Kingdom.

The Council and Officers.

The Council have met on five occasions during the year, and the average attendance at the meetings has been ten. The meetings have been held in the Rooms of the Royal Society, and the Council have again to express their thanks to the Royal Society for their hospitality.

Committees of the Council, as in previous years, have visited the Laboratories at Plymouth and Lowestoft and inspected the work which is being carried on.

The Council have to record with regret the deaths of Sir J. Burdon Sanderson, Bart., F.R.S., the representative of the University of Oxford on the Council; of Rear-Admiral Sir W. J. L. Wharton, K.C.B., F.R.S., a Vice-President of the Association; and of Professor W. F. R. Weldon, F.R.S., a Member of Council since 1888.

The Laboratories.

A somewhat simpler system of circulating the sea water through the tanks at the Plymouth Laboratory with a new pattern of pump has been in operation during the greater part of the year and has proved successful. It is hoped that some saving in the expenses for repairs will result. Experiments on the rearing of marine organisms under laboratory conditions have been continued with success.

For the North Sea work in connexion with the International Fishery Investigations, new and larger premises have been rented at Lowestoft, which allow of the researches being carried on with much greater convenience than in the old establishment.

NEW SERIES.—VOL. VII. NO. 4. JULY, 1906.
The Boats.

The Association’s steamer *Oithona* continues to work successfully in the English Channel, and is in excellent condition both as regards efficiency and seaworthiness. The sailing boat *Anton Dohrn*, which carries on the collecting work during the winter, is also in good repair.

The steam trawler *Huxley*, which was chartered from Mr. G. P. Bidder in the first instance for a period of three years, has been retained for the further period of two years, during which the Association has been asked by His Majesty’s Government to continue the International Investigations. Mr. Bidder has, with great generosity, undertaken to return to the Association each year, for the purposes of the investigations, the sum of £500 from the amount due to him for the hire of the vessel.

The Staff.

Mr. L. R. Crawshay, m.a., has been appointed Assistant Naturalist for Invertebrates at the Plymouth Laboratory in succession to Mr. S. Pace, who has become Director of the Marine Biological Laboratory at Millport. Mr. A. E. Hefford has been appointed an additional assistant on the Lowestoft staff.

Occupation of Tables.

The following Naturalists have occupied tables at the Laboratory during the year:—

- E. T. Browne, m.a., London (Medusae).
- G. E. Bullen, St. Albans (Hydrozoa and Plankton).
- A. D. Cotton, Kew (Algae).
- W. De Morgan, London (Crustacea).
- Sir Charles Eliot, k.c.m.g. (Nudibranchiata).
- R. Elmhirst, Leeds (Nudibranchiata).
- Col. G. M. Giles, Plymouth (Anatomy of Insects).
- G. H. Grosvenor, b.a., Oxford (General Zoology).
- F. W. Headley, Haileybury (General Zoology).
- C. G. Hewitt, b.sc., Manchester (Isopoda).
- T. V. Hodgson, Plymouth (Pycnogonida).
- J. J. Lister, f.r.s., Cambridge (Foraminifera).
- Keith Lucas, m.a., Cambridge (Physiology of Tunicata).
- Prof. E. W. MacBride, f.r.s., Montreal (Echinoderma).
- Miss M. Robinson, London (Crustacea).
- D. J. Scourfield, Birmingham (Crustacea).
- C. Shearer, d.sc., Cambridge (Polychaeta).
- J. Stuart Thomson, Cape Town (Crustacea).
- J. Lloyd Williams, Bangor (Algae).
Twelve students attended a course of study in Marine Biology conducted at the Laboratory during the Easter vacation by Mr. G. H. Grosvenor.

General Work at the Plymouth Laboratory.

A commencement has been made in extending the investigations on the distribution of the fauna, which have been previously carried on in the immediate neighbourhood of Plymouth, to the deeper waters of the English Channel, and it is hoped during the coming year still further to enlarge the area the fauna of which is being mapped out. Mr. L. R. Crawshay is now associated with the Director in these researches.

Great attention has been paid to perfecting the methods of rearing marine organisms under laboratory conditions, and very promising progress has been made in this direction. A report upon the experiments which have been carried out will, it is expected, be published during the coming year.

With the assistance of special donations given for the purpose by Dr. G. H. Fowler and Mr. J. J. Lister, an investigation has been commenced into the food of the migratory fishes, especially the mackerel and pilchard, frequenting the mouth of the English Channel, with a view to ascertaining what relation exists between changes of the temperature and density of the sea water or of the floating organisms which it contains, and the fluctuations in the movements of these fishes from season to season and from year to year. Mr. G. E. Bullen has been engaged at somewhat irregular intervals in this work; but although promising progress has been made, the investigation is much hampered owing to the fact that the funds available do not permit of his being continuously employed upon it.

Regular collections are being made of young fishes found in the western part of the Channel, for which purpose a young-fish trawl on the Danish pattern has been constructed, and has been found very efficient.

Mr. T. V. Hodgson has occupied a table in the Laboratory throughout the year, for the purpose of working out material which he collected on the British Antarctic Expedition.

A collection of specimens illustrating the development and rate of growth of fishes, and containing a collection of marine invertebrates, has been sent to the Oceanographical Exhibition at Marseilles.

The supply of marine animals and plants for museums and for
teaching purposes has considerably increased during the last two or three years; and although the collection, identification, and preservation of the specimens absorb a great deal of time and attention, which is by no means adequately compensated for by the amount of money received from the sale of the specimens, the work in itself appears to be of sufficient importance to justify the Association in continuing it, more particularly as it makes regular and constant collecting necessary and is some assistance to the general finances.

The Library.

The thanks of the Association are due for the following books and current numbers of periodicals presented to the Library during the past year:

- — Memoirs.
- — Report.
- — An Account of the Crustacea of Norway, etc.; by G. O. Sars.
- — Report of Meeting of Fisheries Representatives.
- Bristol Museum and Art Gallery. Reports of Committee.
- Bryn Mawr College. Monographs, Reprint Series.
- Bulletin Scientifique de la France et de la Belgique.
- La Cellule.
- Ceylon Marine Biological Laboratory. Report.
- College of Science, Tokyo. Journal.
- Colombo Museum. Spolia Zeylanica.
- The Commissioners of Fisheries, N. S. Wales. Report.
- — Publications de Circonstance.
- — Rapports et Procès-Verbaux des Réunions.
Cuerpo de Ingenieros de Minas del Peru. Boletín.
Danish Biological Station. Report to the Board of Agriculture.
— Skrifter.
Dept. of Agriculture, etc., Ireland. Reports.
Dept. of Marine and Fisheries, Canada. Annual Report.
Deutsche Zoologische Gesellschaft. Verhandlungen.
Deutscher Fischerei Verein. Zeitschrift für Fischerei.
Deutscher Seefischerei Verein. Mitteilungen.
La Feuille des Jeunes Naturalistes.
Field Columbian Museum. Publications.
The Fisherman's Nautical Almanack; by O. T. Olsen.
The Fishing Gazette.
Illinois State Laboratory of Natural History. Bulletin.
Illustrations of the Zoology of the Royal Indian Marine Survey ship Investigator.
— Transactions.
Italy. Ministero di Agricultura, Industria e Commercio. Annali di Agricoltura.
Johns Hopkins University Circulars.
Kommission zur wissenschaftlichen Untersuchung der Deutschen Meere, etc. Wissenschaftliche Meeresuntersuchungen.
— Skrifter.
Lancashire Sea Fisheries Laboratory. Report.
Lancashire and Western Sea Fisheries. Superintendent's Report.
Liverpool Biological Society. Proceedings and Transactions.
Mededeelingen over Visscherij.
— The Beaufort Scale of Wind Force.
Le Mois Scientifique.
Montpellier: l’Université. Travaux de l’Institut de Zoologie de l’Université de Montpellier et de la Station Zoologique de Cette.
Musée du Congo. Annales.
Musée Oceanographique de Monaco. Bulletin.
Museo Nacional de Montevideo. Anales.
—— Memoirs.
—— Report.
The Museums Journal.
Neapel. Mittheilungen aus der Zoologischen Station.
Nederlandsche Dierkundige Vereeniging. Tijdschrift.
—— Memoirs.
—— Report.
New Zealand Institute. Transactions.
Nikolsk. Aus der Fischzuchtanstalt.
North Sea Fisheries Investigation Committee. Report of Fishery Board for Scotland,
La Nuova Notarishia.
Quarterly Journal of Microscopical Science. (Presented by Prof. E. Ray Lankester, F.R.S.)
—— Transactions.
Royal Society of London. Philosophical Transactions.
—— Proceedings.
—— Reports of Commission for Investigation of Mediterranean Fever.
—— Report of the Sleeping Sickness Committee.
—— Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Mannar.
—— Year-Book.
Selskabet for de Norske Fiskeriers Fremme. Norsk Fiskeriidende.
Smithsonian Institution. Annual Report.
—— Proceedings of the United States Museum.
Sociedad Geográfica de Lima. Boletín.
Socieeta di Naturalisti in Napoli. Bullettino.
—— Meddelanden.
Société Belge de Géologie, etc. Bulletin.
REPORT OF THE COUNCIL

421

Société Imp. Russe de Pisciculture et de Pêche. Vyestnik Ribopon’shlennosti.

— Mémoires.
Station Aquicole de Boulogne-sur-Mer. Annales.
Station de Pisciculture, etc., Toulouse. Bulletin.
Svenska Hydrografisk Biologiska Kommissioners. Skrifter.

— Arkiv för Botanik.
— Arkiv för Zoologie.
Tufts College. Studies.
United States National Herbarium. Contributions.
— Contributions from the Zoological Laboratory.
University of Toronto. Studies.
Wissenschaftliche Ergebnisse einer Zoologischen Expedition nach den Baikal See.
Zoological Society of London. List of the Fellows.
— Proceedings.
— Transactions.

The Secretary, Danish Legation. Fiskeri-Beretning, 1904–1905.
The Foreign Office. Développement de la Sole; Fabre-Domergue and Biétrix.
Marshall Library, Owens College, Manchester. The Digestive Organs of the Aleonaria and their relation to the Mesogloal cell plexus; by Edith M. Pratt.
— Micro-organisms associated with Disease; by S. J. Hickson.
— Note on the Buccal Pits of Peripatus; by C. G. Hewitt.
Marine Biological Association of the West of Scotland. The Naturalist of Cumbrae; by T. R. Stebbing.
— Bathyo-Orographical Map of the Clyde Basin, prepared for the British Association Meeting, 1901.
Mrs. Robertson and the Marine Biological Association of the West of Scotland. On Pisidium fontinale and Planorbis complanatus, two fresh-water shells new to Scotland, and Helix villosa, a land shell new to Britain; by David Robertson.
— The Fauna of Scotland, with special reference to Clydesdale and the
Western district. Fresh- and brackish-water Ostracoda; by David Robertson.

Mrs. Robertson and the Marine Biological Association of the West of Scotland. Amphipoda and Isopoda of the Firth of Clyde and West of Scotland; by David Robertson.

— Notes on the Common Limpet; by David Robertson.

— On Stenoceras rugosa, a bivalve molluse showing an unusual mode of repair; by David Robertson.

— Notice of thirteen Cumacea from the Firth of Clyde; by David Robertson.

— A list of the Alge of Lamlash Bay, Arran, collected during September, 1894; by David Robertson.

To the authors of the Memoirs mentioned below the thanks of the Association are due for separate copies of their works presented to the Library:—

Allen, A. W. Some Notes on the Life History of Margaritifera penroseae.

Breitfuss, L. Skizze des Seegewerbes an der Murmanküste.

— Notes on the Pelagic Fauna of the Firth of Clyde (1901—1902).

— Report on the Medusae (Hydromedusae, Scyphomedusae, and Ctenophora) collected by Prof. Herdman at Ceylon in 1902.

Bruce, W. S. Some Results of the Scottish National Antarctic Expedition.

Crossland, C. The Oecology and Deposits of the Cape Verde Marine Fauna.

Danton, L. Notes Ichtyologiques.

Darbishire, A. D. Professor Lang's Breeding Experiments with Helix hortensis and H. nemoralis.

Driesch, Hans. Altes und Neues zur Entwicklungsphysiologie des jungen Asteridenkeimes.

— Skizzen zur Restitutionslehre.

— Über das Mesenchym von unharmonisch zusammengesetzten Keimen der Echiniden.

— Zur Cytologie parthenogenetischer Larven von Strongylocentrotus.

Duncker, G. Über Regeneration des Schwanzendes bei Syngnathiden.

Edwards, C. L. The Floating Laboratory of Marine Biology of Trinity College.

— Nudibranchs and Teetibranchs from the Indo-Pacific; II, Notes on Lophocereus, Lobiger, Haminaca and Newnesia.

— Notes on Two Rare British Nudibranchs, Hero formosi, var. arboraceus, and Staurodoris maculata.
Eliot, C. On some Nudibranchs from the Pacific, including a new genus, Chromodoridella.

On some Nudibranchs from East Africa and Zanzibar. Part VI.

On the Doris planata of Alder and Hancock.

The Nudibranchiate of the Scottish National Antarctic Expedition.

Fowler, G. H. Biscayan Plankton collected during a cruise of H.M.S. Research, 1900.

Giard, Alfred. La Poecilogonie. Les tendances actuelles de la Morphologie et ses rapports avec les autres Sciences.

Sur la pretendue nocivite des Huitres.

Harmen, S. F. The Pterobranchia of the Siboga Expedition, with an account of other species.

Herdman, W. A. Presidential Address to Linnaean Society. 1905.

Hodgson, T. V. Decalopoda and Colossendeis.

Report on the Schizopods collected by Mr. George Murray, F.R.S., during the cruise of the Oceana in 1898.

Hovey, E. O. The Grande Souffriere of Guadeloupe.

Janet, C. Anatomie de la tête du Lasius niger. 1905.

Description du Matériel d'une petite Installation Scientifique. Part I.

Observations sur les Fournies. 1904.

Keeble, F., and Gamble, F. W. The Colour-Physiology of Higher Crustacea. Part III.

Kier, Hans. Om Tromsisundets fiske. En oversigt over deres udbredelse og biologi.

Kofoid, C. A. A Self-Closing Water Bucket for Plankton Investigations.

Craspedotella, A New Genus of the Cystoflagellata, an Example of Convergence.

Dinoflagellata of the San Diego Region. I. On Heterodinium, a New Genus of the Peridinidae.

Some New Tintinnidae from the Plankton of the San Diego Region.

Korotneff, A. Zoologische Expedition nach den Baikal-See.

Moore, J. P. A new species of Sea Mouse (Aphrodita hastata) from Eastern Massachusetts.

New species of Polychaeta from the North Pacific, chiefly from Alaskan waters. Five new species of Pseudopotamilla from the Pacific Coast of North America.

Nathansohn, A. Vertikale Wasserbewegung und quantitativeVerteilung des Planktons im Meere.

Nobre, A. Mollusques et Brachiopods du Portugal.

Norman, A. M. A new Heterotanaïs and a new Eurydice, genera of Isopoda.

Greenlandic Polyzoa.

Irish Crustacea. Ostracoda.

Museum Normanianum, III. Crustacea.

Notes on the Natural History of East Finnmark.

On Cucumaria Montagu (Fleming) and its Synonymy.
Norman, A. M. Revised Nomenclature of the species described in Bate and Westwood's "British Sessile-eyed Crustacea."

Olsen, O. T. A proposal to easily identify the Nationality of Fishing Vessels.

Paulmier, F. C. Higher Crustacea of New York City.

Mrs. Robertson. Protozoa (Foraminifera).

Schepotieff, A. Zur Organisation von Cephalodiscus.

Scott, T. A Report on the Free-swimming Crustacea found in the Firth of Clyde, 1901 to 1902.

Shipley, A. E., and Hornell, J. Further Report on Parasites found in connection with the Pearl Oyster Fishery at Ceylon.

Shipley, A. E. Notes on a Collection of Parasites belonging to the Museum of University College, Dundee.

— On Ento-Parasites from the Zoological Gardens, London, and elsewhere.

— The Effects of Metazoan Parasites on their Hosts.

Trybom, Filip. Åtgårdar för Fiskeriutningen i Sverige år 1904.

The International Fisheries Investigations.

The following is a summary of the work done and of the conclusions arrived at by the scientific staff working under the direction of the Council.

Section I.—North Sea Work.

A. Work of the S.S. "Huxley."

Trawling Investigations.—With the exception of a period of two months during the past winter, when the boat was laid up at Grimsby, the survey of the North Sea trawling grounds within the English area has made continuous progress. From June, 1905, to the end of May, 1906, the Huxley made nineteen fishing voyages, during which 240 hauls of the large commercial trawls were taken, and the quantities, sizes, and weights of the fishes caught systematically recorded.

From the commencement of the investigations seventy-five voyages have been completed, and the results of 893 hauls with the large trawls analysed and recorded.

Towards the close of 1905 the work accomplished during the previous three years was carefully reviewed, and a programme drawn up for the conduct of the investigations during the current year with the object of checking results obtained at corresponding seasons on the more important grounds in previous years, and of filling up gaps in the more complete series of data. The revised programme has been closely adhered to during the past half-year.

It is believed that the data are already sufficiently numerous and consistent to throw much light on the normal characteristics of the fish
populations on the more important grounds, as well as upon the more important seasonal changes in such characteristics; and a series of summary reports is in course of preparation for submission to H.M. Government during the current year as each is completed.

Fish Measured.—As a rough indication of the material obtained upon these voyages, it may be stated that more than 88,000 measurements of fish, representative of the total catch on almost every occasion, were made and recorded at sea during the past year, in addition to other work.

Nearly 300,000 fishes have been measured in this way since the commencement of the investigations, as shown in detail in the following table:—

<table>
<thead>
<tr>
<th>Year</th>
<th>Plaice</th>
<th>Haddock</th>
<th>Others</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1902-5</td>
<td>65,509</td>
<td>15,950</td>
<td>128,775</td>
<td>210,234</td>
</tr>
<tr>
<td>1905-6</td>
<td>24,954</td>
<td>10,755</td>
<td>52,885</td>
<td>88,594</td>
</tr>
<tr>
<td>Totals</td>
<td>90,463</td>
<td>26,705</td>
<td>181,660</td>
<td>298,828</td>
</tr>
</tbody>
</table>

Marking Experiments.—During the past year 2042 marked plaice have been set free.

To the end of June, 1905, 5115 marked plaice had been liberated, of which 1224 have since been recaptured, yielding a percentage of 23.9 per cent.

More than 7000 marked plaice have thus been set free up to date.

The data yielded by these experiments are now sufficiently numerous to yield valuable indications of the main differences in the annual rate of growth of plaice in various parts of the English area. In certain areas they also show the progressive rate of growth from month to month. In addition to these results the experiments have thrown a continually increasing light on the seasonal migrations of the fish, the intensity of fishing in different areas, and upon differences in the rate of growth and habits of the two sexes; they add thus to our knowledge of the life history of this species in matters of considerable importance.

Transplantation experiments have been carried out during the spring months of 1905 and 1906 in order to check the results already reported as having been obtained during 1904.

The results of these experiments indicate that the rate of growth on the Dogger Bank is always markedly higher than on the coastal grounds south of 54° N. lat., though subject to variation in actual amount from year to year. Experiments have been carried out during the present year in order to determine whether this area of rapid
growth is continuous between the Dogger Bank and the coastal grounds north of Flamborough Head.

Other experiments have also been devised, and are being carried out to test whether the still smaller year-old fish of a length of two to four inches can be profitably transplanted to these depleted waters.

Special Experiments.—The special investigations enumerated in the last annual report have been continued. Further reference to the more extensive of these experiments is made in the next section.

B. LABORATORY INVESTIGATIONS.

Age of Fishes.—The material which has been accumulated for studying the age of plaice at different sizes on the various fishing grounds consists of more than 12,000 otoliths, of which nearly 8000 have been collected from measured fish caught on board the Huxley during the past year.

Much time has been spent upon the study of this material, and a report upon the data acquired up to the end of 1905 is now in preparation. The results attained by this method have been of great value in throwing light upon the distribution of the various age-groups of plaice, the rate of growth in different regions, the age of the two sexes at first maturity, and similar problems.

In consequence of the relation which has been found to exist between depth and distance from shore on the one hand and the size of plaice at a given age on the other, and in view of the irregular character of the ground off the English coast, a continuous series of hauls of the trawl was carried out in May, 1905, on a line from the Leman Ground to the Dutch coast (which represents apparently the main axis of the off-shore migrations of plaice in the southern part of the North Sea), and the otoliths of all the plaice caught were extracted.

This experiment was repeated in September last, and again in May of the current year, the collections yielding from 2000 to 3000 otoliths on each occasion.

The results of these experiments have furnished a standard by which to estimate the value of results obtained from samples in isolated localities.

Food of Fishes.—The material collected bearing upon this point amounts now to about 10,000 stomachs of fish, the contents of which have been systematically recorded. During the past year the food of
useful species has been more extensively studied with respect to the size of the fish—the specimens being preserved and examined according to size-groups differing by 5 cm. or 10 cm. In this way progressive changes have been shown in the feeding-habits of various species as growth advances.

Certain seasonal changes have also been shown. The plaice during the winter months have been found to abstain from feeding to a very large extent. Thus the percentage of stomachs of this species found empty has been found to vary from 99 per cent in November to 57 per cent in February, although during the rest of the year the average is less than 5 per cent.

Bottom Fauna.—The invertebrates trawled or dredged on the various expeditions prior to 1906 have been identified and recorded with the exception of a few sponges and ascidians. The total number of hauls examined amounts to 1129, of which 769 were hauls of the large trawls and 360 special collections with small dredges and trawls.

A beginning has been made in summarizing these data by means of distribution-charts for the various species, the main object in view being the delimitation, as far as possible, of definitely characterized natural areas. The North Sea lends itself well to this work, as the variety of species is relatively small, and a considerable portion of these show fairly definite limits of distribution and centres of abundance.

Bottom Deposits.—Out of 260 samples collected, nearly all (217) have now been graded, with the object of showing the relative proportion of fine and coarse particles in the deposits of different areas. For this purpose the samples are shaken through sieves of successively finer meshes, from 15 mm. to 0·5 mm. in diameter. A striking result of this sifting is the predominance of fine sand and its uniformity of character over large areas of the North Sea.

Herring Investigations.—In consequence of resolutions passed by the International Council in 1905, increased attention has been paid to the herring, and samples of this fish have been examined at Lowestoft during the past year at intervals of about a month or six weeks in accordance with a prescribed scheme. Each sample consists of 100 fish, the locality of capture of which is known; and the characters of each fish are separately recorded as regards (1) length, (2) number of vertebrae, (3) degree of maturity, and (4) amount of fat. The samples
examined up to the present time have shown a high degree of uniformity as regards the number of vertebrae, which is held to be the best single index of racial peculiarities.

C. FISHERMEN'S RECORDS.

These have been continued on the same lines as hitherto. The number of returns provided by the fishermen during the past year amounts to a total exceeding 5000, as under:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smacks</td>
<td>...</td>
<td>1403 hauls.</td>
</tr>
<tr>
<td>Steamers</td>
<td>...</td>
<td>4006 "</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5409 "</td>
</tr>
</tbody>
</table>

Section II.—HYDROGRAPHIC AND PLANKTON WORK IN THE ENGLISH CHANNEL.

During the past twelve months the quarterly cruises have been carried out as usual, and a short extra cruise covering the southwestern stations was made in September, 1905. Samples have also been obtained from lightships, from steamers crossing the English Channel, and from Atlantic liners.

The most strongly marked feature of the period has been: (1) a great increase in the strength of the Gulf Stream off the south of Newfoundland in the summer of 1905, shown not only by the analyses of the samples from this region, but also by actual observations by officers of liners; and (2) a rise in the salinity of the Bristol Channel and the western part of the English Channel, which was almost certainly connected with, if not due to, the increased velocity of the Gulf Stream.

During the period under consideration the conditions have varied considerably, but at no time has there been observed any important division into layers of different density.

During the May cruise the larger part of the water in the western half of the Channel was as high as 35·4°/oo S., reaching 35·5°/oo S. a short distance west of Ushant, and 35·6°/oo S. in the Bay of Biscay just beyond the limits of the cruises. The 35·5°/oo isohaline, as shown by samples analysed at Plymouth and at Copenhagen, ran in an irregular course round the west coast of Ireland nearly to the latitude of the Orkney Islands.
During the summer the distribution of salinity altered in such a way that the saltiest water found during the May cruise was close to the coasts of Devon and Cornwall instead of in mid-channel, an abnormal condition which continued, with slight modification, until the end of the year. The broad tongue of 35.5 ‰ S. off the west coasts of Ireland and Scotland was almost unchanged, though its northern extremity had retreated slightly. At the same time the salinity south of Ireland had risen to 36.0 ‰ S. as far north as latitude 50° N. It would appear, however, that the water of 35.4 ‰ S. now in the English Channel had entered from the west rather than from the Bay of Biscay; this conclusion is somewhat doubtful, as the samples taken in the Bristol Channel by various vessels do not agree very well among themselves, though it is confirmed to a certain extent by the presence in the plankton, as described below, of a large number of Pteropods of a species which is common off the west of Ireland, though known in the Bay of Biscay.

The extra hydrographic cruise in September, 1905, over the south-western stations (Nos. 1, 2, 3, 4, and 5), did not show any important change, the highest salinity, 35.39 ‰, being found at Station 4 (55 miles west of Ushant). The high salinity water under the Cornish coast appears in the meantime to have been moving slowly eastward, keeping to the north side of the Channel and at the same time becoming slightly fresher. During the last half of September it was on the line joining the Needles to Cape La Hague, and three weeks later it was observed a short distance east of the Isle of Wight. In November, 1905, the salinity of the Channel as a whole was high, reaching 35.3 ‰ in the narrows between the Isle of Wight and Cape Barfleur and as far east as Beachy Head. Advantage was taken of the fine weather to extend the cruise further west than usual, and an extra station was worked at 47° 46' N., 7° 50' W., in 170 fathoms. The salinity was 35.57 ‰ at this station and 35.52 ‰ at Station 4.

During December and January the salinity of the Channel continued to rise, and at the beginning of February, 1906, water of 35.4 ‰ S. was found between Southampton and Havre, a decidedly high figure for the position.

The February cruise was carried out during the latter half of the month, and showed that water of 35.3 ‰ S. filled nearly the whole length of the Channel, with the exception of a narrow band of
REPORT OF THE COUNCIL.

35°2 ‰ S., running across Channel south of the Start. The saltiest water, 35°7 ‰ S., was found at Station 4 (see above) and extended north-east nearly to Station 2 (47 miles S.W. of the Eddystone). As usual, a southerly current of comparatively fresh water from the Irish Sea was found reaching nearly to the mid-channel line south of the Scilly Islands. During March the salinity of the western half of the Channel fell, and that of the eastern part rose, reaching 35°4 on the Newhaven-Caen line in April.

As in the previous year samples of plankton have been regularly collected on the quarterly cruises, and as far as practicable in the intervals between the cruises. The records of the species found on each cruise are published in the Bulletin of the International Council.

A paper by Dr. Gough on the distribution and migrations of the Siphonophore, Muggica atlantica, in 1904, has also been published by the International Council. From this paper it appears that a shoal of Muggica entered the English Channel in April from the south-west, the species being first observed off Ushant. It then spread eastward into the Channel as far as Portland, where it was found in August, and also northwards, being taken off the Land's End in the beginning of June. It was found in the Irish Sea in August, and subsequently along the south coast of Ireland as far west as Fastnet, and on the west coast as far north as Galway Bay.

The plankton during the summer and autumn of 1905 was characterized by the appearance in the English Channel of a vast swarm of Pteropods, Limacina retroversa, Fleming. These Pteropods were first observed on the south coast of Ireland and entered the Channel from the north-west. They thus appeared to spread in a direction opposite to that taken by Muggica in the preceding year. Limacina retroversa is a species which is seldom met with in the Channel, being more commonly found in more northern waters. Its appearance in the Channel is therefore of interest, as it suggests a flow of water from a more northerly direction than usual, a suggestion which is supported by the results of the hydrographic work. In company with the Limacina, other northerly species were observed, for example Clione limacina and Rhizosolenia hebetata.
Published Memoirs.

The following papers, either wholly or in part the outcome of work done at the Laboratory, have been published elsewhere than in the Journal of the Association:

Donations and Receipts.

The receipts for the year for the ordinary work of the Association include the grants from His Majesty’s Treasury (£1000) and the Worshipful Company of Fishmongers (£400), Special Donations (£525), Annual Subscriptions (£102), Rent of Tables in the Laboratory (£42), Sale of Specimens (£393), Admission to the Tank Room (£126).
Vice-Presidents, Officers, and Council.

The following is the list of gentlemen proposed by the Council for election for the year 1906–7:

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.

The Duke of Abercorn, K.G., C.B.
The Duke of Bedford, K.G.
The Earl of St. Germans.
The Earl of Ducie, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth, P.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.
The Right Hon. Joseph Chamberlain, M.P.
Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., F.R.S.
A. C. L. Günther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.
Edwin Waterhouse, Esq.

Members of Council.

G. L. Alward, Esq.
Prof. T. W. Bridge, D.Sc., F.R.S.
F. Darwin, Esq., F.R.S.
Sir Charles Eliot, K.C.M.G.
G. Herbert Fowler, Esq., Ph.D.
J. Stanley Gardiner, Esq., M.A.
S. F. Harmer, Esq., Sc.D., F.R.S.
E. W. L. Holt, Esq.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq., D.Sc.
Prof. E. A. Minchin, M.A.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Chairman of Council.
A. E. Shipley, Esq., F.R.S.

Hon. Treasurer.
J. A. Travers, Esq.

Hon. Secretary.
E. J. Allen, Esq., D.Sc., The Laboratory, Citadel Hill, Plymouth.

The following Governors are also members of the Council:

G. P. Bidder, Esq., M.A.
Sir Richard B. Martin, Bart. (Prime Warden of the Fishmongers' Company).
E. L. Beckwith, Esq. (Fishmongers' Company).
G. C. Bourne, Esq., D.Sc. (Oxford University).
Prof. W. A. Herdman, D.Sc., F.R.S. (British Association).
Dr.

Statement of Receipts and Payments

<table>
<thead>
<tr>
<th></th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Current Income:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. M. Treasury</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishmongers' Company</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Subscriptions</td>
<td>101</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Rent of Tables</td>
<td>42</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Extraordinary Receipts:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. P. Bidder, Special Donation</td>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dr. G. H. Fowler do.</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Balance:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Account</td>
<td>304</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Less Repairs and Renewals Account</td>
<td>133</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Overdraft at Bank</td>
<td>171</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Less Cash in hand</td>
<td>20</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

(Notex.—This liability is exclusive of the amount of £100 referred to in the last statement.)

£2,219 19 10

Examined and found correct,

(Signed) N. E. Waterhouse, A.C.A.
L. W. Byrne.

E. A. Minchin.
Geo. P. Bidder.

26th June, 1906.
for the Year ending 31st May, 1906.

<table>
<thead>
<tr>
<th>Description</th>
<th>£</th>
<th>s</th>
<th>d</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Balance from last year, being amount due to Bankers</td>
<td>146</td>
<td>9</td>
<td>1</td>
<td>125</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Less Cash in hand</td>
<td>20</td>
<td>19</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>,, Current Expenditure :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries and Wages—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naturalist (International Fishery Investigations)</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director's Assistant</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages (including cost of preparing Marseilles Exhibit)</td>
<td>574</td>
<td>9</td>
<td>1</td>
<td>1,174</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Travelling Expenses</td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Library</td>
<td>80</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales of Journal</td>
<td>83</td>
<td>5</td>
<td>2</td>
<td>79</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Buildings and Public Tank Room—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, Water, and Coal</td>
<td>88</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stocking Tanks, Feeding, etc.</td>
<td>29</td>
<td>17</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Renewals</td>
<td>84</td>
<td>18</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do, Repairs and Renewals Account</td>
<td>32</td>
<td>18</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rent of Land, Rates, Taxes, and Insurance</td>
<td>17</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Admissions to Tank Room</td>
<td>253</td>
<td>19</td>
<td>8</td>
<td>127</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory, Boats, and Sundry Expenses—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationery, Office Expenses, Printing, etc.</td>
<td>112</td>
<td>18</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass, Chemicals, and Apparatus (including purchases on account of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marseilles Exhibit)</td>
<td>191</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales</td>
<td>30</td>
<td>3</td>
<td>6</td>
<td>161</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Purchase of Specimens</td>
<td>37</td>
<td>17</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Renewal of Boats, Nets, Gear, etc.</td>
<td>250</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales</td>
<td>105</td>
<td>1</td>
<td>3</td>
<td>145</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Coal and Water for Steamer</td>
<td>118</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance of Steamer</td>
<td>22</td>
<td>19</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Sales of Specimens, etc. (including £50 from International Investigations Commission for use of ss. Oithona)</td>
<td>443</td>
<td>7</td>
<td>0</td>
<td>156</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Bank Interest</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>,, Extraordinary Expenditure :</td>
<td>1,719</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contribution towards the expenses of the International Fishery Investigations</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,219</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes and Memoranda.

Diporula verrucosa, C. Peach, off Plymouth.

The type, and hitherto only recorded British specimen (Hinck's *British Polyzoa*, p. 220, Pl. XXXII. Figs. 1, 2), was procured by Peach in Lantivet Bay. When at the Biological Laboratory in 1889, I found a second example among material brought in by the dredger from deep water. The specimen is finer than the type, measuring 1.4 inches high and 1.3 inches wide. The proportionately great width is caused by a very obtuse angle of the first division of the stem; subsequently the branches are again dichotomously divided, and at their tips are the beginning of new divisions.

A. M. Norman.

Hancockia eudactylota, Gosse.

In writing of the genus Hancockia in this Journal (vol. vii., No. 3, June, 1906, pp. 353–6), I have inadvertently followed foreign zoologists in calling the species described by Gosse, *H. dactylota*. The name given by Gosse was, however, *H. eudactylota* (see *Ann. and Mag. of Nat. Hist.*, xx., 1887, p. 316).

C. Eliot.
PUBLICATIONS OF THE ASSOCIATION.

Old Series.
No. 1, August, 1887 (only a few copies left, reserved for Libraries).
No. 2, August, 1888. Price 1s.

New Series (Royal 8vo).
Volume I., 1889-90, 472 pp., 28 plates.
Volume II., 1891-2, 410 pp., 14 plates.
Volume III., 1893-4, xxxviii. and 458 pp., 5 plates and 25 woodcuts.
Volume V., 1897-9, 550 pp. and 16 plates.
Volume VI., 1899-1903, 676 pp., 3 charts and 7 plates.
Volume VII., Nos. 1, 2, and 3.
Separate numbers (generally 4 to one volume), in wrappers, 3s. 6d.; to Members, 2s. 8d.

Cloth 4to, 150 pp., 18 plates (12 coloured).

A TREATISE ON THE COMMON SOLE.

By
J. T. CUNNINGHAM, M.A., F.R.S.E.,
Late Fellow of University College, Oxford; Naturalist to the Association.

Price to Members, 20s.; to Non-Members, 25s.

Medium 8vo, 368 pages. 159 Illustrations and two Maps. Price 7s. 6d. net.

THE NATURAL HISTORY OF THE MARKETABLE MARINE FISHES OF THE BRITISH ISLANDS.

Prepared expressly for the use of those interested in the Sea-fishing Industries,

By
J. T. CUNNINGHAM, M.A.,
FORMERLY FELLOW OF UNIVERSITY COLLEGE, OXFORD;
NATURALIST ON THE STAFF OF THE MARINE BIOLOGICAL ASSOCIATION.

With Preface by
E. RAY LANKESTER, M.A., LL.D., F.R.S.,
PROFESSOR OF COMPARATIVE ANATOMY IN THE UNIVERSITY OF OXFORD.
PUBLICATIONS OF THE INTERNATIONAL COUNCIL FOR THE STUDY OF THE SEA.

BULLETIN
DES RÉSULTATS ACQUIS PENDANT LES COURSES PÉRIODIQUES.

Published Quarterly. Price per Volume of Four Numbers, 18 Kroner (£1).

RAPPORTS ET PROCÈS-VERBAUX DES RÉUNIONS.

Vol. II., 1903-4. Kr. 4.

PUBLICATIONS DE CIRCONSTANCE.

No. 3. Die Literatur der zehn wichtigsten Nutzfische der Nordsee. In monographischer Darstellung. 112 s., 10 T.; August, 1903. Kr. 3.

The Literature of the Ten Principal Food Fishes of the North Sea. In the form of compendious monographs. 108 pp. 10 pl. August, 1903. Kr. 3.

——— Gefrierpunkttabelle für Meerwasser.
Zusammen 13 s. September, 1903. Kr. 0.75.
No. 6. **Harry M. Kyle**: On a New Form of Trawl Net, designed to fish in midwater as well as on the ground. Preliminary notice. 8 pp. November, 1903. Kr. 0.50.

No. 11. **Martin Knudsen**: σ, Tabelle, Anhang zu den 1901 herausgegebenen hydrographischen Tabellen. 23 pp. May, 1904. Kr. 0.75.

No. 13A. Die Ostsee-Fischerei in ihrer jetzigen Lage. (Erster Teil.)

No. 15. **Sigurd Stenius**: Ein Versuch zur Untersuchung der hydrographischen Veränderungen in der nördlichen Ostsee sowie im finnischen und im bottnischen Meerbusen. (Vorläufige Mitteilung.) 7 s. 5 t.

No. 16. —— Graphische Berechnung von σ, aus t und σ. 1 s.
No. 18. J. W. Sandström: Einfluss des Windes auf die Dichte und die Bewegung des Meereswassers. 6 s.
No. 20. E. Ruppin: Ueber die Oxydierbarkeit des Meerwassers durch Kaliumpersulfat. 9 s.
(No. 15–20. Ensemble 37 pp. 5 pl. et 3 fig. October, 1904. Kr. 1.50.)
No. 23. V. Walfrid Ekman: On the use of Insulated Water-Bottles and Reversing Thermometers. (Communications du Laboratoire central à Christiania No. 2.) 28 pp. 2 pl. 8 fig. April, 1905. Kr. 1.
No. 24. V. Walfrid Ekman: Kurze Beschreibung eines Propell-Strommessers. (Communications du Laboratoire central à Christiania No. 3.) 4 s. 1 t.
No. 25. O. Pettersson: Beschreibung des Bifilar-Strommessers. 6 s. 1 t.
No. 27. V. Walfrid Ekman: An Apparatus for the Collection of Bottom-Samples. (Communications du Laboratoire central à Christiania No. 4.) 6 pp. 5 fig. August, 1905. Kr. 0.50.
No. 28. Bericht über die Anstalten zur Vermehrung des Lachses und der Meerforellen in den Flüssen der Ostsee. Im Auftrage der Kommission C 1, unter Mitwirkung von Prof. Dr. O. von Grimm (Russland), von dem deutschen Seefischerei-Verein (General-Sekretär Prof. Dr. H. Henking) (Deutschland) und von Fischereikonsulent Chr. Levinsen (Dänemark), bearbeitet von dem Geschäftsführer Dr. Fil. Trybom. 34 s. November, 1905. Kr. 0.75.

No. 30. **Rolf J. Witting**: Kurze Beschreibung eines elektrisch registrierenden Strommessers. 8 s. Textfig.

No. 31. — — Etiches über Strommessung. 11 s.

No. 32. **Charles Atwood Kofoid**: A Self-closing Water-bucket for Plankton Investigations. 10 pp. 4 fig. December, 1905. Kr. 0.50.

No. 34. **Fridtjof Nansen**: Methods for Measuring Direction and Velocity of Currents in the Sea. With an Appendix by Dr. V. Walfrid Ekman. 42 pp. 2 pl. and 31 fig. February, 1906.

Published on behalf of the International Council
by
ANDR. FRED. HÔST ET FILS,
COPENHAGEN.
OBJECTS OF THE

Marine Biological Association of the United Kingdom.

The Association was founded at a Meeting called for the purpose in March, 1884, and held in the Rooms of the Royal Society of London.

The late Professor Huxley, at that time President of the Royal Society, took the chair, and amongst the speakers in support of the project were the late Duke of Argyll, the late Sir Lyon Playfair, Lord Averbury, Sir John Hooker, the late Dr. Carpenter, Dr. Günther, the late Lord Dalhousie, the late Professor Moseley, the late Mr. Romanes, and Professor Lankester.

The Association owes its existence and its present satisfactory condition to a combination of scientific naturalists, and of gentlemen who, from philanthropic or practical reasons, are especially interested in the great sea fisheries of the United Kingdom. It is universally admitted that our knowledge of the habits and conditions of life of sea fishes is very small, and insufficient to enable either the practical fisherman or the Legislature to take measures calculated to ensure to the country the greatest return from the "harvest of the sea." Naturalists are, on the other hand, anxious to push further our knowledge of marine life and its conditions. Hence the Association has erected at Plymouth a thoroughly efficient Laboratory, where naturalists may study the history of marine animals and plants in general, and where, in particular, researches on food-fishes and molluscs may be carried out with the best appliances.

The Laboratory and its fittings were completed in June, 1885, at a cost of some £12,000. Since that time investigations, practical and scientific, have been constantly pursued at Plymouth. Practical investigations upon matters connected with sea-fishing are carried on under the direction of the Council; in addition, naturalists from England and from abroad have come to the Laboratory, to carry on their own independent researches, and have made valuable additions to zoological and botanical science, at the expense of a small rent for the use of a working table in the Laboratory and other appliances. The number of naturalists who can be employed by the Association in special investigations on fishery questions, and definitely retained for the purpose of carrying on those researches throughout the year, must depend on the funds subscribed by private individuals and public bodies for the purpose. The first charges on the revenue of the Association are the working of the seawater circulation in the tanks, stocking the tanks with fish and feeding the latter, the payment of servants and fishermen, the hire and maintenance of fishing-boats, and the salary of the Resident Director and Staff. At the commencement of this number will be found the names of the gentlemen on the staff.

In the summer of 1902 the Association was commissioned by His Majesty's Government to carry out in the southern British area the scheme of International Fishery Investigations adopted by the Conference of European Powers which met at Christiania in 1901. In connection with this work a laboratory has been opened at Lowestoft.

The purpose of the Association is to aid at the same time both science and industry. It is national in character and constitution, and its affairs are conducted by a representative Council, by an Honorary Secretary and an Honorary Treasurer, without any charge upon its funds, so that the whole of the subscriptions and donations received are devoted absolutely to the support of the Laboratory and the prosecution of researches by aid of its appliances. The reader is referred to page 1 of the Cover for information as to membership of the Association.
CONTENTS OF NEW SERIES, Vol. VII., No. 4.

 Balance Sheet, 1905-1906 434

2. Notes and Memoranda 436

NOTICE.

The Council of the Marine Biological Association wish it to be understood that they do not accept responsibility for statements published in this Journal excepting when those statements are contained in an official report of the Council.

TERMS OF MEMBERSHIP.

<table>
<thead>
<tr>
<th>Category</th>
<th>£</th>
<th>s</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composition Fee</td>
<td></td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Founders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governors</td>
<td></td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

Members of the Association have the following rights and privileges: they elect annually the Officers and Council; they receive the Journal of the Association free by post; they are admitted to view the Laboratory at Plymouth, and may introduce friends with them; they have the first claim to rent a place in the Laboratory for research, with use of tanks, boats, &c.; and have access to the books in the Library at Plymouth.

All correspondence should be addressed to the Director, The Laboratory, Plymouth.
PATRON.
HIS MAJESTY THE KING.

OFFICERS AND COUNCIL.

President.
Prof. E. Ray Lankester, LL.D., F.R.S.

Vice-Presidents.
The Duke of Abercorn, K.G., C.B.
The Duke of Bedford, K.G.
The Earl of St. Germans.
The Earl of Ducie, F.R.S.
Lord Avebury, F.R.S.
Lord Tweedmouth, P.C.
Lord Walsingham, F.R.S.
The Right Hon. A. J. Balfour, M.P., F.R.S.

The Right Hon. Joseph Chamberlain, M.P.
Sir Edward Birkbeck, Bart.
Sir Michael Foster, K.C.B., F.R.S.
A. C. L. Günther, Esq., F.R.S.
Sir John Murray, F.R.S.
Prof. Alfred Newton, F.R.S.
Rev. Canon Norman, D.C.L., F.R.S.
Edwin Waterhouse, Esq.

COUNCIL.

Elected Members.
G. L. Alward, Esq.
Prof. T. W. Bridge, D.Sc., F.R.S.
F. Darwin, Esq., F.R.S.
Sir Charles Eliot, K.C.M.G.
G. Herbert Fowler, Esq., M.A.
J. Stanley Gardiner, Esq., M.A.
S. F. Harmer, Esq., Sc.D., F.R.S.
E. W. L. Holt, Esq.
J. J. Lister, Esq., F.R.S.
H. R. Mill, Esq., D.Sc.
Prof. E. A. Minchin, M.A.
Prof. D'Arcy W. Thompson, C.B.
R. N. Wolfenden, Esq., M.D.

Governors.
Prof. G. C. Bourne, D.Sc. (Oxford University).
Prof. W. A. Herdman, D.Sc., F.R.S. (British Association).

Chairman of Council.
A. E. Shipley, Esq., D.Sc., F.R.S.

Hon. Treasurer.
J. A. Travers, Esq., Tortington, Arundel.

Hon. Secretary.
E. J. Allen, Esq., D.Sc., The Laboratory, Citadel Hill, Plymouth.

PERMANENT STAFF.
Director—E. J. Allen, Esq., D.Sc.
Naturalist in charge of Fishery Investigations.
W. Garstang, Esq., M.A., D.Sc.

Assistant Naturalists for the International Investigations—
W. Wallace, Esq., D.Sc.
R. A. Todd, Esq., D.Sc.
A. E. Hefford, Esq., B.Sc.

Hydrographer (International Investigations)—D. J. Matthews, Esq.
Some Results of the International Fishery Investigations.

By

Jas. Johnstone.

It is always an unsatisfactory task to attempt to summarize the results of an extensive piece of scientific work while this is still in progress. The conclusions made during the course of a series of researches are necessarily tentative ones, and subject to more or less modification when the work comes to an end. Even the main facts elicited during the investigation do not at the time present themselves in their real proportions. One fails to appreciate the importance of some, and may be tempted to give emphasis to others which do not possess the significance assigned to them. Such considerations apply with special force to the following sketch of the main results apparent so far from the work of the International Fishery Investigations in the Northern European seas. Nine countries—Britain, Belgium, Denmark, Germany, Finland, The Netherlands, Norway, Russia, and Sweden—are engaged in these researches. Each country has its own staff of scientific men (and women); its own exploring vessels and laboratories; and its own publications.* Controlling and supervising all this work is the International Council, operating through the Bureau at Copenhagen, and the Central Laboratory at Christiania.

Common plans and programmes of work were arranged by the Council at the outset of the investigations and at various times since then; but while this is the case, each country is still at liberty to “fight for its own hand.” It will easily be seen then that the co-ordination of the

* For the English reader the following are the most important publications:—

The Rapports et Procès-verbaux of the Council, especially vol. iii.

The Publications de Circumstance of the Council.

The Danish *Meddelelser fra Kommissionen for Havundensigelse* (in English).

The German *Beteiligung Deutschlands an den Internationalen Meeresforschung*.

There are of course other publications, but the above are the most noteworthy and generally interesting.

NEW SERIES. VOL. VII. NO. 5. OCTOBER, 1906.
numerous researches, and the discussion of the results obtained in relation to each other, must be a task of considerable difficulty, and indeed cannot properly be undertaken until the conclusion of the series of investigations. It is most necessary that the reader should bear this in mind in following the present account of the International Fishery Investigations.

The International Fishery researches fall under three main categories: (1) the hydrographic work, which deals with physical investigation on the constitution and movements of the water in our northern seas; (2) the purely biological work both strictly zoological and bionomical; and (3) fishery investigations consisting of the fishery experiments involving the use of commercial and research fishing gear, and of statistical studies. I will take these main lines of research in the above order.

The Hydrographical Investigations.

I think it necessary to give a very short account of the topography of the sea bottom in the area under investigation, though our knowledge of this was obtained previous to the inception of the International Fisheries work, and has not been materially changed in the course of this. It is well known that the British Isles are situated on a submarine plateau which forms part of the European "Continental Shelf." If an imaginary line be drawn in this area so as to connect all points where the sea is 100 fathoms in depth, it will be found that the British Islands are included within it. Such a line will enclose an area which includes a considerable portion of the Atlantic to the west of Ireland and Scotland, the Irish Sea, the English Channel, and the North Sea with the exception of a deep depression which skirts the coasts of Norway and Sweden. Over the greater part of this area the sea is less than 300 feet in depth, and with the exception of two or three isolated "deeps" is everywhere less than 600 feet in depth.

From the north of Scotland, and extending in a north-westerly direction, is a submarine ridge which connects together the British submarine plateau with the plateaux on which are situated the Faeroe Isles and Iceland. Between Greenland and Iceland, and between Iceland and the Faeroe Isles, are extensive banks over which the sea is from 200 to 300 fathoms in depth. Then joining the Faeroes to the British plateau is a narrow ridge—the Wyville-Thomson Ridge. To the north-east of this ridge the sea bottom rapidly sinks down, forming a channel of over 500 fathoms in depth, deepening to form the Norwegian sea, with a maximum depth of nearly 2000 fathoms. On the south-west side of the ridge the sea bottom as rapidly sinks down into the abysses of the Atlantic Ocean. The Wyville-Thomson Ridge
forms the "watershed" between two deep-water basins differing conspicuously from each other. On the top of the ridge the water may have a bottom temperature of 2° C. On the southern slopes it is washed by water with a relatively high temperature, 6° C. to 10° C., and even down to a depth of 700 metres the temperature may be as high as 6°. On the other hand, the temperature falls rapidly as we descend the northern slopes towards the Norwegian sea, until we find in the deeps of the latter a mass of sea water the temperature of which is, with one exception, lower than anywhere else in the oceans of the earth. In the deepest part of the Norwegian sea the temperature of the water is 1°-3 C. below the freezing point of fresh water.

Over practically the whole of the British and North Sea plateau, on the Norwegian coastal banks, the Faeroese and Icelandic banks, the Baltic and the coastal banks in the Barentz Sea, commercial fishing is carried on. Though the tendency is always for the extension of trawl and line fishing into deeper water, yet the greater part of the Norwegian sea is not fished over. Still this extensive area is most interesting from the point of view of the investigator, and many fishing experiments have been made therein.

This then is the nature of the area over which the International Fishery Investigations are being carried on. The accompanying Chart (Fig. 1) shows how it has been divided up so as to apportion the work between the various countries participating in the scheme of research.

Hydrographic investigations have for their aim the determination of the physical characters of the sea water in the different regions of the extensive area mentioned above. The physical characters to which I allude are: (1) the temperature; (2) the salinity, that is, the weight of solid saline matter contained in 1000 grammes of sea water; and (3) the nature and abundance of the gases (oxygen, nitrogen, carbonic acid, sulphuretted hydrogen, etc.) dissolved in it. Other characters are from time to time of importance, but the hydrographic condition of any portion of sea water is usually defined by its temperature and salinity, and the determination of these are the essentials of marine hydrographic research. Not only do these characters vary from time to time in the same region—both temperature and salinity are, for instance, different in the water covering the Dogger Bank in winter and summer—but they may vary with the locality. The water on the Dogger may be physically very different from that present in the Faeroe-Shetland channel or in the Cattegat. The determination, then, of both temperature and salinity, simultaneously over the whole area, at periodical times, is the obligatory hydrographic work at present carried on by the International Fishery organization.
Fig. 1. Chart showing the lines of observation recommended by the Stockholm conference, adopted with slight modifications by the Christiania conference.
A good deal of scientific work of this kind was carried on, both by the Scandinavian hydrographers and by the Scottish Fishery Board, prior to the beginning of the International Investigations. There was, for instance, a notable expedition in 1893, in the course of which results of some value were obtained; and, both in Norway and Sweden, frequent investigations, by vessels equipped for the purpose or by commercial vessels, have been made. I refer, of course, to hydrographic work in the North European area. It is well known that such research always formed a prominent part of the work of the great exploring voyages. But much of the research carried on in this part of North European waters is now known to be faulty; and the results obtained cannot be utilized for comparison with those now being procured by the International organization. Methods were faulty in the past—particularly the methods of obtaining water samples and temperatures from deep-water levels or from the sea bottom. Even the determination of the salinity of the sample was not always carried out with accuracy. It was not until the creation of the International organization that co-ordination became possible. It was essential that the work should be carried on under the supervision of a central authority, and that large numbers of observations should simultaneously be made over a very extensive area. It was further essential for strict accuracy that water samples should be obtained and temperatures observed by instruments of identical pattern. When the International scheme was initiated in 1902 all these things became practicable. The region under investigation was divided into a number of sub-areas, one or more of which were allotted to each of the participating countries. In each of these sub-areas lines were marked out traversing significant portions of the sea area, and on each line were laid down a number of "stations." A station is a stopping-place for the exploring vessel at which observations are made. On reaching the station an ordinary sounding is made and a sample of water from the surface of the sea is taken, part of which is reserved for analysis. The temperature of the sea surface being determined, a series of hydrographic soundings is then made.

Not the least creditable achievement of the International Fisheries researches is the perfection of the water-bottle. In the latest form of this instrument, which was designed by Professors Pettersson and Nansen, we have an almost perfect means of collecting samples of water from the sea bottom or at any other depth, and at the same time determining the temperature of this water in situ. The water-bottle in principle consists of a central chamber, in which is fixed a delicate deep-sea thermometer. Round this central chamber are a number of concentric cylinders of ebonite and brass. The bottle is lowered in an open condition, and when the required depth has been attained it is
closed by means of a "messenger," which slides down the line carrying the bottle. Both central and concentric chambers are then filled with the water present at the depth to which the instrument is lowered: the thermometer registers the temperature of this water in the central chamber, and this being surrounded by three or four concentric shells of water, heat is only very slowly conducted in either direction through these water walls. In hauling the water-bottle the temperature does not, therefore, appreciably rise. These soundings are made for a number of depths, for instance, 5, 10, 20, 50, 100 metres, and the temperatures of these separate water strata are so obtained.

Each exploring vessel makes one such cruise at regular intervals, and the cruises over all the International area are made as nearly as possible at the same time. At least one cruise is made quarterly, and the months selected are February, May, August, and November. On the return of the vessel to her base, the water samples collected are sent ashore for analysis, and the salinity at least is determined. What is actually done is to estimate the percentage of chlorine (or rather total halogens) present by precipitating these substances, according to various methods, by nitrate of silver. The total solids in solution are then calculated from the values obtained in the analyses by means of hydrographic tables. The highest degree of accuracy is necessary, and this has only been made possible by means of check analyses made by the Central Laboratory, under the control of the International Council. The principal functions of this institution are the supply of the instruments of research, the preparation of "standard" sea water for checking the analyses made by the various national laboratories, and the preparation of the hydrographic tables.

The results obtained—salinitities, temperatures, etc.—are then sent to the Bureau of the International Council to be published in the Bulletin des Résultats. The values are marked on charts of the areas under investigation, so that synoptical representations of the hydrographic condition of the sea are prepared. Such charts of temperatures and salinities, prepared for successive years or portions of a year, are pictorial representations of the circulation of the waters of the North Atlantic seas.

The immediate cause of these water movements in the North European area is the Gulf Stream circulation. It is now generally known, though one may still find it stated otherwise in the textbooks, that the actual Gulf Stream does not at any time reach the shores of the British Islands. Issuing from the Gulf of Mexico, this great current forms a closed eddy in the North Atlantic Ocean, and its waters circulate round a portion of that sea, characterized by the presence of floating seaweed and a peculiar fauna. This is the "Sargasso Sea." In 1889 the limits
of the Gulf Stream eddy were investigated.* The water of 36 and 37 salinity touched the Azores in March of that year, but not the coasts of Africa or Europe. Between these coasts and the stream was water of less salinity than 36. In November a great extension of the eddy had taken place, and in that month it had actually touched the coasts of Africa and Southern Europe. With this extension of heavy and relatively warm sub-tropical water had also occurred an extension of the area containing sub-tropical microscopic drifting organisms. In March of the following year the limits of the Gulf Stream eddy had again contracted.

The Gulf Stream circulation, though it never actually reaches our northern latitudes, thus undergoes a periodic expansion and contraction. Now analogous to these gigantic annual pulsations there occur hydrographic events in the seas of Northern Europe. A periodic flooding of the North Sea, the Skagerak, the Norwegian sea, and even the remote Barentz Sea, with water of Atlantic origin, occurs annually in such a manner as to render it an undoubted fact that the oceanic circulation in these regions is dependent on that of the Gulf Stream, and ultimately on the equatorial current. In some way or other a great stream or drift takes origin in the Gulf Stream eddy and invades our northern seas. This is the "European stream." It is sometimes said that it is the result of the propulsion of surface water by the prevailing south-westerly cyclonic storms which reach our latitudes. This may be so, but the cause of the Norwegian stream is more probably a complex thermo-dynamical one. Anyhow, there is a continual drift of relatively warm and dense water from the south-west towards Northern Europe. Just as the Gulf Stream eddy pulsates, so does this drift of water become augmented or contracted. And with these augmentations and contractions of the European stream are correlated changes in the barometric pressure and temperature of the atmosphere, and in the prevailing fisheries of the regions into which it penetrates.

The chart† (Fig. 2) reproduced on page 444 illustrates the distribution of the European stream in August, 1896. This chart was constructed from observations made prior to the beginning of the International Investigations, and the results obtained since 1902 indicate that the distribution of the stream in 1896 was rather abnormal. A glance at the chart, however, will illustrate what may perhaps be regarded as the maximum flooding of the European seas by Atlantic water. The stream has invaded the Icelandic coastal regions, and has penetrated into the Denmark strait between Iceland and Greenland. Impinging on the

* Cleve, Ekman, and Pettersson, *Variations annuelles de l'eau de surface de l'océan atlantique.*
† Petermann's *Mittheilungen,* 1900, Heft i. n. ii.; see also *Rappts. et Prov.-verb.*, vol. iii., 1905, p. 4.
western coasts of the British Isles, the stream divides, part passing through the English Channel into the North Sea. Then flowing north, it is shown filling up both the Iceland-Faeroe and the Faeroe-Shetland channels. The International researches have shown that this distribution is quite unusual; as a very general rule the Atlantic stream passes between the Faeroes and Scotland only, and to a very slight extent through the other channel. It should be noted that the whole of the oceanic basin from surface to bottom south of the Iceland-Scotland ridge is filled with Atlantic water. But the effect of the stream washing on the ridge is such that the flow of Atlantic water is interrupted, and north of the ridge this warm and dense water lies only on the surface. After passing over this ridge the stream, which is now the "Norwegian branch of the European stream," is deflected to the east, and we see that it rounds the north of Scotland and enters the North Sea.
Great attention has been directed to the flow of the European stream on the Wyville-Thomson Ridge, and the investigations made since 1902 by the Scottish hydrographers in this region have shown that the conditions here are very complicated. Not only have we to consider the fluctuations of the Atlantic stream itself, but we have also to consider the influence exerted on the flow of the current by the North Polar stream. In the chart this is represented by the broken oblique lines. The Polar stream, which consists of cold and relatively light Arctic water flowing to the south, is broken into two sub-streams. One of these, the Greenlandic stream, is an ice-bearing one, and flows through the Denmark strait. The other, which does not usually carry ice, is the east Icelandic Polar stream, and flows south past the east coast of that island. This stream attains its maximum volume in spring, and it may then obstruct the flow of Atlantic water north of the Faeroe-Shetland channel and so cause this to enter the North Sea in increased volume. In the winter, when the flow of Arctic water southwards is at its minimum, the passage northwards of Atlantic water is facilitated. Not only does the varying intensity of the Polar stream affect the northerly passage of Atlantic water, but we have also to deal with an undercurrent of Arctic water which flows beneath the Atlantic water in an opposite direction, and also with an outflowing stream of brackish water from the Baltic, which also exerts its influence on the intensity of the Norwegian stream. Altogether the hydrographic conditions in the Faeroe-Shetland channel are very complex, and it has been, and is still, a task of much difficulty to unravel the course of the currents in this locality.

After passing the Faeroes the Norwegian stream flows on to the north-east, covering a variable area of the surface of the Norwegian sea with water which is warmer and saltier than that which lies beneath. Passing the meridian 25° E. it then rounds North Cape and enters the Barentz Sea. The Russian hydrographers have investigated the physical conditions of this area with great success,* and have shown that this North Cape current of Atlantic water and its ramifications possess boundaries as constant geographically as those of rivers. Annually the remote Barentz Sea is invaded by a heat wave, the result of the seasonal fluctuation of the Norwegian stream. The cold season or winter of this sea is in June. Beginning in that month is the inflow of Atlantic water, which attains its maximum intensity in November. In the interval between June and November the temperature of the bottom water in the Barentz Sea has been raised from 1° C. to about 6° C., and corresponding variations in the salinity of the water have

been observed. Then in November the inflow of the genial Atlantic water ceases and the Barentz Sea is again invaded by the cold Arctic water of the Polar basin.

In the North Sea similar variations in the nature and origin of the water present have been observed. A good deal of attention was paid to this question even before the initiation of the International Investigations, but since 1902 our knowledge of these variations has been considerably increased. The effect of the seasonal fluctuations in the volume of the Norwegian stream is well shown by the investigations of the Scottish, Danish, and Dutch sections of the organization, and will easily be understood by a glance at the charts, which illustrate the hydrographic condition of the surface of the North Sea in 1903 and 1904. Fig. 3 represents the conditions in August, 1903, and it will be seen that by far the greater portion of the area is covered with water of 34 to 35 per 1000 salinity. This may be called North Sea water.

Then to the eastward there is a wide edging of water which is less salt, containing less than 34 parts of solid matter per 1000. This is Bank water, and results from the fusion of North Sea water with the fresh water from continental rivers and from the outflowing Baltic stream. In this month Atlantic water is seen to be present in the north-west part of the North Sea; that is, the Norwegian stream has begun to flow round the north of Scotland, and covers the deeper part of the North Sea, north of the Dogger Bank.

![Salinity of Surface-water, January, 1904](image)

Fig. 4.

So far there is no indication of the entrance of Atlantic water into the North Sea area from the southern entrance. This, however, is represented in Fig. 4, which shows the conditions obtaining in January, 1904. Here we see that the northerly tongue of Atlantic water proceeding from the Faeroe-Shetland channel has become much larger and now covers quite an extensive area of the sea. Towards the south Atlantic water is also entering through the Straits of Dover, and these north and south influxes of salt water are apparently approximating to each other. In the next chart (Fig. 5), which represents the conditions
448 SOME RESULTS OF THE INTERNATIONAL FISHERY INVESTIGATIONS.

in March, 1904, a further development of the Atlantic flooding has taken place. Both the northern and southern tongues have become largely augmented, and Atlantic water now covers quite a considerable fraction of the North Sea area. The influx of water from the European stream into the North Sea therefore begins in August, gathers force during the winter, and attains a maximum in early spring. From thence onwards the flooding diminishes.

The work of the Swedish hydrographers, carried out under the

International organization, in the Skagerak, and that of the Danes in the Cattegat and the Belts, show that the same ebb and flow of Atlantic water can be felt in those seas. "During the autumn," says Pettersson,* "a heat wave from the Skagerak penetrates into the Baltic." From August until November Atlantic water accumulates in the deep layers of the Skagerak. In August this is overlain by surface water of low salinity and a relatively high temperature. When in November this accumulation of salt water has reached its maximum, both of volume

and temperature, it lies beneath surface water which is now much colder than that at the bottom. The effect of this flooding of the deeper regions of the Skagerak with warm dense water is that an undercurrent of relatively warm Bank water is set up, and this passes through the Cattegat and the Belt seas into the Baltic proper, where it displaces the colder water which had accumulated during the previous winter. In most years this undercurrent of warm Bank water may pass as far into the Baltic as east of Bornholm.

Finally, the hydrographic observations made in the English Channel by the Marine Biological Association* show that the same periodic flooding by warm and dense Atlantic water takes place in this area. In the Channel, on account of the rapid and complicated tidal streams and the contracted sea area, the conditions are more complex and difficult of investigation. We have here to deal with two contributory sources of water: (1) a current of relatively low salinity which flows southwards from the Irish Sea; and (2) Atlantic water which flows northwards from the Bay of Biscay. The conditions are still further complicated by the presence of coastal water. A general drift of water up Channel has been observed, and successive areas of low and high salinity water may pass to the east. During the summer and early winter of 1903 the low salinity water of the Irish Sea predominated, but in the winter the Channel was largely filled with Atlantic water flowing past Ushant in a north-easterly direction.

The main results which already appear from a study of the hydrographic work of the International Fisheries research organization are these: (1) the flooding of the seas of Northern Europe by a stream of comparatively warm and heavy Atlantic water which takes origin in the Gulf Stream circulation; and (2) the periodicity of this Atlantic drift. Once a year the area covered by the gigantic Gulf Stream swirl expands and contracts, and once a year, but a little later, the continual northerly flow from the Atlantic to Britain and Northern Europe also is augmented and diminished. It is in the remoter parts of the area invaded by the European stream that the pulsations of the latter can most easily be felt. In the English Channel, the North Sea, the Cattegat and Baltic, the shores of Iceland, and the Barentz Sea, the annual heat wave set up by the replacement of the colder and fresher waters of those seas by the warmer and saltier waters of the Atlantic has now been observed and studied.

The efforts of the International organization are now being concentrated, so far as hydrographic research goes, on the study of the

varying periodicity of the Atlantic flood and ebb. We have seen that
the Gulf Stream circulation is itself periodic in that its intensity is
greatest in November and least in March. But that the period of greatest
intensity varies slightly from year to year is now tolerably certain,
though this problem has by no means received the attention it deserves.
So also with the appearance of the Atlantic stream in the ultimate seas
of Northern Europe; on the whole an annual periodicity has been
observed. Year after year the Atlantic flooding occurs at much the
same time: the temperature of the water rises, and the salinity
increases in such a manner as to eliminate the possibility that these
changes are due to local climatic influences, and to render it certain
now that they are due to a great oceanic water circulation affecting at
nearly the same times areas far apart from each other. But there are
perturbations.

The study of these perturbations belongs to the future, but already
there are evidences of regular disturbances in the periodic ebb and flow
of the Atlantic current. In thirty-nine years’ records of the temperature
of the atmosphere in the central part of Sweden, and that of the sea off
the coast of Norway during the cold seasons, a two-yearly period is
clearly apparent. Both in the air and in the sea maximum and
minimum temperatures occur with great regularity every two years.
This is the phenomenon known to meteorologists as that of the “odd
and even years.” As a rule, the “even” years of the last thirty have
had more temperate winters than the “odd” ones. That this observa-
tion applies equally to the temperature of the sea indicates that the
cause of the biennial periodicity of the air temperature is a hydro-
graphic one. In addition to this smaller perturbation we can obtain
elusive glimpses of other larger disturbances—secular variations due
probably to cosmical causes—in the regularity of the yearly flow of the
European stream. Biological phenomena afford indications of these
larger irregularities. Since the year 859 the appearance of winter
herrings in the Skagerak has been recorded, and it is observed* that
the fishery has returned with intervals of, on the whole, 111 years.

Both climatic changes and changes in the abundance of the fisheries
are thus connected with hydrographic phenomena. One of the most
valuable means of research to the meteorologists of the future will be
hydrographic investigation, and for the rational study of the fisheries
this line of research will prove no less useful. Already it is beyond
doubt that hydrographical and biological phenomena are closely related,
and the work of the next few years is likely to furnish further instances
of this connexion.

Biological Investigations.

The results of the strictly biological investigations carried out under the auspices of the International organization are less novel than those hydrographical results to which we have already referred. Sea fisheries research, both in Great Britain and on the continent of Europe, has in the past been largely concentrated on the elucidation of the life histories of fishes and other edible marine animals. Beginning in 1865 with G. O. Sars' classical investigation of the spawning of the cod on the fishing grounds off the Lofoten Islands, this work was developed at first principally by McIntosh and the St. Andrews school of zoologists; and when fisheries investigation received official sanction and support in this country, it was very actively pursued in Scotland by the naturalists of the Fishery Board, and afterwards in England by the Marine Biological Association. When in 1902 the International Investigations were commenced a very considerable store of knowledge of this branch of fishery science already existed,* and subsequent work in the countries participating in these researches has been devoted to filling up lacunae in those results and in synthesizing the investigations by the adoption of methods of research on a larger scale than was previously possible and by new forms of apparatus.

It is unnecessary to recapitulate here the main features of our knowledge of the life histories of northern fishes.† The reader will remember that the great majority of North European food fishes reproduce during a limited period of the year—three months or so, some time between the end of the year and midsummer—the precise dates and durations of these breeding seasons depending both on the species of fish and on the localities under consideration. The exact incidence of the breeding season is not constant from year to year, but varies, and one of the main results of the International hydrographic investigations has been to associate the onset and duration of the breeding season with the hydrographic condition of the portion of the sea considered. Generally speaking, the majority of British food fishes spawn during the months March to June.

The eggs produced by these fishes are now fairly well known, though, of course, our knowledge on this point is not quite exhaustive. Most fish eggs belong to the pelagic type—that is, they are lighter than sea water of normal constitution and float at or near the surface. But the

* This has been admirably summarized by P. P. C. Hooe in No. 3 of the Publications de Circonstance, August, 1903.
† See also Cunningham's Marketable Marine Fishes, 1896; Holt's Account of the Grimsby Trawl Fishery (published by the Marine Biological Association); and McIntosh and Masterman's Life Histories of the British Marine Food Fishes, 1897.
eggs of the herring are of the demersal type, and when spawned by the parent sink to the sea bottom, where they adhere to whatever objects with which they come into contact. Upon this difference depend differences in the further distribution and development of the two classes of eggs. The pelagic eggs are drifted anywhere in the upper layers of the sea, according to the force and direction of the surface drift of the water, whether the latter be due to tidal streams, to the influence of prevailing or exceptional winds, or to the larger movements of sea water which we have been considering as hydrographic events. These passive migrations carry pelagic fish eggs from the regions inhabited by the parent fishes at the spawning seasons into others where the conditions influencing their further development may be very different, and it is in respect of this influence upon fish eggs and their development that hydrographic investigation may be expected in the near future to be of much service to the fishery investigators. Demersal eggs, on the other hand, being deposited in the regions chosen by the parent fishes, and at the bottom of the sea, where hydrographic changes are less violent, are assured of more constant conditions for their development. It is probably because of these facts that the great summer herring fishery of the East British coast waters is so constant in its appearance and duration; and to them is due also the well-marked variations which herring exhibit in different parts of this extensive area. "Races" of herring, if such really exist, are probably due to the fact that the various herring shoals frequent the same sea areas from year to year, and that their eggs develop in the regions where deposited.

The development of the eggs of the various species of food fishes, and the subsequent life history of the larvac, which hatch out after a fortnight or so of incubation, have been worked out in considerable detail in the past. The tracing out of the development of the embryo and larva was a task of no great difficulty, and could easily be carried out at the marine laboratories, even at the small ones, with no great wealth of apparatus. All that was necessary was to procure the fertilized eggs of the species to be investigated. This was usually done by "stripping" mature fishes, that is, by expressing the ripe eggs and spermatozoa from the reproductive organs and then keeping the eggs and larvae in running sea water in small tanks and patiently studying the changes taking place during the developmental period. So we find in the literature, English, Danish, Norwegian, and German, detailed descriptions of the life history of most edible fishes during the first few weeks of life. Comparatively little has been added to this literature by the International investigations of the last four or five years. It is with regard to the further life history of the fish that most recent
work has been concerned. After the hatching of the larva from the egg there is a period of growth of which little is known. Some weeks after hatching the "metamorphosis" of the larva is effected. The little fish now takes on the shape of the adult, and gradually assumes the habits and food of the latter. During the period of juvenescence the life history must be studied in the sea itself, and the growth and migrations observed in specimens taken in the most diverse localities by means of special fishing apparatus. Neither the commercial nets of the fishing fleet nor the older dredges or "townets" of the naturalists afford any assistance in these investigations. Altogether new fishing apparatus have had to be devised, and it has been necessary to carry out researches far out at sea, in regions where fishery work was, under the older methods, usually quite impracticable.

Such investigations have been carried out by the naturalists of the Danish, Norwegian, and German sections of the International organization by means of specially designed fishing apparatus. The "Scherbrutnetz" was designed by Ehrenbaum and Strodtmann,* of the Heligoland Biological Station, for the capture of larval fishes. This instrument is a very large townet with a square opening. The special feature of the apparatus is the "sheering-board," a large board attached to the lower edge of the mouth of the net, and inclinable at any angle; by means of this contrivance, which acts in the same way as the otter-board of the commercial otter-trawl, the net can be towed at any desired depth. The "young-fish trawl" of Petersen† is a still more effective instrument, which is constructed on the principle of the large otter-trawl, and is able to fish at the sea bottom or at any depth from the surface. The net, being composed of material with a very fine mesh, is adapted to catch very small fishes.

The invention and use of these two forms of fishing apparatus are so important for the investigation of the pelagic or young free-swimming stages of edible fishes that one might almost say that their application begins a new era in fisheries research. The older surface townet captured pelagic larval fishes only in very small numbers, and it was always difficult to use this instrument with much success at the bottom or at intermediate sea levels. We know now that results obtained by the use of ordinary townets in the past were totally misleading so far as affording reliable information as to the distribution and abundance of young stages of sea fishes. Joh. Schmidt,‡ for instance, gives a record of a haul of the young-fish trawl taken from the Danish investigation steamer Thor off the coast of Iceland, at a depth of 79 metres (about 40 fathoms),

† Skrifter af Kommission for Havundersøgelser, Nr. 1, 1904.
‡ Meddelelser Komm. Havundersøgelser, Ser. Fiskeri, Bd. i. No. 4, 1905.
which in thirty minutes captured about seven thousand specimens of young stages of pelagic and bottom-living fishes, belonging to twenty-two different species. We are assured that this haul is “far from being the richest in individuals made by the Thor.” No method of investigation practised in the past afforded this wealth of material. Not only are naturalists nowadays in possession of a means of research enabling them to obtain rich stores of material for the study of the developmental histories of fishes, but they are also able to form reliable estimates of the wealth of fish life in the sea at early stages, and to trace with some probability the migrations of the larvae and young fishes. The first results of the study of developmental histories of fishes made by the help of those fishing apparatus are published in the Danish Meddelelser. In the paper already referred to Joh. Schmidt gives the first instalment of a study of the free-swimming post-larval stages of the fishes of the North Atlantic belonging to the genus Gadus. This monograph includes the cod, coal-fish, whiting, haddock, pollock, and other less known gadoid fishes, and in it the author attempts, for the first time, a systematic description of the characters of the post-larval fishes at different stages. It is well known that the recognition of young fishes in their very early life is a task of much difficulty, and some considerable degree of uncertainty has always attended the identification of nearly allied fishes, such as the cod, haddock, and whiting, in the stages following the metamorphosis, and before the little fish assumes the well-known characters of the adult. By making a systematic study of the colour markings of the young fishes, which, it should be remembered, are quite different from those of the adult, Schmidt has been able to classify the post-larval fishes of the cod family in much the same way as the adults have been treated. The identification of these young fishes has therefore been greatly facilitated for future observers. Making use of material collected also by the young-fish trawl of the Thor, Schmidt has also given us by far the most complete accounts of the life histories of the halibut and torsk (or tusk) in the literature. The description of the series of stages of the halibut is particularly welcome, since the development of this fish is more obscure than that of any other of the flat-fishes. Again, the early stages of the long rough dab, a fish relatively common off the east coast of Britain, have been studied by Petersen, and our knowledge materially advanced.†

But by far the most important contribution to our knowledge of the early life histories of edible fishes is the discovery by Schmidt and Petersen‡ of the spawning place of the European fresh-water eel. The

* Meddelelser Komm. Havundersøg., Bd. i, Fiskeri, Nrs. 3 and 8, 1904-5.
† Meddelelser Komm. Havundersøg., Fiskeri, Bd. i. Nr. 1, 1904.
‡ Ibid., Fiskeri, Bd. i. Nrs. 5, 6, 1905.
early development of both the fresh-water eel and the conger-eel has always been very imperfectly known. It is now well known that the peculiar flat, ribbon-like, and transparent fishes called "Leptocephali" are the young stages of the fresh-water eels. Leptocephali are very rarely found on the coasts of Britain or Northern Europe; the few finds that have been made are all recorded in the literature. Nevertheless, every year in the spring and summer enormous numbers of small flat eels of varying degrees of transparency are found all along British and continental coasts. These young eels, or "elvers," are the transformed Leptocephali returning from the sea into the rivers. When the eel approaches maturity it descends the rivers to the sea, assuming as it does so a peculiar coloration, or "bridal dress." In the sea it becomes mature, spawns, and the larva which develops becomes, at an unknown time after the hatching of the egg, the Leptocephalus. Before the latter larva reaches the coasts it undergoes metamorphosis and becomes the "elver." So much has long been known, but the further questions—the character of the eggs, their development and hatching, the development of the larva, the place and time of spawning, and the duration of the embryonic and larval periods—all have been profound mysteries. The Leptocephalus is, in fact, the first stage in the development of the eel; that is well known. Of the earlier stages we know next to nothing. What we do know is due to the investigations of Grassi and Raffele in the Mediterranean, and may be summed up by saying that the eel spawns in relatively deep and warm water some distance from the land.

But this lack of knowledge of the spawning habits and development of the eels (both fresh-water and marine forms) is due, without doubt, to our hitherto very imperfect methods of investigation. Given the right form of fishing apparatus and some considerable range in the area over which this is used, and there is no doubt that all stages of the eel, from the developing egg to the Leptocephalus, should be found in abundance. This occurred to Petersen in connexion with the use of the small-fish trawl. "The Leptocephali," he says, "will surely be found, I thought, if we seek them in the right time, place, and manner." During a trip to the Faeroe Isles and Iceland in 1904 the Thor had to pass through warm and deep Atlantic water, and on fishing at a station* south-west from the Faeroe Isles on May 22nd, 1904, a single Leptocephalus was taken in the young-fish trawl. In 1905 Schmidt again succeeded in finding "great quantities of Leptocephalus brevirostris in the depths of the Atlantic."† Considered both as a contribution to the natural history of the eel, and as a fact which is likely

* 61° 21' N.; 19° 59' W.
† Meddelelser Komm. Havundersøg., Fiskeri, Bd. i. Nr. 5, 1905, p. 5.
to be of advantage for the direction of the continental eel fisheries, the importance of this discovery can hardly be over-estimated. We now know that the lack of success which has attended the innumerable attempts to find Leptocephali in shallow in-shore waters, and even in restricted sea areas, like the Baltic, the Cattegat, the North Sea, or the Irish Sea, is due to the fact that these larvae do not frequent those waters, and that the rare captures which are recorded in the literature are those of individuals the development of which has for some reason or other been greatly retarded. There is no longer any doubt that the eel does not spawn in fresh water, but must emigrate to the open sea before it can reproduce. If it is hindered from making this migration it will die without spawning. Further, the fish spawns in deep and relatively warm water in the open Atlantic, north-west and west from Scotland. To reach this region the parents must pass through the Baltic if they have been living in some of the great continental rivers, and most of the North European fresh-water eels must make a very lengthy spawning migration, in the course of which they traverse the North Sea, the Irish Channel, or the English Channel before they attain the conditions necessary for the maturation of the reproductive organs. It will readily be seen that a complete knowledge of these migration paths and seasons, such as no doubt will soon be obtained by following up these observations, must prove of great importance, not only for the development of more rational methods of fishing, but also for the elaboration of useful legislation regulating the fishery.

Following up Schmidt's discovery of Leptocephali in the Atlantic, Johansen has materially added to our knowledge of the life history of the eel in its "elver" stages. It is well known that the elvers, which are the metamorphosed Leptocephali, ascend the rivers from the sea in immense numbers in the spring of the year. But our knowledge of the elvers in the sea itself has hitherto been very scanty. Again the explanation is that they were not looked for in the proper time and manner. The young metamorphosed eels are pelagic at night, that is, they swim at some distance from the bottom in intermediate depths. During the day, on the other hand, they live on the sea bottom. In the sea the elvers are almost colourless, though they differ greatly from the leptocephaline stages. A smoky-brown pigment first appears on the tip of the tail and on the head. As the transformation from the Leptocephali to the elver stages proceeds this pigment gradually invades the rest of the body. At the same time the peculiar ribbon-like form of the Leptocephali is lost; the little fish becomes thicker from side to side and less deep from back to belly. Curiously enough, too, it becomes actually shorter from head to tail. The almost colour-

less elvers which have appeared in the sea off the coasts in the early
spring become gradually transformed, and by the middle of summer
they have taken on the form and colour of the adult eel, and have
begun to grow again after the first decrease in length which accom-
panies the larval transformation.

This is hardly the time to say anything about the researches on the
distribution and abundance of the pelagic stages of very young fry
of the marine food fishes. Many observations have been made, and
are actively being prosecuted, by the Danish and Norwegian naturalists
on the staff of the International organization, which have for their
object a complete knowledge of what becomes of the multitude of fry
which are hatched out in our seas during the spawning periods. An
essential part of such investigations is, however, the comparison from
year to year of the records obtained, and we must wait for some time
before conclusions of value have been made. Leaving aside the case
of the herring, we may say that the pelagic fry of almost any marine
food fish do not remain in the place where they are born. Nearly
all fishes shed their eggs into the sea, and these are then drifted about
from place to place at the mercy of the winds, tides, and currents.
Even when the young fishes or larvae hatch out from the eggs they are
still among the feeblest creatures which exist in the sea, and with little
or no powers of locomotion of their own, they are carried about over
extensive sea areas. What becomes of them during these pelagic
stages? The larvae are not always present in those parts of the sea
where the parents are numerous and vice versa.* Petersen, for instance
notes as remarkable that the young stages of the witch and lemon sole
are abundant in the open sea off the coasts of Denmark, but "do not
at all occur in the veritable Danish waters" inside the Skagen, that
is, in the restricted seas of the Danish islands. Nevertheless, both of
the adult fishes are present in these narrow seas in considerable
numbers, and the witch is the object of a very considerable fishery
in the Cattegat. Again, the same author† notices that there may be
great differences between the larvae of fishes taken in the open sea and
larvae of the same forms taken in in-shore waters. These differences
apply to the size of the fry and to their coloration. Do these differ-
ences represent the variations between identical fish species taken in
different sea areas? It has long been known that such "races" do
exist. Henicke, for instance, has shown that the herring captured off
different parts of the British and continental coasts present such differ-
ences as, in his opinion, are sufficient to justify the view that distinct
races of herring are met with in different areas. Cunningham and
others have concluded that different races or varieties of plaice exist

in the North Sea and adjacent waters, from the notable differences in the size at which spawning first occurs in the fish taken from these fishing grounds. Garstang has made observations of varieties among mackerel, and Dannevig and others have also shown that distinct races of cod exist. Are these variable characters of the same species of fishes inhabiting different seas transmitted to the larve, and can they be recognized in these stages? This is only one of the questions which a far-reaching investigation of the distribution of the fry of fishes may be expected to solve in the near future.

The life history of the Plaice.

When the International Fishery Investigations were begun, particular attention was directed to the detailed study of a few food fishes—the plaice, cod, and herring. All these are of great economic importance: the plaice to the North Sea Fisheries of England, Denmark, and Germany; the cod to the Norwegians; and the herring to the Scottish. We may note at the outset that the problems of the distribution and migrations of the herring are intimately connected with those of the hydrography of the sea, and in the correlation of the latter researches with the statistics of the herring fisheries, the old problem of herring migration is likely to receive solution. "We are much inclined to believe that the great summer herring fishery comes and goes with this annual ebb and flow [that of the Atlantic stream in the North Sea], and much of our recent hydrographic work, since the date of that with which the present volume deals, has been directed to the study of this important subject."*

The problem of the plaice fishery, that is, the investigation of the life history of that fish with reference to the utility of legislative restrictions on the fisheries, has, however, been approached in quite a different way. The question of extreme interest to the English and continental plaice fishermen is whether or not a size limit would be of advantage to the industry. It has been proposed over and over again in this country to render it illegal by statute to land or sell a plaice which is below a certain size. With respect to the most suitable size limit very different opinions have been expressed. In official quarters, a minimum size of 8 inches of length has been favoured. Fishery investigators and some of those engaged in the fish trades have advocated higher size limits than 8 inches, and the merits of these various proposals have been very frequently discussed. Both scientific and economic questions are to be considered in any attempt which may

* D'Arcy W. Thompson, *Fishery and Hydrographical Investigations in the North Sea, etc.*, (cd 2012), 1905, p. v.
be made to elaborate legislation of this nature. Into the latter questions we cannot enter here, although it is evident that they are at least of equal importance to the scientific issues involved. But, at any rate, no one would recommend general discussion of the question apart from far-reaching and patient investigation of the natural history of the plaice in the sea at every stage of its life. In the investigation of the latter question, so far as it has been carried out, three main lines have been followed by those engaged in the International Fishery Investigations: (1) the distribution of the plaice on the various fishing grounds, with respect to the size and age of the fish present from month to month throughout the year; (2) the migrations of the fishes; and (3) the food of the plaice. Other lines of investigation have been followed, but in the main attention has been focussed on those indicated above. The distribution has been studied by means of fishing experiments, that is, numerous hauls with trawl and other nets made by the exploring steamers on the fishing grounds frequented by the commercial vessels, and statistically by means of a study of the results of the fishery by the fishing fleets themselves and by the examination of samples of fish caught by the trawlers and examined in detail afterwards. The fishery experiments have been made by the various scientific vessels and naturalists of the national staffs, while the statistical work has been mainly carried out by the Bureau of the International Council and by the English Board of Agriculture and Fisheries.

Now the method of fishing experiments is, of course, of limited application, and conclusions derived from such results must be cautiously made. Like all scientific methods which depend on the examination of "samples," it is open to the objection that the sample may not really represent the general conditions. Such objections, for instance, would apply to thermometric or barometric charts representing the meteorological conditions of an extensive land and sea area at a given time. That is, the readings of the instruments, while true for the immediate area, might differ notably from those which would be obtained in an adjacent area where no readings had been made. The results obtained by fishing with a trawl net on twelve days in the year could not be compared, with any degree of certainty, with the results obtained by fishing with the same trawl on the twelve corresponding days of the following year in the same place. That is to say, so many accidental circumstances might influence the nature and amount of the catches made by the net that it would be risky to conclude that fish were more or less numerous at the given place in one year than in the other. But though such limitations must be imposed on the usefulness of fishery experiments, it is nevertheless the case that these are
essential if we wish to understand the conditions of the sea fisheries. If we wish to know, for instance, whether small plaice are more abundant near the shore than in the offing, or whether they are more abundant in shallow than in deep water, or whether the plaice near the shore are larger or smaller than those off-shore, or what is the predominant kind of fish present from time to time on any part of the sea bottom; in all these, and in many other cases, it is only by making experiments with nets of different forms that we can obtain the desired information.

Such fishery experiments, made chiefly by means of the large commercial otter-trawl net, have been carried out by both the British and continental exploring vessels. It would be unprofitable at the present time to attempt to make exhaustive analyses of the results obtained. These are still incomplete—indeed, the results of the Scottish experiments are not yet published. It is when the results of the five years' experiments are collected that they can most usefully be discussed. But while this is the case, some results of interest are already apparent. The English fishery experiments show that small plaice are much more abundant in the shallow waters near the land than in the deeper waters off-shore. Plaice of less than 8 inches in total length were, as a rule, restricted to a strip of sea lying between the land and the 10-fathom line. There they were relatively very abundant. On the shallow grounds off the coasts of Holland they were much more abundant than in corresponding depths of sea near the English coasts. On the "Eastern Grounds," that is, the shallow-water area off the islands of the Zuider-Zee, off Heligoland and the coast of Denmark, some distance from the land, the English steamer *Huxley* took average catches of from 180 to 2500 plaice of this size per hour of trawling.* On the fishing grounds of the same depths off the English coasts the *Huxley* never took more than 65 plaice per hour. Again, medium-sized plaice 10-12 inches long "were altogether absent on many of the English in-shore grounds"; but on the fishing grounds well off the land, in fact, over the greater part of the southern part of the North Sea, south of latitude 53° 30', in what may be called the Flemish Bight, these plaice formed an extensive portion of the catch. A legal size limit, if this should be adopted on an international scale, could not be greater than 12 inches if trawling for plaice were to continue on these grounds. Up to 12 inches in length the plaice is very generally an immature fish, that is, it has not yet produced spawn. The predominant plaice population of the southern part of the North Sea is therefore an immature one.

Mature plaice in the North Sea are very generally fishes of over

* Garstang, *Fishery and Hydrographical Investigations, etc.* (cd. 2670), 1905, p. 102.
14 inches in total length. This is the average size, for the male fish when they first become sexually mature are smaller (one inch or more) than the females. Such fish spawn in the spring. It was formerly believed that during the spawning season plaice became crowded together on certain "spawning grounds." The trawling experiments of the *Huxley* lent little support to this belief, though there are certain indications that spawning migrations do occur. Such mature fish are not distributed everywhere over the fishing grounds. The *Huxley* found that they did not occur, or only very exceptionally, in the shallow waters within the 10-fathom line. On the other hand, they were relatively abundant on the Dogger Bank, and here and there in the deeper parts of the North Sea well off the shore.

All fishery experiments made by the International naturalists agree in this respect, that on the eastern side of the North Sea, off the coasts of Holland and Denmark, in what has been called the Heligoland Bight, we have a predominant small plaice population. There is further agreement as to a general law of the distribution of this fish: that the deeper the water the larger the fish. This, of course, only applies to fishing grounds where the water is less than 50 fathoms in depth. It is safe to say that plaice are absent altogether, or at least very scarce, on sea bottoms of this depth. Indeed, outside the 20-fathom line the fish is very scarce. It is most abundant near the shore, and becomes less abundant as the water gets deeper. The general law that the plaice increases in size as the water becomes deeper is nowhere stated so clearly as by Redeke.* This naturalist has analysed the results of the fishing experiments of the Dutch exploring steamer *Wodan*, made off the coast of Holland from the Hook to the Zuider-Zee. The distribution of the plaice of different sizes so constantly depends on the depth that Redeke has drawn lines on the chart which he terms "isomegalins." Each isomegalin is a line drawn approximately parallel to the coast. The isomegalin I bounds a narrow strip of sea in which only plaice of one to two years in age, and less than 10 centimetres (4 inches) in length, are to be found. Outside this, and parallel to it, is the isomegalin II, between which and the line I are only plaice of over two and less than three years of age, and from 10 to 15 centimetres (4 to six inches) in length. Outside isomegalin II is the line III, which again forms the outer limit of plaice of from three to four years of age and from 6 to 8 inches in length. The general law of distribution is stated by Redeke in these words: "The distribution of the plaice thus appears to be a function of its size, and is so uniform that one can almost say the plaice are so many centimetres long when the depth in which they are taken is so many metres."

Such a "law," however it may apply to the conditions off the coast of Holland, is much too definite to apply to other localities. It is altogether incorrect when applied to some areas off the coasts of Britain. It is too often forgotten that all these statements of distribution are made with respect to areas where a long-continued fishery for plaice has been carried on, and where the influence of man as fisherman is continually exerted in reducing the numbers of large plaice. Large fish are more easy to catch, and must necessarily be fewer than smaller fishes; again, the fishery is, roughly speaking, most intense near the land, and decreases in intensity as we proceed further out to sea. This influence of fishing must operate in bringing about, to some extent at least, the distribution of plaice with size varying according to the depth of the sea. It is far otherwise in the few regions which are natural "plaice grounds," and where the law prohibits trawling. There, instead of a distribution such as is indicated above, we may find that plaice of all sizes and ages are living together on the same restricted portion of sea bottom.

The determination of the age of a plaice has been arrived at by means of two methods. One is that of Petersen, and depends on the analysis of an extensive catch of plaice according to the sizes of the fish. If, say, some thousands of plaice captured on the same (restricted) fishing ground be individually measured, it will be seen that there are far more fishes of certain sizes than those of the intermediate sizes. Such a method of estimating the ages of the fishes forming a single catch cannot be easily understood without an example, and the diagram* (Fig. 6), which is based on a catch made by the Marine Biological Association off Mablethorpe, will make the reasoning clear. The figures on the vertical line represent the numbers of plaice taken, and those on the horizontal line represent the sizes of the fish. At the point of the curve marked 0 a line drawn horizontally shows that about 360 plaice were captured, which had an average length of about 5½ centimetres (a little over 2 inches); at the point I about 85 plaice were taken with an average length of 10 centimetres (4 inches); then at the point II 60 plaice were captured with an average length of 15 centimetres (6 inches). That is to say, in this catch three predominant sizes of plaice were present, 2 inches, 4 inches, and 6 inches. In fact we have three groups or "schools" of fish, each of which resulted from a different year's spawning. The Group 0 consists of fish less than one year of age, Group I of fishes over one but less than two, and Group II of plaice over two but less than three years of age.

The other method of determining age is that of otolith examination.

* Wallace, Fishery and Hydrographical Investigations, etc., Southern Area (col. 2670), 1905, p. 208, fig. 4.
The otoliths are the hard, calcareous stones which are found in the ears of all animals, but which are unusually large in bony fishes. The method was elaborated a number of years ago. It depends on the fact that the growth of the ear-stone or otolith is not regular, but varies from season to season. So also with the bones of the fish, as for instance the vertebra. If the otolith be examined, even with the naked eye, it will be seen to be built up of concentric layers. Every year a new layer is added to those already laid down, and by counting the number of concentric rings in the otolith, or vertebra, the number of years of age of the fish can be determined. Up to the fifth year of life both methods are reliable, but after this period the results are somewhat uncertain. By the application of these two methods, particularly the first, results have been obtained in all the countries participating in the International Investigations, and the plaice of different localities are now being investigated, not only with respect to their abundance according to the depth of water, but also with regard to size and age.

A third method of age determination is a direct one, and depends on the marking and liberation of a plaice, and its subsequent recapture. This brings us to the consideration of the fish-marking experiments which have now been carried out on a very extensive scale in Sweden, Denmark, Germany, Holland, and England. This method of investigation is, of course, an old one, and was practised in Scotland by the
Fishery Board, and in America by the Fish Commission, many years ago. It is only since the inception of the International Investigations, however, that it has been carried out on a scale adequate to the furnishing of reliable and useful results.

Various methods of marking the fish (usually plaice), so as to identify it afterwards, have been practised. In Petersen's method (the one now mostly adopted), a stout silver wire is pushed through the body of the fish just underneath the dorsal fin. One end of this wire passes through a bone button and is looped; the button is on the lower side of the fish. The other end passes through a hole in a brass disk and is also looped; the brass disk is on the upper side of the fish and bears a number. Experience has shown that this label can be attached to the plaice in the manner described without permanent damage, and apparently without permanent discomfort to the fish. The living fish, being measured and marked, is then put back into the sea, the size and place of liberation being recorded. Most careful arrangements have to be made for the return of marked fishes recaptured by the fishermen, and rewards are paid for these. In Great Britain the reward varies from 1s. 6d. to 2s. Obviously success depends on the return of marked fishes recaptured by the fishing vessels, and while the proportion returned is most gratifying, it is still the case that many recaptured marked fishes must escape recognition and return. The first published summary of the results of all the plaice-marking experiments carried on by the various national staffs is given below.

<table>
<thead>
<tr>
<th></th>
<th>No. of plaice marked up to 31st December, 1903.</th>
<th>No. of plaice recovered up to 30th June, 1904.</th>
<th>Percentage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>1178</td>
<td>101</td>
<td>8%</td>
</tr>
<tr>
<td>Denmark</td>
<td>1220</td>
<td>387</td>
<td>29%</td>
</tr>
<tr>
<td>Germany</td>
<td>1919</td>
<td>157</td>
<td>8%</td>
</tr>
<tr>
<td>Holland</td>
<td>459</td>
<td>12</td>
<td>3%</td>
</tr>
<tr>
<td>England</td>
<td>1463</td>
<td>286</td>
<td>17%</td>
</tr>
<tr>
<td>Total</td>
<td>6239</td>
<td>943</td>
<td>14%</td>
</tr>
</tbody>
</table>

The "percentage" is the proportion of marked fish recovered within twelve months after the date of liberation.

Of course, these returns are very incomplete. A large number of fishes have been marked and subsequently recovered since the end of 1903, but at the present time the figures are not easily available, and the results have not been collated. The above statement applies to the fish-marking experiments carried on by the naturalists attached to the staff of the International organization. But in addition to these experiments, a large number of plaice and other fishes have been
marked and liberated (according to the International methods) by the Irish Fishery Branch of the Board of Agriculture and Technical Instruction, and by the Lancashire and Western Sea Fisheries Committee, both experiments being carried out chiefly in the Irish Sea.

The plaice-marking experiments were designed to give information on the following subjects:

1. The migrations of the fishes.
2. The rate of growth of plaice in different localities.
3. The intensity of fishing.

An obvious objection has frequently been made to the validity of results deduced from such experiments, and is this: the operation of marking injures the fish, and the continuous attachment of a label or mark to the body reduces to some extent its vitality, so that it is probable that the results, whether migrations or rate of growth, obtained from the marked fishes do not represent those changes undergone by unmarked fishes. The force of the conclusions depends on the assumption that a marked fish behaves normally, and this is questioned. The objection, which is an a priori one, probably has some force, but the general opinion of those who have had experience of fish-marking experiments is that the operation, if carried out carefully, has little or no influence on the health or habits of the fishes dealt with.

The migrations of the marked plaice are naturally the most interesting of the results obtained from these experiments. In stating the more prominent facts observed, one cannot, however, be too cautious. Only the results of one complete year's experiments have so far been tabulated and discussed, and it is most essential that these should be confirmed by the further experiments that have already been made. A plaice is an animal possessed both of volition and intelligence, and its movements in the sea must be expected to be at times of an entirely capricious nature. It is only by the study of results of extensive and repeated experiments that one can hope to eliminate such accidental or capricious migration results, and obtain an expression of the average movements of large numbers of fishes. Bearing this in mind, we may state the results at present apparent. Young plaice—that is, fishes up to 8 inches in length—do not migrate to any marked extent. These fish remain on the shallow-water areas immediately adjacent to the places where the first year of their life has been spent. Any one who observes attentively the shallow pools which have been left by the receding ebb tide on almost any of the extensive sandy flats on the coasts of England will be able to see numbers of small plaice and other flat-fishes there during the months of June or July. At that time these little fishes have just recently completed their metamorphosis from the
larval to the post-larval stages, and are little larger than one's thumb-nail. As they grow they gradually move further out into deeper water, but for this first year of their life and the next one they do not travel very far from the shore on which they may first be found. After they have entered on the third year of life, however, their more lengthy migrations begin. These are influenced to a very great extent by the nature of the sea area in which they find themselves. Thus the results obtained by the Danish naturalists* show that the plaice marked and liberated off the coast of Denmark travelled for the most part along the shallow water adjacent to the coast (Chart X) or, when liberated, migrated inwards toward the shore. But other fishes travelled outwards into deep water. There is little doubt that these movements depend to some extent on the season. Off the Danish North Sea coast there is a distinct tendency for plaice to move from deep water towards the shore during April, May, and June, but later in the summer they appear to move off-shore again into deeper water and to spread over a somewhat wide area.

In the case of the English experiments carried out in the southern part of the North Sea, the change of the migration path according to the season is also displayed. In the charts giving synoptic representations of the experiments† this is well shown. South of latitude 53° 30' in the North Sea, it may be said that plaice for the most part travel to the south during the winter and to the north during the summer. This applies to the larger fishes dealt with. The smaller fishes hardly travel at all. Sometimes, in the case of the larger fishes, the distance travelled is very considerable. Thus one plaice of 13 inches in length, liberated in December, 1903, in the middle of the North Sea, nearly in the latitude of Grimsby, was found about three months later in the English Channel, having travelled in the interval a minimum distance of 175 miles. Other instances are recorded of long migrations made by marked plaice, and generally it may be said that the larger fishes travel further and more rapidly than the smaller ones, and in addition frequent deeper water. But we meet with puzzling exceptions to this general rule. Thus a medium-sized plaice liberated by the Lancashire naturalists in the preserved waters of the south coast of Scotland was found in the same place nearly two years afterwards, having in the interval probably not left the bay in which it was first found.

To deduce the rate of growth from marking experiments is a simple matter. The fish being marked and measured is again measured when

* See charts X-XII, Meddelelsen Komm. Havundersøg., Fiskeri, bd. i. Nr. 2, 1905.
† Garstang and Borley, Fishery and Hydrographical Investigations in the North Sea, etc., Southern Area (ed. 2670), 1905.
re captured, and the difference in length is the growth during the interval. As might be expected, there are considerable differences in the average results so obtained. It now appears, from a discussion of these experiments and others, that no average growth rate can be laid down which applies to all plaice in the British and continental fishery area. Some of these differences are summarized by Garstang.* On the Horn Reef grounds, off the coast of Denmark, the greatest rate of growth indicated by plaice in the course of a single year was about 5 centimetres (about 2 inches). On the other hand, certain plaice caught on these grounds, and on the east coast of England, and then transplanted to the Dogger Bank, showed a much greater increase in length. In the case of some of these plaice, the growth in one year was as much as 14 centimetres (nearly 5 inches). Analogous differences in the rate at which plaice grow are met with in very many of the experiments made.

The intensity of fishing on any fishing ground can be deduced from these marking experiments. If we capture (say) 1000 fishes and mark and liberate them on the ground from which they were taken, then the proportion of these 1000 fishes which are recaptured within one year from the date at which they were liberated is an indication of the degree to which this ground has been exploited by the fishermen in the course of the year. For the 1000 marked fishes may reasonably be assumed to have spread uniformly over the fishing ground in question; and if the fishermen capture (say) 250 of them during the year, there seems no escape from the conclusion that they have also captured 25 per cent of all the plaice, of the same range of sizes as the marked fishes, which were originally present on the ground. Of course, such deductions must be made very cautiously and must depend on the consideration of fairly large numbers of fishes. But, remembering this, it is certain that in this method we have a fairly satisfactory means of ascertaining how far fishermen reduce the fish population of a fishing ground, in the course of their ordinary operations. There is only one other way of obtaining this information: by a consideration of the number of eggs of the species of fish considered which are produced on the ground during the spawning season, and this method is very unreliable. Nevertheless, such an estimate, made by Victor Hensen in the case of the West Baltic cod and plaice fisheries in 1895,† agrees very well with the average results of the fish-marking experiments. Naturally the intensity of fishing on the various grounds varies very greatly.‡ On the fishing grounds of the North Sea, Skagerak,

and Cattegat it varies from 4 to 56 per cent. We may reasonably conclude, eliminating exceptional circumstances, that the intensity of plaice fishing on the North Sea fishing grounds varies from 10 to 25 per cent. That is to say, that man, for his own use, removes annually from the sea from one-tenth to one-quarter of all the marketable plaice which are annually produced by the natural reproduction and growth of the species.

How significant these results are from the point of view of the regulation of the plaice fishery and its further exploitation and improvement will easily be seen. The question now arises how far this process of exploitation of the (say) plaice population of our seas can go on without progressive impoverishment of the fishing grounds. There must be some limit up to which these fishing grounds can be depleted without undergoing injury; that is, without making them less productive in the future. To discover this limit is the aim of this portion of fishery investigation, and it then remains for the Governments concerned so to legislate that it should not be exceeded. In no way can this knowledge of the extent to which the resources of the sea can be strained be attained than by scientific investigation on the lines indicated and by the careful consideration of reliable commercial statistics. When the International Investigations are completed and thoroughly discussed we may hope for much more knowledge of the conditions of this problem than we at present possess.

Then in the result that plaice are so very variable in growth we have a factor of no less significance for the legislators.

When we find that the growth rate of plaice on a fishing ground is small, we usually find that the number of small plaice present on that ground is unusually large. There is, in fact, this relation between abundance of plaice and their size, that the more numerous the fish are on a certain ground the more slowly they grow. It is a question of the available amount of food for the fishes that we have to consider. Where the number of mouths is small there is all the more food for them and the fishes grow quickly; on the other hand, where the population is large and the stock of food not proportionately large, the fishes are less well nourished and they grow slowly. How significant this question is when the protection of immature plaice (and other fishes) is being considered is very apparent. In the past the protection of immature fishes per se has been considered as of undoubted value for the fisheries.* Now we must remember that to "protect" by legislative restrictions the immature fishes of particular fishing grounds

* In spite of the declared opinion of Huxley, who deprecated such legislation if incautiously embarked upon (Life and Letters of Thomas Henry Huxley, vol. ii. p. 234, 1900).
may be positively detrimental to the industry generally. The lesson that such investigations of crowded fishing grounds, with large numbers of small plaice growing slowly, teach is the necessity for transplantation. Long ago Petersen pointed this out in the case of the Limfjord plaice fisheries, and the International Investigations point this advice more clearly. Garstang, in a remarkable series of experiments carried on on the effect of transplanting plaice from overcrowded to less frequented grounds, has shown how useful such measures might conceivably be.* It was observed, as we have seen, that plaice on the "small-fish grounds" off the coast of Denmark or off the east coast of England grew slowly in comparison with plaice on the more open and less crowded grounds on the Dogger Bank. A number of plaice were therefore captured on these grounds and taken across to the Dogger, where they were marked and liberated. The growth rates of the fishes on the latter locality could then be compared with the same growth rates on the localities from which the fish were originally taken, and which had been determined by other experiments. About 40 per cent of the fishes transplanted to the Dogger were subsequently re-captured, and these showed a remarkably higher rate of growth than obtained on their original localities. Whereas on the Horn Reef grounds—a good example of a crowded plaice ground—the fish increased in length about 1\(\frac{3}{4}\) inch in the course of a year, the same fishes on the Dogger added about 5 inches to their length in the same period.

Whether such transplantation operations could be carried out on a really large scale, and would be productive of such results as would justify the expenditure of public money on this work, is a question which is discussed at some length by Mr. Garstang. The practical difficulties attending such work are of course very great, and one can see that considerable organization of methods would be required. Conspicuous commercial success has attended similar operations carried out by the Lancashire and Western Sea Fisheries Committee;† but the practical details of the transplanting operations, which in this case concerned mussels, were of course much more easily dealt with.

The life history of the Cod.‡

With respect to the natural history of the cod, we find that the investigations are still very incomplete. A very considerable amount of material for the study of the life history of this fish has been collected by the Norwegian, Danish, and English research vessels, but

* Garstang, Fishery and Hydrographical Investigations in the North Sea, etc., Southern Area, p. 45, 1905.
† See Scott and Baxter, Report Lancashire Sea Fisheries Laboratory for 1905.
‡ Hjort and Petersen, Rapports et Proc.-verb., vol. iii. 1905, app. G.
we are still far from knowing enough to enable us to follow out the habits and wanderings of this important food fish. One may confidently expect, however, that the result of the International Investigations will be to make clear the principal features in the life history of this fish. The following account is based on the work so far published:—

The cod has not the same importance for the fisheries of Britain as for those of Norway. Over the whole North Sea the fish occurs and is caught, but it only forms a part of the general catches of the fishery fleets. In Norway, however, it is the fishery, and the cod has for the fisheries naturalists of that country a degree of importance which has justified considerable research. The great cod fishery in Norway is that which is followed in the spring of the year on the coastal banks from Lofoten to Tromso. The line-fishery there for spawning cod, the "Skrei" fishery, sometimes obtains great dimensions. In the spring of the year the adult fish frequent the coastal banks in great shoals. They are found almost exclusively on these grounds. At this time they are spawning, and it is when the fish are most numerous that the pelagic eggs at the surface of the sea are also present in greatest abundance. The Norwegian research vessel, for instance, took as many as 5800 cod on 17,800 hooks in one day, and during the entire spawning season of the same year about one and a half million of cod were caught by the entire fishing fleet. Experimental fishing operations were carried on over a wide area, but the fish were restricted to a comparatively small ground. On the Lofoten fishing grounds the Norwegian naturalists found that the characteristic spawning size of the fish was about 28 inches. In the North Sea the cod spawns when about the same size. On the other hand, very different conditions obtain in the Cattegat. Petersen found considerable numbers of cod spawning there when no larger than about 12 inches.

On most cod grounds investigated the early part of the year to the spring is the period when spawning takes place. In the Lofoten fisheries the spring is the spawning season, and the same is the case in the North Sea. In the Cattegat, spawning takes place earlier in the year. In the Irish Sea cod spawn in the spring. But a remarkable exception to this general behaviour of the cod was first demonstrated by Fulton,* who found when fishing from the Scottish International research steamer Goldsneck that cod might spawn in the North Sea in the autumn. In August of 1903 both fertilized and developing cod eggs were found in the townets, and ripe and mature cod were taken in the trawl. The discovery was quite novel. Hitherto an autumn spawning was only known in the case of herring, and the well-known spring and autumn

* Publications de Circonstance, No. 8, 1904.
or winter and summer herring spawning has been explained by assuming the existence of two "races" of fish, one spawning in the spring and the other in the autumn. Whether or not such is also the case with the cod must be left for future investigation.

On the Lofoten cod fishing grounds, as in the North Sea, the cod frequents the coastal shallow water when about to spawn. The striking figures given by Hjort in the paper quoted show that the eggs were present in extraordinary abundance on the surface of the sea over these banks. In the waters of the channels between the banks much smaller numbers of eggs were taken out at sea, and generally over the surface of the open Norwegian sea the cod eggs were most scanty, or altogether absent. Just where the spawning fish were present on the bottom, there the resulting eggs were found. The eggs were very slowly distributed over the sea area, so slowly that in the meantime incubation had proceeded and resulted in the hatching of the pelagic fry. Many fishery experiments were made by the Norwegians to determine the range of distribution of the cod fry of different stages and at different seasons, and these results are very interesting. Hjort's Fig. 6 in the paper referred to shows this in a striking manner. The area over which the eggs were distributed extended but little out to sea from the banks. Outside this again, but a little later in the year (June and July), were to be found the young cod, at this period up to about 1 inch in length. Then in August to September the area over which the fry was distributed had greatly increased. Young cod up to about 3½ inches in length were found in the Norwegian sea as far from land as 120 nautical miles. During the interval between spawning in March and April and September, the cod fry had slowly drifted off-shore and to the north. All this time they were pelagic in habit—that is, they were found near the surface of the sea—but when attaining this length they began to seek the bottom. This habit differs greatly from that of the young cod in the North Sea. There the pelagic mode of existence is abandoned, and the little fish seek the bottom when little over 1 inch in length.

Hydrographic conditions in the sea are most probably the causes of these differences in the habits of the cod. The dispersal of the eggs and young fishes is due to surface-drifts and currents. The assumption of the bottom-living habit of the young cod is no doubt also dependent on the temperature, among other conditions. Thus over the greater part of the northern North Sea area young cod are hardly ever found at the sea bottom. There a bottom temperature of 6°–7° C. holds good all the year round. With regard to the distribution of the cod in its first year of life, a great amount of material has been collected by the International exploring steamers, and when this is fully worked out we may expect to possess a very complete knowledge of the manner
in which hydrographic conditions influence the distribution of the fish over the North European area.

Statistical Investigations.

If a knowledge of the life histories of the edible fishes is essential for the proper control of the sea-fishing industry, an exhaustive knowledge of the statistics of the fisheries is no less indispensable. Fishery authorities, recognizing the value of statistical knowledge, have almost invariably created organizations for obtaining this information, and one may say that the success of these has been proportional to the experience of the authority. Thus in Scotland, where a strong fishery board has now existed for nearly a century, a system of collecting fishery statistics has slowly been evolved and is probably the most perfect in existence. In England, on the other hand, where the fishery authorities are of much more recent origin, statistical knowledge of the industry is still very imperfect. By the statistics of the fisheries has usually been understood a knowledge of the quantities and values of the marketable fishes sent to the public markets from month to month throughout the year; with also a knowledge of the numbers of fishermen and of the fishing vessels belonging to various classes. Such is the statistical information relating to the sea-fishing industry which is published in the official documents of the authorities. As the industry has developed and the need for legislation become apparent, it has gradually become evident that such information is far from being adequate.

Official fishery statistics have in fact been based almost entirely on the material landed on our shores, without regard to the places and methods where, and by means of which, this material was obtained, and it is very evident that such information affords only an imperfect view of the operations of the fishing vessels. An exhaustive system of statistical information would inform us where the fishing vessels had been fishing from day to day throughout the year; what methods they had employed; what proportion of the time of their voyages had been spent on actual fishing operations; what kinds and quantities of fish they had caught, and on what particular fishing grounds these had been captured. Then we ought also to possess exhaustive knowledge of the personnel of the industry, as well as that of the kinds, tonnage, value, etc., of the vessels employed. Such statistics of the fishing industry have not, so far, been furnished by any fishery authority. But even if we did possess them, they would be inadequate for a proper understanding of the conditions of the industry. The figures relating to the quantities of fish captured and landed would be based on the working of certain
kinds of fishing apparatus—trawls, lines, drift nets, etc. These are designed to capture only certain kinds and sizes of fishes, and it is these that would be represented in the returns. What the trawl, for instance, captured that was not utilized would not be represented in the statistics. Then the condition of the fishes, as regards spawning or characteristic food, for instance, would not appear. We must remember also that commercial fishing apparatus would not give us any knowledge of the fish population of the sea in general. The capture of anything whatever, except those animals which are to be placed on the market, is not desired, and the fishing nets are constructed with this object. To know the condition of the fishing grounds, we must employ other methods in addition to the study of the commercial products of fishery. That is to say, exploring vessels equipped with other fishing apparatus than those used by the fishing fleets must be employed, and the statistics obtained by these vessels should supplement the commercial figures.

Here we trench on the purely scientific investigations of the fisheries, and, indeed, there is no real dividing line between these two departments of research. They must be followed in conjunction, the one supplementing the other. When the International Investigations were devised this was recognized, and the synthesis of both statistical and purely scientific researches, the two being controlled by the same authority and carried out by the same organization, was elaborated. A large portion of the results of the investigation published so far consists therefore of statistical studies and discussions.

A very good example of the scientific study of fishery statistics is furnished by Henking's paper* dealing with the statistical material of the Deutschen See-Fischerei-Verein. The latter body is a private fishery research society, which, however, enjoys imperial recognition and patronage, and a considerable financial support from German state funds. In the course of the years 1902–5, the See-Fischerei-Verein organized a system of collecting statistics from German steam fishing vessels. Not only does the information given to the society contain the quantities and kinds of fish caught, but it also gives the regions of the North Sea exploited by these vessels. In the year 1904 this system of statistical collection had been completed, so that the See-Fischerei-Verein now obtains the results of the fishing operations of the entire fleet of German fishing steamers.

Henking divides the North Sea into two areas: (1) the northern North Sea area, which comprises the Great Fisher Bank, the Long Forties, and the portion of the North Sea plateau which lies to the

* Rapp. et Proc.-verb., vol. iv., 1905, app. F. See also Betheiligung Deutschlands an den Internationalen Untersuchungen, Bd. i.
north of the grounds mentioned, as far to the west as Scotland; and
(2) the southern North Sea area, which comprises the banks in the
German Bight. Then we have in addition (3) the region of the
Skagerak. The catches of the steamers are expressed as average
numbers of pounds of fish caught per steamer per day. These average
catches are studied from month to month. Curves are also given by
Henking which show clearly how the fishing varies from month to
month throughout the year. The result of such analyses of the catches
is the defining of "Fishery Periods," which are periods of time during
which some particular fish is abundant on a certain ground. Such fishery
periods are of course familiar things, and one need not give as instances
more than the well-known herring fishery periods of the east coast of
Britain or the cod fishery periods of the Norwegian Lofoten Banks.
A fishery period is caused by the immigration of great numbers of
fishes into relatively restricted areas. Then begins the commercial
fishery, which ends with the emigration of the fishes from the fishing
ground in question. When the regular variations in the amount of
fishes brought from the (known) fishing grounds are studied from month
to month, it is seen that the existence of such fishery periods applies to
almost every kind of edible fish studied. These fluctuations in the
abundance of fish on the different grounds from time to time through-
out the year are due to real migrations of the fishes; either to their
migration to different fishing grounds or to their dispersal through the
upper layers of the sea, where they are without the reach of the trawl.
"In view of the considerable material which forms the basis of our
review, it can hardly be considered that the fluctuations in the curve of
the catches is referable to the captains of the boats wishing to
avoid the capture of certain species at certain periods of the year; there
remains no other possibility, therefore, than that the number of fish in
front of the trawl has actually varied."*

Into Henking’s details of the migrations of food fishes in the North
Sea we cannot of course enter, and the reader is referred to the charts of
results. These curves when plotted for different regions of the North
Sea and Skagerak show that extensive movements of fishes go on.
The hake, for instance, is such a migratory fish. For the first three or
four months it is hardly at all taken in the North Sea or Skagerak.
Then it appears “in ever-increasing numbers, perhaps with the inflow
of Atlantic water.” The shoals spread over the northern North Sea
and appear in dense masses in the Skagerak in June. In that month
the fish is relatively scarce in the southern North Sea. Then later in
the year, August to September, when the fish has become less abundant
in the Skagerak, it increases in abundance in the northern North Sea

* Henking, loc. cit., p. 18.
area, indicating the emigration southwards of the shoals previously present in the Skagerak.

Such a mass of statistical data provides only a "representative sample" of the fishing carried on over the region investigated by Henking. Even though the study professes to deal with the catches made by all the German fishing steamers, it must be remembered that these form only a portion of the whole fishing fleet exploiting this area. Obviously such a method of studying the operations and results of the fishing vessels can be wholly satisfactory only when all the vessels, steam trawlers, liners, and smacks, can be made to furnish returns of their catches, stating the quantities and kinds of fishes caught, the areas of capture, and the duration of the fishing. If we could obtain this information, and have it worked up under the direction of an International Fishery Board, we should then be in possession of knowledge of incalculable value for the regulation of the industry.

But a scheme of statistical collection of such nature and magnitude is apparently Utopian only, when we consider the present organization and resources of official fishery authorities. The next best method is that which has been followed by some of the organizations in connexion with the International Fisheries Council. Since it is impossible to obtain figures representing the fishing results of all the North European vessels, we have to be content with results which represent the fishing of large and important fleets having their head-quarters at various fishing centres. If a large number of vessels which fish over a wide area can be induced to furnish the results of their fishing, then we possess a series of data which may be taken to represent the fishing carried on by all the fleets. The larger the number of vessels supplying returns, the more reliable, of course, are the conclusions made. Such is the method of studying the fluctuations of the fisheries on the more important fishing grounds which was first suggested by Fulton in his well-known paper in the Report of the Scottish Fishery Board for 1901; and which has been adopted by Redeké for the Dutch North Sea trawlers, by Henking for the German steam fishing vessels; and which may be studied at its best in the Reports on the fishing results of the Aberdeen fishing fleets by D'Arey Thompson and Fulton.* Since 1901 the Scottish Fishery Board has collected such statistics, and when the International fishery researches began the figures obtained were dealt with by the International Council in connexion with the other investigations.

At the present time nearly all the steam liners, about two-thirds of

the steam trawlers, and a number of the sailing trawlers landing
catches at Aberdeen furnish voluntary returns as to the places where
they have been fishing, the number of hours fishing, the number of hauls
of the trawl and number of lines shot. The quantities of fish landed
by these vessels at Aberdeen, with respect to the market grouping in
sizes, are obtained by the officers of the Fishery Board. The figures so
obtained are collected and discussed by the statistical clerks and others
on the staff of the Scottish section of the International organization.
No details of individual catches are published, only abstracts, and the
statistics themselves are made public long after the actual fishing has
taken place. There can be no commercial use made of the information
given by the masters of the vessels by their rivals in trade: an important
consideration, since the information is voluntary and can be withheld.*

In dealing with the figures of fish captured by the Aberdeen fleets,
Fulton refers the catches to the areas in the North Sea in which they
were made. For this purpose the North Sea north of parallel 50° N.
and E. of meridian 6° W. is divided up into forty-eight squares,
each of which corresponds to one degree in latitude and two in longitude.
When a vessel returns to port, her master informs the collectors of
statistics what course he has steered on his voyage out from port, where
he has fished, and the number of hours trawling on each ground or the
number of lines shot (if he is a liner). The results of the voyage, when
tabulated by the statistical clerks, show for the trawling fleet during
January (for instance) the average quantities of each kind of fish taken
per 100 hours trawling on each of the numbered areas, or the average
quantities of fish taken per 100 lines shot.

By this method a very great mass of information has been accumu-
lated and published by the International organization. Fulton's paper
already referred to deals with the flat-fishes taken by the Aberdeen traw-
lers—turbot, brill, halibut, witch, megrim, lemon-dab, plaice, and dab.
The abundance and fluctuations of each of these fishes on the northern
North Sea grounds from month to month are studied with reference to
particular fishing areas. The fluctuations are represented by tables and
charts showing graphically the variations on particular areas throughout
the year. Into the details of this most interesting study we cannot, of
course, enter; only one or two of the main conclusions can be alluded
to here. A result that appears persistently throughout the discussion

* It is therefore erroneous to state (see, for instance, the House of Lords debate, 25th
June, 1906) that we have by the publication of these figures handed over information to
German fishermen which is made use of to our detriment. Even if these figures could
supply such information, one can hardly imagine that the German fishing industry is so
well organized that trawl owners or fishing-boat masters study English scientific
journals; any more than that English or Scotch owners or masters study, for instance, the
German Mittheilungen des Deutschen See-Fischer Verein; or that state fishery intel-
ligence departments exist in either country which study this information and supply it
to the fishing industry.
of these statistics is the "complementary fluctuations" among different flat-fishes inhabiting the same ground. In the case of one particular fish the abundance varies, of course, with the season; but the periods of the year at which a fish is most abundant differ for many of the species considered. In one area considered, for instance, megrim were most abundant about May, plaice in April and September, witches in June and July, halibut in April, and lemon-dabs in September. Thus the scarcity of one species was compensated for by the abundance of one or more others, so that on any one fishing ground the general abundance of all the flat-fishes was maintained throughout the year at roughly the same level. In the case of nearly every one of the fishes studied the fluctuations from month to month exhibited undoubted regularities. It was nearly always possible to deduce that on each fishing ground there was one month during which each species of fish was present in greatest abundance. This maximum in each case corresponds with the spawning season and indicates an aggregation of the fishes on particular areas for the purposes of reproduction. Following this spawning maximum of abundance, the period of which, of course, varies with each kind of fish, is a period of relative scarcity. Then occurs a secondary maximum some time in the autumn, when the fish is again abundant, though usually not so abundant as in the spring or summer spawning maximum. Then in the winter there is often another period of relative scarcity. These remarks apply to the study of the fishes present on each particular fishing area throughout the year. How the abundance of each kind of fish is distributed throughout all the separate fishing areas may be seen by considering the charts of the fishing grounds published by D'Arcy Thompson in the paper referred to above. These show for each month in the year the average amounts of cod, ling, saithe, hake, haddock, and whiting caught on each area per 100 hours trawling by the Aberdeen trawling fleet. Their charts simplify greatly the study of the statistical data. The variations in fish abundance displayed by them are interesting and well worth study by the reader.

The aim of the master of a fishing vessel is, of course, to get as much fish as possible. Therefore he does not always frequent the same grounds, but fishes from place to place over the North Sea, following the fish shoals, getting varying catches on the various grounds. At one time one kind of fish may predominate, during another month other kinds. Long experience, and many fruitful or fruitless experiments, have taught him where and when to expect good catches. If this practical knowledge of the fishermen could be systematized, sifted from error, and recorded, we should possess a knowledge of the seasonal fluctuations and migrations of the fishes which, supplemented by the
knowledge of their life histories slowly acquired by the naturalist, would provide the material for the legislators. Bearing this in mind, the reader will see how valuable would be a knowledge of the places where the fishing fleets have worked from month to month throughout the year, for when considered along with the statistics of the fishes caught by them, this information would show us how the vessels had been following the fish from fishing ground to fishing ground. In Thompson's paper, already referred to, a beginning has been made of the collection of information of this kind. The twelve beautiful charts* of the northern North Sea which are contained in this paper show from month to month the positions of the Aberdeen trawling and lining fleets. These show how the fishing vessels move from place to place, sometimes aggregated on a relatively small area, at other times widely dispersed. It is the migrations of the fishes forming the objects of the fisheries that are the cause of these movements of the fishing fleets, and the latter are, to some extent, a representation of the former.

I will refer to only one more statistical study made by the International organization. The reader will find in volume iii. of Rapports et Procès-verbaux a comprehensive survey of the fishery statistics of the various participating countries, which will show him how very deficient our knowledge of the economics of the industry is, and how great is the need for the co-ordination of the statistical bureaux of the North European fishing countries and for improvement in the means of collection. If as one result of the International Investigations a central statistical office could be instituted, which would receive, collate, discuss, and publish the statistics of the North Sea fisheries, a store of knowledge of incalculable value to the fishing industry would gradually be accumulated. When the International Investigations began, the most prominent question, in this country at least, was that involving the effects of capture of small plaice on the so-called eastern grounds of the North Sea. The material for the treatment of this question did not then exist, and its acquisition was one of the aims of the International Fisheries Council. In 1904 the various Governments concerned began systematically to collect statistics of the sizes of plaice landed by their fishing fleets. In volume iv. of the Rapports et Procès-verbaux the first results of this work are published, though previously the English Board of Agriculture and Fisheries had instituted such investigations with reference to the Immature Fish Bill then before Parliament.† In the paper‡ referred to is contained a summary of the

† See Archer, Report of the Committee on Sea Fisheries Bill (H.L.), 1904.
‡ Kyle, "First report on the statistical material received by the Bureau regarding the quantities of small plaice landed in the various countries," Rapports, et Proc.-verb., vol. iv., 1905, app. C.
returns made by England, Holland, Germany, Denmark, and Belgium with regard to the quantities of small plaice landed in these countries. These returns are, of course, very imperfect, but the result giving the proportion of small plaice to the total quantity landed is probably approximately correct. About 2½ per cent of the plaice landed in Holland and about 1 per cent of the plaice landed in England were under 8 inches in length, an estimate which does not greatly encourage the pessimistic view held in various quarters as to the detrimental effect of steam-trawling upon the plaice population of the North Sea.

The connexion between Hydrographic and Biological Phenomena in the Sea.

We have seen that there is a well-marked periodicity in the hydrographic changes taking place in the sea. When the temperature and salinity of the sea water are regularly determined, it is found that the variations are not irregular or casual ones, but are repeated with a certain amount of regularity from year to year. At any one place in the seas of Northern Europe the temperature of the water gradually rises from a minimum some time in the winter or spring, to a maximum in the summer or autumn; and so also with the quantity of salt in the water; this too varies with more or less regularity, though the maxima and minima may not correspond with those of temperature. Then we have also seen that there is an analogous periodicity in the fisheries of the same area. These are not carried on with perfect regularity all the year round. At certain times in the year different fisheries are predominant. For any one fishing area there are seasons in the year which are characterized by the abundance of a certain kind of fish. Herring fisheries, cod fisheries, sole fisheries, and others have their seasons, which are repeated from year to year with a certain uniformity. Leaving aside for a moment the commercial fisheries, we find that the same periodicity of occurrence and abundance also obtains with the microscopic life of the sea. The waters of the sea always contain a certain amount of drifting microscopic life, bacteria, diatoms, protozoa, coelenterates, and the eggs and larval forms of the larger animals living at the sea bottom or swimming about in the water. If the occurrence and abundance of this plankton are studied throughout the year, it will be found that it too is not always the same, neither in nature nor quantity. There is a more or less regular sequence of forms of animal or vegetable life, each of which has its maximum and minimum of abundance. Further, if the reproduction of any animal or plant in the sea is studied, it will be found that the breeding season is periodic, and occurs with very great regularity from year to year at about the same
time. All these changing phenomena—the temperature and salinity of the sea water, the occurrence and abundance of different planktonic species, and the reproductive phases of all animals and plants in the sea—occur from year to year with a certain periodicity. The later direction of fisheries research has been to correlate them and to find out how the one phenomenon depends on the other. More precisely, one of the main objects of the International Fishery Investigation has been to determine in what manner hydrographic changes in the sea are connected with the productivity of the various commercial fisheries.

In all cases plankton observations have been carried on simultaneously with the hydrographic work. The plankton investigations consist of periodical fishing of the sea over wide areas, and both at the surface and at deeper levels, with fine-meshed silk nets, so designed as to catch all but the very smallest organisms in the water. As a rule, these plankton observations have been so carried out as to secure only samples of the kinds of species in the sea, but in some of the countries quantitative observations have been made; that is, the “townets” are designed to filter a known quantity of water, so that if the numbers of individuals of each species caught are determined, it can be estimated how many organisms of each species were present in a certain bulk of sea water; for instance, in a column of water one square metre in section and extending from the bottom of the sea up to the surface. These quantitative plankton observations are the most laborious which have been included in the International programme, and the results obtained so far are not yet fully worked out and discussed. In the ordinary plankton investigations, only the kinds and relative abundance of the various organisms present have been determined. These qualitative plankton observations have two main objects: (1) to ascertain the sequence of occurrence and abundance of planktonic organisms. Among these are, of course, the eggs and young stages of fishes, and the determination of the occurrence and abundance of these from place to place, or time to time, has obviously the utmost importance in the study of the life histories of the fishes. Then (2) the plankton observations are also of use in confirming the results of the hydrographic researches. The main object of the latter is to ascertain the movements of bodies of water of different origins, by a consideration of their temperatures and salinities. But oceanic streams and currents have also characteristic plankton organisms, and the recognition of the latter is of material value in the determination of the origin of the current.

In any part of the sea of our coasts there is a regular sequence in the occurrence of the organisms of the plankton. It would be quite impossible to give this in detail for the various regions investigated by the International steamers. Speaking quite generally, we should find such
a general scheme as the following: At the beginning of the year there is little variety in the composition of the plankton, and it is relatively scanty in amount. But towards March and April it becomes astonishingly rich and abundant. Diatoms are present in great quantity, and we have the eggs and larvae of the fishes which are then spawning. A little later on the larvae of hosts of invertebrate animals appear, and towards the summer these and the fish eggs and larvae begin to decrease. About this time also the diatoms occur in least abundance. Coelenterates, medusae, siphonophores, medusoid forms of hydrozoa, and protozoa such as *Noctiluca* and *Ceratium* occur in great abundance. Then in the autumn there is again a luxuriance of diatoms, these organisms attaining their second yearly maximum of abundance, which, however, is usually less than the spring maximum. As winter approaches, the plankton again becomes less varied and abundant.

Then we have "swarms" of organisms appearing in the plankton. Over restricted areas of sea one kind of organism may be present almost exclusively, and this swarm may drift over a large extent of sea. Many such instances are recorded in the International publications. Even if the usual varied plankton is found, we may be able to trace the (passive) migration of certain characteristic constituents from place to place. An excellent example of this is to be found in the distribution of the jellyfish *Muggiron* in the waters of the English Channel and Irish Sea in 1904. The plankton observations made by the Marine Biological Association in that year* show that a shoal of these animals coming up from the Bay of Biscay reached the English Channel about April. Dividing, one part of this shoal entered the Channel, and by the beginning of September had travelled as far east as Portland, after which month it gradually retreated to the west. The other part of the shoal rounded Land's End, and by the end of September had gone as far north as Cardigan Bay and South Arklow. About this time a southerly drift of water from the Irish Sea had begun to divide the shoal, and part was driven to the south and west coasts of Ireland. By the end of November the shoal had reached far up the west coast of Ireland, and was observed in Galway Bay.

Now the distribution of this shoal of animals depended on three things: (1) the true drift of Atlantic water towards our shores, (2) the superficial drift of the water due to winds, and (3) the reproduction of the animals. Probably the large hydrographic phenomena which we have already considered had not much to do with the migration of the shoal. But in another plankton study carried out by the International vessels† we have a clearer instance of the conveyance of the plankton

†See Dumas, "Notes biologiques sur les Copepodes de la mer norvégienne," *Publications de Cirmstance.*
by the great oceanic streams. In the Norwegian sea occur enormous numbers of the copepod crustacean *Calanus finmarchicus*. This animal has its home in the colder sub-Arctic regions, and does not, like so many other planktonic organisms, reach the Norwegian sea from the Atlantic. In the spring of the year the adults are brought to the south by the current which flows to the south-east of Jan Mayen and Iceland—the East Icelandic Polar stream. Reaching the region of the Faeroe-Iceland channel, spawning takes place, and the young are then carried to the north along the coasts of Norway by the Atlantic north-flowing stream. In these waters the young calani, living among immense quantities of diatoms, peridinians, and other forms of plankton life, grow and form the great shoals of *Calanus finmarchicus* which characterize these waters. It is the salt water of the Atlantic stream which, to some extent at least, favours the spread of this crustacean.

The precise manner in which changes in temperature and salinity affect the abundance of planktonic organisms is, of course, very obscure. In many cases the connexion is doubtless an indirect one. We know that in the sea the larger animals prey upon the smaller, and that the ultimate food organisms are the diatoms (and other organisms with a similar method of nutrition). That is to say, every living animal in the sea depends, in the long run, on the diatoms, which form the "pastures of the sea." A cod, for instance, may feed on dabs and hermit crabs (it may feed on anything, but we take these as favourite foods). Now the dab will feed on shellfish, and the hermit crab on (say) small fishes or worms. The shellfish will feed on diatoms (among other things), and the small fish and worms perhaps on microcrustacea, and the latter on diatoms. Every chain of food animals in this sense terminates in the diatoms. If then it can be shown that these organisms are closely affected by hydrographic changes in the sea, we make a distinct step in proving the dependence of many biological phenomena on hydrographic ones. Now we are still far from possessing all the data necessary for proving this connexion, but I may refer to a most stimulating paper by Brandt,* which goes a long way in providing the information required. In the periodical cruises of the German International research vessel *Poseidon* samples of sea water were collected, and these were subsequently examined by the German chemists working under the International organization for the quantities of ultimate food-stuffs contained in them. The ultimate food-stuffs are nitrogen compounds (ammonia, nitrites, and nitrates), silicic acid, phosphates, and some other substances. It is upon these that diatoms (and consequently all other life in the sea) depend. The amount of nitrogen, in the above form, in the sea is very small (not more than about 0.2

parts in one million parts of sea water). It is small because it is continually being utilized as food by the diatoms; otherwise, being continually added to the sea by the decomposition of dead animals and plants, and by drainage from the land, the former would gradually become poisoned by it. The German analyses have shown that this small proportion of fixed nitrogen is not constant. Silica (which is required for the skeletons of the diatoms) and phosphates (which are similarly required for other organisms) are also present in correspondingly small and variable amounts.

Now it is of extreme interest to find that the amount of these ultimate food substances present in the sea is greatest just before the time when the maximum abundance of diatoms occurs, and is least about the time of the minimum. This applies more particularly to the German determinations of silica, but no doubt is also true of the nitrogen compounds. In the winter these food-stuffs have been greatly stored up. Then in the spring, under the influence of the rise in temperature of the sea and the increased intensity of the sunlight, an immense diatom reproduction takes place. The result of this is again to reduce the proportion of the food-stuffs, and as a consequence we have the summer minimum of diatom abundance. Further accumulation of the food-stuffs during this period of relative sterility leads to the autumn diatom maximum. Probably denitrifying bacteria play a not inconsiderable rôle in producing these variable proportions of nitrates present in the sea. It is known that bacteria exist in the sea which have the power of reducing nitrates to nitrites, the latter to ammonia, and ammonia to free nitrogen. In the latter form nitrogen is, of course, unavailable as food for diatoms. Now it has been shown that these denitrifying bacteria are more active at a high than at a low temperature. In the summer, then, they act on the fixed nitrogen present in the sea and render this unavailable as food for diatoms. In the colder season they are less active, and fixed nitrogen accumulates. It is a surprising thing that the plankton is less abundant in warmer tropical seas, in spite of a higher temperature and better light, than in colder sub-Arctic waters. The explanation lies probably in the more intense action of denitrifying bacteria in those warm waters, whereby the food-stuffs for the plankton are reduced.

Such considerations suggest the close connexion between the lowly organized plankton organisms and hydrographic phenomena. But can the same connexion be shown to exist between changes in temperature and salinity of sea water, and the changes in the abundance of such highly organized animals as our food-fishes? These connexions are more difficult to establish. The changing abundance of fishes on the fishing grounds is expressed in our imperfect statistical systems, and
These in the past have lent themselves badly to investigations of this kind. The official returns of fish landed were almost entirely useless, and it was necessary for the fishery research organizations to so organize returns of fish caught as to show the connexions we speak of. Such investigations as those of Fulton and Henking were alone suitable.

Nevertheless, the dependence of fish migrations on hydrographic changes in the sea was always a priori probable. For a fish in the sea the water is just such a medium as the atmosphere is for a migratory bird; and if we recognize that climatic changes were the main factors in determining the breeding seasons and migrations of birds, it was surely probable that changes in temperature, etc., in the sea affected the breeding seasons and migrations of fishes. We know how very intimately the period of incubation of a fish egg is determined by the temperature of the water in which it develops; and how the spawning periods themselves are variable with the temperature of the sea. It was just as reasonable to assume that fish migrations were also influenced by temperature at least. The International investigations are slowly accumulating instances of these connexions. Some such connexions were established before the beginning of these researches, but others are coming to light. Long ago Möbius and Heincke divided the fishes visiting the Baltic into "north fishes" and "south fishes." The north fishes have their homes in the Norwegian sea and the waters surrounding Iceland and Faeroe. The south fishes come from the temperate Atlantic. Möbius and Heincke noticed that the north fishes only visited the Cattegat during the first part of the year, and the south fishes during the latter part. Afterwards, when the hydrographic periodicity of the waters of the Skagerak, Cattegat, and Baltic was demonstrated, these migrations were correlated with the ebb and flow of the Atlantic stream. We have seen that during the latter part of the year warm Atlantic water accumulates in the depths of the Skagerak and sets up a warm undercurrent into the Baltic, which is at a maximum about the end of the year. The south fishes appear and travel with this undercurrent, which sets up changes in the fishery biology of the Baltic. Thus in the German fishery cruises of December, 1903, plaice and other flat-fishes, many of them spawning, were found in the southern Baltic in this warm undercurrent. On the other hand, flat-fishes were hardly at all found in this part of the Baltic in June and July, at which time the bottom was covered by the water of the cold undercurrent from the Skagerak, which enters the Cattegat in spring. The hake is a typical south fish, and we have seen that its capture in the North Sea is very inconstant and indicates a definite migration. In the latter area it arrives towards the end of summer with the incoming Atlantic stream; then it is relatively abundant. In the winter it disappears again.
Again, in the Barentz Sea the fisheries depend on the Atlantic flooding. This was shown by the Russian Fishery Commission in 1902. Two kinds of water enter this area. In the winter water from the Atlantic stream enters it, rounding North Cape. With the entrance of this occurs a “vast immigration of food fishes,” which have the character of south fishes, and fishing is then productive. In the spring this Atlantic stream subsides and Arctic water takes its place. The fisheries then cease, but still at this time the Atlantic stream is flowing past North Cape, and cod are still caught in quantity.

The bottom of the North Sea is a submarine plateau, which towards the north slopes down to the depths of the Norwegian sea. On this northern slope Atlantic water may be found at all times of the year, but at varying depths, according as the incoming stream waxes and wanes. On the bottom is cold Arctic water, and separating this from the overlying Atlantic water is a mixed layer, which contains relatively large quantities of fish, such as the ling and halibut. The Swedish fishermen set long lines on the portion of this slope towards Shetland. In the summer the mixed layer of water is nearer to the surface than in the winter, when the Atlantic stream is gathering volume. Just as this mixed-water stratum is nearer or further from the surface, so the fishermen move about so as to find it. In summer, when it is near the surface, they set their lines near Shetland in about 75–100 fathoms. In autumn, when the growing Atlantic stream forces down the significant water layer further from the surface, they are obliged to go further north, that is, down the North Sea slope, in order to find it. The lines are then set at depths of 150–200 fathoms.

The connexion of the herring migrations with the hydrographic changes is now quite certain, though much research is still necessary. There is no doubt that the great summer herring fishery of the east coasts of Britain hangs, in some way, on the periodic flooding of the North Sea with Atlantic waters. The case of the winter herring fishery off the coasts of Sweden is, however, a clearer case of the connexion of hydrographic and fishery phenomena. The winter herring is a north fish, and does not inhabit Atlantic water, but rather the mixed “Bank water” of lower salinity. In the great herring years it has been found that the Atlantic water lay at considerable depths beneath the surface, and that on this warm dense water was a layer of Bank water which covered the coastal shoals and entered the fjords. In this layer the herring was always found. In December, 1896, there was an unusual flooding of the Skagerak with Atlantic water. The level of this had reached so high that only a thin layer of Bank water remained. In this year the winter herring fishery was a failure.

Much has been done by the International researches to establish
the connexion of the cod fisheries with the hydrographic changes. In the winter of 1902-3 the Atlantic stream in the Norwegian sea attained its maximum much later than usual. That is, the stream had a greater volume than usual in this winter, and much more warm Atlantic water entered the northern ocean than in previous years. Many climatic phenomena accompanied this greater accumulation of warm water; the ice border everywhere receded to the north and east. Barometric depressions and cyclonic storms were more numerous than usual, and the weather was wild and stormy. Biological phenomena were also occasioned; Atlantic plankton was found as far north as 70° N., even among the drifting ice floes near Jan Mayen. The spawning period of the cod was greatly postponed, and the Lofoten cod fishery (which depends on spawning fish) was delayed for two months, and was a partial failure. The winter herring fisheries at Bergen and in the Skagerak also failed.

Quite recently too Schmidt has made some interesting observations on the cod fisheries off the coasts of Iceland. The island is surrounded by cold Arctic water, but on the south the Atlantic stream approaches it and flows, as the Irminger Current, along the north-west coasts. The cod spawns at the south of Iceland in the border region of the warm Atlantic stream and the cold littoral water, and the eggs are only found where the temperature of the water is over 5° C. Having spawned, the cod go west and north-west, following the Atlantic stream, and in the summer there is a general movement of cod, herring, and fish fry along the north and east coasts of Iceland; the fisheries take the same course, always in the border region of the Atlantic and Arctic waters.

More instances of hydrographic-biological phenomena might be quoted from the International publications, but we have noticed the more striking cases. The question why this connexion exists must be left for future investigation, and will certainly only be solved by very laborious researches. One wonders that the minute differences of salinity such as exist in the sea, and the comparatively small temperature differences, should affect so notably the migrations of fishes. It is perhaps a possible explanation that it is the food of the fishes that is affected in some such manner as we have discussed in relation to the varying abundance of diatoms in the plankton, but it is also probable that the metabolic processes of the fishes themselves are affected by even these small variations in the watery medium in which they live. After all, climatic differences affecting ourselves are sometimes very subtle, and when expressed by the readings of meteorological instruments are just as small as those which we have been considering.
PUBLICATIONS OF THE ASSOCIATION.

Old Series.
No. 1, August, 1887 (only a few copies left, reserved for Libraries).
No. 2, August, 1888. Price 1s.

New Series (Royal 8vo).
Volume I., 1889-90, 472 pp., 28 plates.
Volume II., 1891-2, 410 pp., 14 plates.
Volume III., 1893-4, xxxviii. and 458 pp., 5 plates and 25 woodcuts.
Volume V., 1897-9, 550 pp. and 16 plates.
Volume VI., 1899-1903, 676 pp., 3 charts and 7 plates.
Volume VII., Nos. 1, 2, 3, 4, and 5.
Separate numbers (generally 4 to one volume), in wrappers, 3s. 6d.; to Members, 2s. 8d.

Cloth 4to, 150 pp., 18 plates (12 coloured).

A TREATISE ON THE COMMON SOLE.

by

J. T. CUNNINGHAM, M.A., F.R.S.E.,
Late Fellow of University College, Oxford; Naturalist to the Association.
Price to Members, 20s.; to Non-Members, 25s.

Medium 8vo, 368 pages. 159 Illustrations and two Maps. Price 7s. 6d. net.
(Macmillan & Co., London.)

THE NATURAL HISTORY OF THE MARKETABLE MARINE FISHES OF THE BRITISH ISLANDS.

Prepared expressly for the use of those interested in the Sea-fishing Industries,

by

J. T. CUNNINGHAM, M.A.,
FORMERLY FELLOW OF UNIVERSITY COLLEGE, OXFORD;
NATURALIST ON THE STAFF OF THE MARINE BIOLOGICAL ASSOCIATION.

With Preface by

E. RAY LANKESTER, M.A., LL.D., F.R.S.,
PROFESSOR OF COMPARATIVE ANATOMY IN THE UNIVERSITY OF OXFORD.
PUBLICATIONS OF THE INTERNATIONAL COUNCIL FOR THE STUDY OF THE SEA.

BULLETIN
DES RÉSULTATS ACQUIS PENDANT LES COURSES PÉRIODIQUES.

Published Quarterly. Price per Volume of Four Numbers, 18 Kroner (£1).

RAPPORTS ET PROCÈS-VERBAUX DES RÉUNIONS.

Vol. II., 1903-4. Kr. 4.

PUBLICATIONS DE CIRCONSTANCE.

No. 3. Die Literatur der zehn wichtigsten Nutzfische der Nordsee. In monographischer Darstellung. 112 s., 10 T; August, 1903. Kr. 3.

The Literature of the Ten Principal Food Fishes of the North Sea. In the form of compendious monographs. 108 pp. 10 pl. August, 1903. Kr. 3.

—— Gefrierpunkttabelle für Meerwasser. Zusammen 13 s. September, 1903. Kr. 0.75.
No. 6. **Harry M. Kyle**: On a New Form of Trawl Net, designed to fish in midwater as well as on the ground. Preliminary notice. 8 pp. November, 1903. Kr. 0.50.

A New Mark for Fish.

No. 11. **Martin Knudsen**: σ_z Tabelle, Anhang zu den 1901 herausgegebenen hydrographischen Tabellen. 23 pp. May, 1904. Kr. 0.75.

No. 13a. Die Ostsee-Fischerei in ihrer jetzigen Lage. (Erster Teil.)

I. Uebersicht über die Seefischerei in den dänischen Gewässern innerhalb Skagen's. Im Auftrag von Dr. C. G. Joh. Petersen bearbeitet von Andreas Otterström.

No. 15. **Sigurd Stenius**: Ein Versuch zur Untersuchung der hydrographischen Veränderungen in der nördlichen Ostsee sowie im finnischen und im bottnischen Meerbusen. (Vorläufige Mitteilung.) 7 s. 5 t.

No. 16. --- Graphische Berechnung von σ, aus t und σ_z. 1 s.

No. 18. **J. W. Sandström**: Einfluss des Windes auf die Dichte und die Bewegung des Meereswassers. 6 s.

No. 20. **E. Ruppin**: Über die Oxydierbarkeit des Meerwassers durch Kaliumpermanganat. 9 s. (No. 15–20. Ensemble 37 pp. 5 pl. et 3 fig. October, 1904. Kr. 1.50.)

No. 22. **D. Damas**: Notes biologiques sur les Copépodes de la mer norvégienne. 24 pp. 1 carte. April, 1905. Kr. 1.

No. 23. **V. Walfrid Ekman**: On the use of Insulated Water-Bottles and Reversing Thermometers. (Communications du Laboratoire central à Christiania No. 2.) 28 pp. 2 pl. 8 fig. April, 1905. Kr. 1.

No. 24. **V. Walfrid Ekman**: Kurze Beschreibung eines Propell-Strommessers. (Communications du Laboratoire central à Christiania No. 3.) 4 s. 1 t.

No. 25. **O. Pettersson**: Beschreibung des Bifilar-Strommessers. 6 s. 1 t.

No. 27. **V. Walfrid Ekman**: An Apparatus for the Collection of Bottom-Samples. (Communications du Laboratoire central à Christiania No. 4.) 6 pp. 5 fig. August, 1905. Kr. 0.50.

No. 28. Bericht über die Anstalten zur Vermehrung des Lachses und der Meerforellen in den Flüssen der Ostsee. Im Auftrage der Kommission C 1, unter Mitwirkung von Prof. Dr. **O. von Grimm** (Russland), von dem deutschen Seeischerei-Verein (General-Sekretär Prof. Dr. **H. Henking**) (Deutschland) und von Fischereikonsulent **Chr. Levinsen** (Dänemark), bearbeitet von dem Geschäftsführer Dr. **Fil. Trybom**. 34 s. November, 1905. Kr. 0.75.

No. 30. **Rolf J. Witting**: Kurze Beschreibung eines elektrisch registrierenden Strommessers. 8 s. Textfig.

No. 31. — — Etliches über Strommessung. 11 s.

No. 32. **Charles Atwood Kofoid**: A Self-closing Water-bucket for Plankton Investigations. 10 pp. 4 fig. December, 1905. Kr. 0.50.

No. 34. **Fridtjof Nansen**: Methods for Measuring Direction and Velocity of Currents in the Sea. With an Appendix by Dr. **V. Walfrid Ekman**. 42 pp. 2 pl. and 31 fig. February, 1906.

Published on behalf of the International Council

BY

ANDR. FRED. HöST ET FILS,

COPENHAGEN.
OBJECTS
OF THE
Marine Biological Association of the United Kingdom.

THE ASSOCIATION was founded at a Meeting called for the purpose in March, 1884, and held in the Rooms of the Royal Society of London.

The late Professor Huxley, at that time President of the Royal Society, took the chair, and amongst the speakers in support of the project were the late Duke of Argyll, the late Sir Lyon Playfair, Lord Avebury, Sir John Hooker, the late Dr. Carpenter, Dr. Gunther, the late Lord Dalhousie, the late Professor Moseley, the late Mr. Romanes, and Professor Lankester.

The Association owes its existence and its present satisfactory condition to a combination of scientific naturalists, and of gentlemen who, from philanthropic or practical reasons, are specially interested in the great sea fisheries of the United Kingdom. It is universally admitted that our knowledge of the habits and conditions of life of sea fish is very small, and insufficient to enable either the practical fisherman or the Legislature to take measures calculated to ensure to the country the greatest return from the "harvest of the sea."

Naturalists are, on the other hand, anxious to push further our knowledge of marine life and its conditions. Hence the Association has erected at Plymouth a thoroughly efficient Laboratory, where naturalists may study the history of marine animals and plants in general, and where, in particular, researches on food-fishes and molluscs may be carried out with the best appliances.

The Laboratory and its fittings were completed in June, 1888, at a cost of some £12,000. Since that time investigations, practical and scientific, have been constantly pursued at Plymouth. Practical investigations upon matters connected with sea-fishing are carried on under the direction of the Council; in addition, naturalists from England and from abroad have come to the Laboratory, to carry on their own independent researches, and have made valuable additions to zoological and botanical science, at the expense of a small rent for the use of a working table in the Laboratory and other appliances. The number of naturalists who can be employed by the Association in special investigations on fishery questions, and definitely retained for the purpose of carrying on those researches throughout the year, must depend on the funds subscribed by private individuals and public bodies for the purpose. The first charges on the revenue of the Association are the working of the seawater circulation in the tanks, stocking the tanks with fish and feeding the latter, the payment of servants and fishermen, the hire and maintenance of fishing-boats, and the salary of the Resident Director and Staff. At the commencement of this number will be found the names of the gentlemen on the staff.

In the summer of 1902 the Association was commissioned by His Majesty's Government to carry out in the southern British area the scheme of International Fishery Investigations adopted by the Conference of European Powers which met at Christiania in 1901. In connection with this work a laboratory has been opened at Lowestoft.

The purpose of the Association is to aid at the same time both science and industry. It is national in character and constitution, and its affairs are conducted by a representative Council, by an Honorary Secretary and an Honorary Treasurer, without any charge upon its funds, so that the whole of the subscriptions and donations received are devoted absolutely to the support of the Laboratory and the prosecution of researches by aid of its appliances. The reader is referred to page 4 of the Cover for information as to membership of the Association.
CONTENTS OF NEW SERIES, Vol. VII., No. 5.

1. Some Results of the International Fishery Investigations.
 By Jas. Johnstone. With six Figures 437

NOTICE.

The Council of the Marine Biological Association wish it to be understood that they do not accept responsibility for statements published in this Journal excepting when those statements are contained in an official report of the Council.

TERMS OF MEMBERSHIP.

<table>
<thead>
<tr>
<th>Membership</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Members</td>
<td>.</td>
<td>.</td>
<td>per annum</td>
</tr>
<tr>
<td>Life Members</td>
<td>.</td>
<td>.</td>
<td>Composition Fee</td>
</tr>
<tr>
<td>Founders</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Governors</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Members of the Association have the following rights and privileges: they elect annually the Officers and Council; they receive the Journal of the Association free by post; they are admitted to view the Laboratory at Plymouth, and may introduce friends with them; they have the first claim to rent a place in the Laboratory for research, with use of tanks, boats, &c.; and have access to the books in the Library at Plymouth.

All correspondence should be addressed to the Director, The Laboratory, Plymouth.
GENERAL INDEX

A.

Acartia Clausi, 136, 137.

Egithus, 137.
- *atlanticus*, 122.
- *macronatus*, 122.

Eolidella, 357.

Etidicus tenirostris, n. sp., 116, 117.

Age of Gadid, 1.

Alderiya, 376.
- *modesta*, 376.

Allen, E. J.—"Pallasia murata, n. sp.; a new British Sabellarian," 299.

Amallophora, 120.
- *brevicornis*, 137.
- *magna*, 136.

Amphineura, of Plymouth, 267.

Amphipoda, of Plymouth, 233.

Amphorina, 364.
- *aurantiaca*, 367.
- *olivacea*, 368.

Anomalocera, 137.
- *patersoni*, 140.

Anthomedusse, of Plymouth, 187.

Antipella, 373.
- *cristata*, 373.

Archiannelida, of Plymouth, 219.

Archidoris, 336.
- *stellifera*, 339.
- *testudinaria*, 339.
- *tuberculata*, 339.

Aristellus, 123.

Atlantic, Copepoda of North, 110.

Augaptilus, distribution of, 135, 137.
- *filigerus*, 122.
- *gibbus*, n. sp., 122.
- *glacialis*, 135.
- *longicaudatus*, 135.

Augaptilus magnus, n. sp., 122.
- *megalurus*, 122.
- *palumboi*, 135.
- *zetesios*, 122.

Balance Sheet, 1903-4, 326.

Balance Sheet, 1905-6, 434.

Berghia cornescans, 357.

Brachyura, of Plymouth, 254.

Brodidius armatus, 136, 137.

Branchiopoda, of Plymouth, 233.

Bryaxis brevicornis, 137.

Bryozoa, of Plymouth, 259.

Calanus finmarchicus, distribution of, 126, 137.
- *helgolandicus*, 126.
- *hyperboricus*, 113.
- *princeps*, 113.
- *tenicornis*, 130.
- *vulgaris*, 126.

Calliopea bellula, 379.

Calma, 369.
- *glanicoides*, 371.

Calocalanus, 126.

Candace, distribution of, 130.
- *norvegica*, 130.
- *pectinata*, 137.
- *truncata*, 130.

Candace rotunda, n. sp., 118.

Carolina, 366.

Centropages hamatus, 137.
- *typicus*, 137.

Cephalopoda, of Plymouth, 294.

Chetognatha, of Plymouth, 233.

NEW SERIES. VOL. VII. NO. 5.
Chiridius, 131.
— armatus, identity of, 115, 131.
— brevispinus, 114, 131.
— obtusifrons, 117, 131, 132, 137.
— poppei, 131.
— tenispinus, identity of, 114, 131.
— vanhoffeni, n. sp., 117.
Cirripedia, of Plymouth, 237.
Cod, growth of, 103.
Copepoda, of the North Atlantic and the Faroe Channel, 110.
— of Plymouth, 234.
— dichotomous branching of tail setae, 126.
— horizontal distribution of, 126.
— vertical range of, in the N. Atlantic, 140.
Coryphella, 358.
— beaumonti, n. sp., 361.
— gracilis, 359.
— landsburghii, 361
— rufibranchiata, 358.
Cratenia, 365.
— amena, 368.
Ctenocalanus, 137.
— crassus, 127, 137.
— elongatus, 113, 137.
— elongatus, 127.
Ctenophora, of Plymouth, 206.
Cucumaria montagui, 305.
— Normani, n. sp., 305.
— saxicola, 305.
Cumacea, of Plymouth, 245.
Cuthona, 364.
Cuthonella, 365.

D.
Discomedusa, of Plymouth, 201.
Doris, 336.
— beaumonti, 345.
— planata, 339, 341.
— testudinaria, 339, 341.
Doto, 357.
— pinnafilida, var. papiliferata, 356.
— uncinata, 353.

E.
Echinodermata, of Plymouth, 206.
Ectinosoma (Microsetella) atlantica, 136, 137.
Eels, scales of, 103.
Eliot, C.—“Notes on some British Nudibranchs,” 333.

Eolis angulata, 357.
— glaucoideum, 369.
Encalanus, distribution of, 127.
— atlanticus, n. sp., 113.
— attenuatus, 127.
— crassus, 127, 137.
— elongatus, 113, 137.
— elongatus, 127.
Encula, distribution of, 132.
— acuta, 133.
— armata, identity of, 115.
— barbata, 133, 135, 137.
— gigas, 133.
— glacialis, 133, 134, 137.
— hessii, 133.
— marina, 132.
— norvegica, 126, 133, 134, 137.
Euchirella, distribution of, 128.
— bella, 126, 129.
— curvata, 115, 128.
— curvicrana, 129.
— curvicrana, var. atlantica, 116.
— pulchra, 129.
— rostrata, 128, 137.
Enomenis marmorata, 352.

F.
Faroe Channel, Copepoda of, 110.
Faroella multiserrata, n. gen., n. sp., 117, 137.
Fauna, marine invertebrate, of Plymouth, 155.
Foraminifera, of Plymouth, 174.
Forestia, 370.

G.
Gadidae, growth of scales, 1.
Gadus eglefinus, scales an index of age, 101.
— calleriis, scales an index of age, 103.
— merlangus, scales an index of age, 85.
— minimus, scales an index of age, 79.
— pollachius, scales an index of age, 58.
Gateritus, distribution of, 132.
Gateritus armiger, 114, 132.
— atlanticus, 132.
— candori, 114, 132.
— major, n. sp., 114, 132, 137.
— miles, 114.
Gaidius, distribution of, 132.
— major, 114, 131, 137.
— pungens, 114, 131, 137.
Gaidius tenuispinus, identity of, 131.
Geliodora planata, 344.
— reticulata, 345.
Gephyrea, of Plymouth, 233.
Govia, 353.

II.
Haddock, growth of, 101.
Haloptilus, distribution of, 135, 137.
— acutifrons, 135.
— longicornis, 135.
Hancockia, 353.
— dactylota, 354.
Heterorhabdus abyssali, 130.
— grandis, n. sp., 120, 130.
— longicornis, 121, 124, 130.
— major, 121.
— norvegicus, 130, 137.
— vireo, 130.
— zetesios, identity of, 124, 130.
Heterorhabdidae, distribution of, 130.
Hirudinea, of Plymouth, 233.

I.
International Fishery Investigations.
First Report of the Council of the Marine Biological Association on work carried out, 383.
International Fishery Investigations.
"Some Results of the International Fishery Investigations."
By J. Johnstone, 437.
Isopoda, of Plymouth, 242.

J.
Janidae, 372.
Janolus, 373.
— flagellatus, n. sp., 374.
— hyalinus, 374.

L.
Lamellidoris, 345.
— pusilla, 347.
— quadrinaudata, 345.
Leptomus, of Plymouth, 193.
Leptostyra, of Plymouth, 237.
List of Governors, Founders, and Members, 1st March, 1904, 147.
List of Governors, Founders, and Members, 31st May, 1906, 408.
Lomanotus, 348.
— eisigii, 349, 351.
— flavidus, 353.
— genei, 350.
— hancocki, 349.
— marmoratus, 351.
— portlandicus, 349.
Longipedia coronata, 140.
Lophothrix, 120.
— securifrons, n. sp., 120.
Lucicutia, distribution of, 136, 137.
— atlantica, n. sp., 121.
— clausi, 121.
— flavicornis, 121, 136.
— grandis, n. sp., 121.
— longiserrata, 121.
— magna, 121, 122.

M.
Macrura, of Plymouth, 249.
Megacalanus princeps, n. gen., n. sp., 112.
Members, list of, 147.
Metridia, distribution of, 136.
— brevicauda, 136.
— longa, 136, 137.
— lucens, 136, 137.
— normani, 125, 136.
— venusta, 124.
Microsetella atlantica, 136.
Myzostomaria, of Plymouth, 233.

N.
Nemertini, of Plymouth, 215.
New genera, Faroella, 117; Megacalanus, 112; Paraugaptilus, 123; Pseudoluides, 115.
New species, Aetides tenuirostris, 116; Augaptilus gibbus, 122; Augaptilus magna, 122; Candacia rotunda, 118; Chiridius vanhoffeni, 117; Coryphella baumonti, 361; Cucumaria Normani, 309; Evacalanus atlanticus, 113; Faroella...

Lamellidoris olivacea, 345.
(n. gen.) multisserata, 117;
Galanus major, 114; Heterorhabdus grandis, 120; Janudios flagellatus, 374; Lophothrix secundifrons, 120; Lucicutia atlantica, 121; Lucicutia grandis, 121; Megacalanus (n. gen.) princeps, 112; Pallasia murata, 299; Paracalanus (n. gen.) bauhini, 123; Pseudocalanus armatus, 115; Scolecithrix atlantica, 120; Scolecithrichina similis, 119; Spinocalanus magnus, 118; Xanthocalanus atlanticus, 119; Xanthocalanus cristatus, 119; Xanthocalanus subagilis, 118.

North Atlantic, Copepod of, 110.

"Notes on Some British Nudibranchs." By C. Eliot. 333.

Nudibranchiata, of Plymouth, 277.

O.

Oithona, distribution of, 136.
— plumifera, 136.
— similis, 136, 137.

Oligochaeta, of Plymouth, 233.

Oncaea, distribution of, 136.
— confirma, 136, 137.

Ostracoda, of Plymouth, 234.

P.

Pace, S., "Note on two species of Oncinaria from Plymouth, hitherto confused as C. Montagni (Fleming): C. Normani, n. sp., and C. suycola, Brady and Robertson," 305.

Pallasia murata, n. sp., 299.

Paracalanus caudatus, 126, 130.
— parvus, distribution of, 129, 137.

Paracalanus bauhini, n. gen., n. sp., 123.

Pelocytopoda, of Plymouth, 285.

Phaeno, 137.

Phylocaps bidentatus, 124.

Phyloporus argo, 340.

Phyloseremma, distribution of, 128.
— abdominalis, 128, 137.
— abyssalis, 128.
— robusta, 128, 137.

Pleurophylidina, 347.
— lineata, 347.
Trachymedusæ, of Plymouth, 200.

Tritonia, 334.
— *alba*, 335.
Tunicata, of Plymouth, 295.
Turbellaria, of Plymouth, 211.

U.

Undeuchæa major, 126.

W.

Weldon, Prof. W. F. R. Obituary Notice, 331.
Whiting, growth of, 85.

Worth, R. H., on the Foraminifera of the Plymouth area, 174.

X.

Xanthocalanus agilis, 119.
— *atlanticus*, n. sp., 119.
— *borealis*, 119.
— *cristatus*, n. sp., 119.
— *subagilis*, n. sp., 118.

Z.

Zoantharia of Plymouth, 203.
| Synonyms are printed in Italics. |

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthochites fascicularis</td>
<td>268</td>
</tr>
<tr>
<td>Acanthodoris pilosa</td>
<td>284</td>
</tr>
<tr>
<td>Acanthodoris longiremis</td>
<td>235</td>
</tr>
<tr>
<td>Achaua Cranchi</td>
<td>255</td>
</tr>
<tr>
<td>Acholoe astericola</td>
<td>222</td>
</tr>
<tr>
<td>Acmaea virginea</td>
<td>268</td>
</tr>
<tr>
<td>Acrorhynchus caledonicus</td>
<td>212</td>
</tr>
<tr>
<td>Acteon tornatilis</td>
<td>276</td>
</tr>
<tr>
<td>Acteon corrugata</td>
<td>278</td>
</tr>
<tr>
<td>Actinia equina</td>
<td>203</td>
</tr>
<tr>
<td>Actinoloba dianthus</td>
<td>204</td>
</tr>
<tr>
<td>Adamsia palliata</td>
<td>204</td>
</tr>
<tr>
<td>Adorbus subcarinatus</td>
<td>271</td>
</tr>
<tr>
<td>Agalmopsis Sarsi</td>
<td>201</td>
</tr>
<tr>
<td>Aglaoplicnia Helleri</td>
<td>197</td>
</tr>
<tr>
<td>Aiptasia C'ouchi</td>
<td>205</td>
</tr>
<tr>
<td>Alcyoniuni digitatuni</td>
<td>202</td>
</tr>
<tr>
<td>Alcyonidium gelatinosum</td>
<td>266</td>
</tr>
<tr>
<td>Aiptasia pilosa</td>
<td>284</td>
</tr>
<tr>
<td>Aiptasia’ glomeratum</td>
<td>203</td>
</tr>
<tr>
<td>Alcyonidium hirsutum</td>
<td>266</td>
</tr>
<tr>
<td>Alcyonidium mytili</td>
<td>266</td>
</tr>
<tr>
<td>Alcyonidium palma</td>
<td>202</td>
</tr>
<tr>
<td>Alcyonidium parasiticuni</td>
<td>266</td>
</tr>
<tr>
<td>Alijheus ruber</td>
<td>250</td>
</tr>
<tr>
<td>Alvania cancellata</td>
<td>270</td>
</tr>
<tr>
<td>Alvania reticulata</td>
<td>270</td>
</tr>
<tr>
<td>Almarchium albicans</td>
<td>297</td>
</tr>
<tr>
<td>Almarchium Nordmanni</td>
<td>297</td>
</tr>
<tr>
<td>Almarchium punctum</td>
<td>297</td>
</tr>
<tr>
<td>Anathnia ladiigera</td>
<td>266</td>
</tr>
<tr>
<td>Amblyosyllis spectabilis</td>
<td>220</td>
</tr>
<tr>
<td>Ammodiscus gordialis</td>
<td>176</td>
</tr>
<tr>
<td>Ammodiscus incertus</td>
<td>176</td>
</tr>
<tr>
<td>Ammodiscus echinata</td>
<td>259</td>
</tr>
<tr>
<td>Anipthicteis curvipalea</td>
<td>230</td>
</tr>
<tr>
<td>Anipthicteis falx</td>
<td>182</td>
</tr>
<tr>
<td>Anipthicteis tennicorns</td>
<td>238</td>
</tr>
<tr>
<td>Anipthicteis curvipalea</td>
<td>230</td>
</tr>
<tr>
<td>Anipthicteis Echinocardium</td>
<td>211</td>
</tr>
<tr>
<td>Anipthicteis manndens</td>
<td>239</td>
</tr>
<tr>
<td>Anipthicteis odontonyx</td>
<td>239</td>
</tr>
<tr>
<td>Anipthicteis dinema</td>
<td>191</td>
</tr>
<tr>
<td>Anipthicteis bioculatus</td>
<td>217</td>
</tr>
<tr>
<td>Anipthicteis dissimulans</td>
<td>216</td>
</tr>
<tr>
<td>Anipthicteis lactifloreses</td>
<td>216</td>
</tr>
</tbody>
</table>
INDEX TO PLYMOUTH FAUNA.

Amphiporus pulcher, 216.
Amphithoe rubricata, 241.
Amphitrite gracilis, 228.
— Johnstomi, 229.
Amphirura Chijsji, 209.
— elegans, 209.
— filiformis, 209.
Amphorina cerrdeca, 279.
Anapagus laevis, 253.
Anaplodactylus petiolatus, 258.
Ancharia rubricata, 241.
— gracilis, 228.
— eburnea, 229.
Ancharura Ciajii, 229.
— elegans, 209.
— filiformis, 209.
Anemone angulata, 228.
— eburnea, 229.
Anemone sulcata, 203.
Anomalocera Patersoni, 235.
Anomia eburnea, 285.
— 2:)atelliformis, 286.
Anidedon bifida, 207.
— rosacea = A. bifida, 207.
Antennularia antennis, 197.
— ramosa, 197.
Anthea cerea = Anemonia sulcata, 203.
Anthura gracilis, 242.
ApojM = Antiopea, 281.
Aplidium diversicolor, 211.
— elegans, 211.
Aplidium zostericola, 297.
Aplysia punctata, 277.
Aplysia punctata, 220.
— rubropunctata, 220.
Automolos horridus, 214.
— ophioccephalus, 214.
— unipunctatus, 214.
Arctica septendecim = Pteria hirundo, 286.
Azinus = Thyasira, 288.

B.
Balanus balanoides, 237.
— crenatus, 237.
— perforatus, 237.
— spongicola, 237.
Barbatia lactea, 286.
Barnea parva, 293.
Bathyneletes longipes, 257.
Bathyneletes longipes, 238.
Beroc cucuminis, 206.
Berghia cerulea, 278.
Bicellaria ciliata, 260.
Biloculina depressa, 174.
— elongata, 174.
— ringens, 174.
— ringens, var. carinata = B. depressa, 174.
— ringens, var. pedagonica = B. elongata, 174.
— tubulosa, 174.
Bispira volutacornis, 232.

Ascidia mentula, 296.
— venosa, 296.
Ascidia = Ascidia, 296.
Ascidia aspersa, 296.
— scabra, 296.
Astacilla intermedia, 244.
— longicornis, 244.
Astacus gravianus = Homarus vulgaris, 251.
Astarte sulcata, 288.
Asterias aurantium = Astropecten irregularis, 207.
Asterias glacialis, 205.
— rubens, 205.
Asterina gibbosa, 207.
Asterope Marle, 234.
Astropecten irregularis, 207.
Atelecyclus heterodon = A. septendecim =, 257.
Atelecyclus septendecim =, 257.
Athena nitescens, 250.
Audounia tentaculata, 228.
Aurelia aurita, 202.
Antolytus pictus, 220.
— rubropunctatus, 220.
Antolomos horridus, 214.
— ophioccephalus, 214.
— unipunctatus, 214.
Arctica septendecim = Pteria hirundo, 286.
Azinus = Thyasira, 288.

B.
Balanus balanoides, 237.
— crenatus, 237.
— perforatus, 237.
— spongicola, 237.
Barbatia lactea, 286.
Barnea parva, 293.
Bathyneletes longipes, 257.
Bathyneletes longipes, 238.
Beroc cucuminis, 206.
Berghia cerulea, 278.
Bicellaria ciliata, 260.
Biloculina depressa, 174.
— elongata, 174.
— ringens, 174.
— ringens, var. carinata = B. depressa, 174.
— ringens, var. pedagonica = B. elongata, 174.
— tubulosa, 174.
Bispira volutacornis, 232.
INDEX TO PLYMOUTH FAUNA. 495

Bittium reticulatum, 273.
Bolina infundibulum, 206.
Bolivina xenariensis, 179.
— diiformis, 178.
— dilatata, 179.
— punctata, 178.
— textilaroides, 178.
Bopyrus Squillarum, 245.
Botryloides rubrum, 298.
— violaceus, 298.
 Bougainvillia ramosa, 189.
Bowerbankia caudata, 267.
— imbricata, 267.
— pustulosa, 267.
Brachystomia aiiibigua, 273.
Branchiomma vesiculosum, 231.
Buccinum undatum, 274.
Bugula avicularia, 260.
— floribata, 260.
— plumosa, 260.
— turbinata, 260.
Bulimina aculeata, 178.
— elegans, 178.
— elegans, var. exulis, 178.
— elegantissima, 178.
— marginata, 178.
— pupoideæ, 177.
— pupoideæ, var. compressa = Virgulina schreibersiana, 178.
— pupoideæ, var. marginata = B. marginata, 178.
— pupoideæ, var. spinulosa = B. aculeata, 178.
— seabra (arenacea) = Verruclina polystropha, 177.
Bulla = Haminea, 276.
Bulla Crenchi = Roxania utriculus, 276
Bullinella cylindracea, 276.
Bunodes = Chitonacis coronata, 204.
Bunodes Balli, 205.
— gemmacea, 205.
Bryophlebs Grafi, 212.
— intermediæ, 212.
C.
Caberea Boryi, 259.
Caeccum glabrum, 274.
— imperfectum, 274.
— trachæa = C. imperfectum, 274.
Calanus finmarchicus, 234.
Callioptoma granulatum, 269.
Callioptoma striatum, 269.
— zizyphinus, 269.
Callochinon levis, 268.
Calma glaucoïdes, 250.
Calocaris Macandrew, 252.
Calycella fastigiata, 195.
— syringa, 195.
Calyptrae chinensis, 272.
Campanularia = Agastra, 193.
Campanularia angulata, 193.
— flexuosa, 193.
— Hinecki, 194.
— neglecta, 194.
— verticillata, 194.
— volubilis, 194.
Campanularia repens, 194.
Campanularia repens = Phialidium cymbaloïdum Hydroid, 200.
Cancer pagurus, 256.
Capitella capitata, 230.
Caprella acanthifera, 242.
— equilibra, 242.
— linearis, 242.
— tuberculata, 242.
Capulus hungaricus, 271.
Carcinus maenas, 257.
Cardium echinatum, 291.
— edule, 291.
— (Levacardium) norvegicum, 291.
Carinella annulata = C. superba, 215.
Carinella annulata, 215.
— aragoi = C. annulata, 215.
— linearis, 215.
— McIntoshii = C. annulata, 215.
— polymorpha, 215.
— superba, 215.
Caryophyllia Smithi, 205.
Cassidulina Bradyi, 179.
— crassa, 179.
— obtusa = C. crassa, 179.
Castalia punctata, 220.
Cellaria aneena, 278.
— aurantia, 279.
— olivacea, 279.
Cellaria fistulosa, 261.
— Johnstoni = C. silicornoides, 261.
— silicornoides, 261.
— sinuosa, 261.
Cellepora avicularis, 264.
— Costazi, 264.
— dichotoma, 264.
— pumicosa, 264.
Callepora ramulosa, 264.
Centropages typicus, 235.
Cephalothrix bioculata, 215.
— linearis, 216.
Ceratia proxima, 271.
Cerebratulus fasciatus, 219.
— marginatus = C. pantherinus, 219.
— pantherinus, 219.
Cereus pedunculatus, 204.
Cerianthus Lloydii, 203.
Cerithoecus_Dupin, 215.
— linearis, 216.
Cerithia proxima, 271.
Cereus fuscius, 219.
— marginatus = C. pantherinus, 219.
— pantherinus, 219.
Cereus pedunculatus, 204.
Cerianthus Lloydii, 203.
Cerithiopsis tuberculata, 273.
Cereus pedunculatus, 204.
Cereus fuscius, 219.
— marginatus = C. pantherinus, 219.
— pantherinus, 219.
Cereus pedunculatus, 204.
Cerianthus Lloydii, 203.
Cerithiopsis tuberculata, 273.
Cereus pedunculatus, 204.
Cereus fuscius, 219.
— marginatus = C. pantherinus, 219.
— pantherinus, 219.
Cereus pedunculatus, 204.
Cerianthus Lloydii, 203.
INDEX TO PLYMOUTH FAUNA.

Cristellaria subarcuata = C. crepidula, 181.
— vortex, 181.
Cryptocelis alba, 214.
Cryptothir Balani, 245.
Cucumaria brunnnea, 206.
— Hyndmani, 206.
— Normani, 206.
— pentactes = C. sxicola, 206.
— Planeci = C. Normani, 206.
— saxicola, 206.
Cultellus pellucidus, 292.
Cuspidella costata, 195.
— grandis, 195.
Cuthona Pecchi, 278.
Cyanea capillata, 201.
— Lamarcki, 201.
Cyclopina littoralis, 236.
Cycloporus papillosus, 214.
(7y/if/in« = Bullinella, 276.
— = Volvulella, 276.
— truncata = Tornatina truncatula, 276.
Cylindrocium dilatatum, 267.
Cylindrostoma elongatum, 214.
— inerme, 213.
— quadriculatum, 213.
Cylista undata, 204.
— viduata, 204.
Cynthia limacina = Forbesella tessalata, 295.
Cyprea = Trivia, 272.
Cyprina islandica, 288.
Cyteandra arcuata, 192.
Cythere emaciata, 234.
— oblonga, 234.
— quadridentata, 234.
— runcinata, 234.
Cytherea = Meretrix, 290.

D.
Daschone Bombyx, 231.
Dasmysis longicornis, 249.
Defracaria = Clathurella, 275.
— = Mangilia, 275.
Delagia chaytoperti = Hypophorella expansa, 267.
Dendronotus arborascens = D. frondosus, 282.
— frondosus, 282.
Dentalina subarcuata = Nodosaria communis, 181.
Dentalium entalis, 285.

Depastrum cyathiforme, 201.
Dexamine spinosa, 239.
Diastopora obelia, 265.
— patina, 265.
— saricensis, 265.
— subborcularis, 265.
Diastylis Bradyi, 245.
— lavis, 245.
— Rathkeli, 245.
— rostrata = D. lavis, 245.
Diazone violacea, 297.
Dinophilus trinatus, 219.
Diogenes varians, 253.
Diplodonta rotundata, 288.
Diphasia attenuata, 196
— pinaster, 196.
— pinata, 196.
— rosacea, 196.
— tamarisca, 196.
Diphyllidid lineata = Pleurophyllidid Loveni, 282.
Dipurena halterata, 191.
— ophiogaster, 191.
Discorbona Bertheloti, 183.
— globularis, 183.
— orbicularis, 183.
— parisiensis, 183.
— rosacea, 183.
Distaphia rosea, 297.
Dodecaceria coubarum, 228.
Doliolum nationalis, 298.
— tritonis = D. nationalis, 298.
Donax anatitus = D. vittatus, 289
— politus = D. variegatus, 289.
— variegatus, 289.
— vittatus, 289.
Dondersia = Myzomenia, 267.
Donovania minima, 274.
Doris = Acanthodoris, 284.
— = Archidoris, 282.
— = Jorunna, 283.
— = Lamellidoris, 284.
— = Platydoris, 283.
— = Rostanga, 283.
Dosinia exoleta, 290.
Doto coronata, 281.
— fragilis, 281.
— pinatifida, 282.
Drepanophorus spectabilis, 217.
Dronia vulgaris, 254.
Dryope cronaelpalmata = Unicola cronaelpalm, 241.
\textit{Dionea} irrorata = Unioidea crenatispina, 241.

Dynamene rubra, 243.

\textit{Ebalia} brevipes = E. tenebrosa, 254.

\textit{Ebalia} Cranchi, 254.

- \textit{Poumai} = E. tuberosa, 254.
- tuberosa, 254.
- tenebrata, 254.
- \textit{Tetraconta} cordatum, 211.

- flavescens, 211.
- pennatidium, 211.

- \textit{Havescens}, 211.
- \textit{pennatifidum}, 211.

\textit{Ectinosoma} atlanticum = \textit{Micraster} norvegica, 236.

\textit{Ectostele} Dumoitieri, 191.

\textit{Edwardsia} Beautempsii, 203.

- \textit{carnea}, 203.

\textit{Egeon} fasciatus, 251.

- \textit{retinatus}, 251.

\textit{Elyria} = \textit{Moschites}, 295.

\textit{Eloactis} Mazeli, 203.

\textit{Elysia} viridis, 278.

\textit{Emarginula} conica, 268.

- \textit{fissura}, 268.
- \textit{Müller} = \textit{fissura}, 268.
- rata = \textit{fissura}, 268.
- rosea = \textit{conica}, 268.

\textit{Embletonia} pulchra, 279.

\textit{Enrius} ensis, 292.

- siliqua, 292.

\textit{Enterostoma} austriacum, 213.

- fangianum, 213.

\textit{Entosolenia} = \textit{Lageni}a, 179, 180.

- \textit{globosa}, var. \textit{lineata} = \textit{Lagenina} lineata, 180.

- \textit{marginata}, var. \textit{lagenoides} = \textit{Lagenina} lagenoidea, 181.

- \textit{marginata}, var. \textit{quadrate} = \textit{Lagenina} quadrate, 181.

- \textit{squmana}, var. \textit{hexagona} = \textit{Lagenina} hexagona, 180.

\textit{Eolis} = \textit{Eolidella}, 278.

- \textit{Amphorina}, 279.
- \textit{Eolidia}, 278.
- \textit{Calma}, 280.
- \textit{Cavolina}, 279.
- \textit{Coryphella}, 280.

\textit{Eolis} = \textit{Cratena}, 279.

- \textit{Cuthona}, 278.
- \textit{Fedelina}, 280.
- \textit{Farrell} = \textit{Galvina} pietr, 279.
- \textit{Galvina}, 279.
- \textit{pieta} = \textit{Galvina} pietr, 279.

\textit{Epheus} gracilis, 227.

\textit{Epizoanthus} Conchi, 203.

- \textit{icrastatus}, 203.

\textit{Erato} levis, 272.

\textit{Erichthonius} abditus, 241.

\textit{Erythrops} elegans, 247.

- \textit{pygmaea} = \textit{E. elegans}, 247.

\textit{Escharoides} quinuncialis, 262.

\textit{Eteone} picta, 224.

\textit{Euchilota} pilosella, 190.

\textit{Acrucana} chelata, 259.

\textit{Endodendrium} album, 189.

- \textit{capillare}, 189.

\textit{Endodendrium} rameum, 189.

- \textit{rampus}, 189.

\textit{Eniorella} truncatula, 245.

\textit{Eutalia} aurea, 223.

- \textit{Chaspa} raei, 223.

- \textit{paule}, 223.

- \textit{obtecta}, 223.

- \textit{ornata}, 223.

- \textit{punctifera}, 223.

- \textit{viridis}, 223.

- \textit{Eulima} (\textit{Leiostraca}) bilimata, 274.

- (\textit{Leiostraca}) \textit{glabra}, 274.

- \textit{incurva}, 273.

- \textit{polita}, 273.

- \textit{subulata} = \textit{E. (Leiostraca) glabra}, 274.

\textit{Eumargarita} gruenlaudica, 274.

\textit{Eumastix} \textit{glabra}, 274.

\textit{Eunice} Harassi, 225.

\textit{Eunoe} nodosa, 221.

\textit{Eupagurus} Bernhardus, 253.

- \textit{luanensis}, 253.

- \textit{sculptimanus}, 253.

\textit{Euphyssio} foliosa, 222.

\textit{Euphysia} aurata, 191.

\textit{Eupholia} curta, 218.

\textit{Euryplea} cornuta, 215.

\textit{Euryone} aspera, 255.
INDEX TO PLYMOUTH FAUNA.

Enterpe acutifrons, 236.
— gracilis = E. acutifrons, 236.
Eutima insignis, 200.
Evdne Nordmanni, 233.
Evarne impar, 222.

F.
Facelina coronata, 280.
— Drummondi, 280.
— punctata, 280.
Favorinus albus, 280.
Fecampia erythrocepliala, 213.
Filograna impexa, 232.
Fissurella grisca, 269.
— reticulata = Y. grisca, 269.
Fhistra papyracea, 260.
— (?) securifrons, 260.
Flustrella lisipida, 266.
Forbesella tessellata, 295.
Fovia affinis, 214.
Fragariuni elegans, 298.
Fritillaria Ljorealis, 298.
Fusus islandicus = Triton ofusus gracilis, 274.
G.
Galathea dispersa, 252.
— intermedia, 252.
— squamifera, 252.
Gaedicina carinata, 271.
Galvina cingulata, 279.
— exigua, 279.
— picta, 279.
— tricolor, 279.
Gammaurus campylopus, 240.
— locusta, 240.
— marinus, 240.
Gari costulata, 291.
— (Pammocola) depressa, 292.
— ferroensis, 292.
— tellinella, 292.
Garvia nutans, 189.
Gastrochaena dubia, 293.
— modiolina = G. dubia, 293.
Gastroscus = Haplostephus, 216.
Gastroscus sanctus, 240.
Gattiola = Amblyosyllis, 220.
Gattyana cirrosa, 221.
Gebia = Upogebia, 252.
Gemmaria = Zanclea, 188.

Gephyra Dohrnii, 205.
Gerovenia = Lirinatha, 200.
Gibbula cineraria, 269.
— magus, 269.
— tumida, 269.
— umbilicata, 269.
Globigerina bulloides, 182.
— inflata, 182.
Glycera convoluta, 226.
— gigantea, 226.
— lapidum, 226.
Glycineris glycimeris, 286.
Gnathia maxillaris, 242.
Goniada maculata, 226.
Goniobatus castanea, 284.
— nodosa, 284.
Gonoplax angulata = G. rhomboideus, 258.
Gonoplax rhomboideus, 258.
Gonothyrea Lovani, 194.
Gonidia minima, 291.
Granta = Sycon, 185.
— ciliata = Sycon coronatum, 185.
Gyge Galatheae, 245.
Gyrator hermaphroditus, 212.

H.
Halicampia chrysanthellum, 203.
Halecium Beani, 195.
— halecinum, 195.
— labrosum, 196.
— tenellum, 196.
Halichondria panicea, 186.
Haliclystus auricula, 201.
Haliokema Lankesteri, 196.
Halosydna gelatinosa, 222.
Haminea hydatis, 276.
Hancockia eudactylota, 282.
Haplophragmium canariense, 216.
— fontinense, 176.
— globigeriniforme, 176.
Haplostystus Normani, 246.
Harmonocy a areolata, 222.
— imbricata, 221.
— lunulata, 221.
— setosissima, 221.
— spinifera, 221.
Helcion pellucida, 208.
Hemmysais Lamorina, 247.
Henricia sanguinolenta, 298.
INDEX TO PLYMOUTH FAUNA.

Hermia bifida, 277.
— dendritica, 277.
Hermione hystrix, 221.
Hero formosa, 281.
Heterocordyle Conybearei, 190.
Heteromysis formosa, 246.
Hippolyte = Spirontocarnus, 250.
Hippolyte fascigerus, 250.
— varians, 250.
— viridis, 250.
Hippothoa distans, 263.
— divaricata, 263.
— flagellum = H. distans, 263.
Histriobdella homari, 219.
Holothuria nigra, 207.
Homarus vulgaris, 251.
Hyala vitrea, 271.
Hyalinoecia tubicola, 225.
Hyas araneus, 255.
— cometatus, 255.
Hypocodon prolifer, 191.
Hydactinia echinata, 187.
Hydroides norvegica, 232.
Hymeniacidon sanguineum, 186.
— sebarea = S. domuncula, 186.
Hyperia galba, 238.
Hypophorella expansa, 267.
Hyporhynchus armatus, 212.
— pencillatus, 213.

I.
Idalia = Idalina, 285.
Idalina (Idaliciella) aspersa, 285.
Idothea baltica, 243.
— emarginata, 244.
— linearis, 244.
— neglecta, 244.
— parallelæ = I. prismatica, 244.
— pelagica, 244.
— prismatica, 244.
— tricuspidata = I. baltica, 243.
Inachus dorsettensis, 255.
— dorynchus, 255.
Iphiemedia minuta, 239.
— oves, 239.
Iphioc trispinosa, 245.
Irene pollicida, 200.
Ischyrocerus minutus, 241.
Isias clavipes, 235.
Isolictya = Tragosia, 186.
— dissimilis = T. polyopes, 186.

J.
Jaera albifrons = J. marina, 244.
Jera marina, 244.
Janira maculosa, 244.
Jorunna Johnstoni, 283.

K.
Kefersteinia cirrata, 220.
Kellia suborbicularis, 288.

L.
Labidocera Wollastonii, 235.
Lacosia = Donovania, 274.
Lacuna divaricata, 270.
— pallidula, 270.
— parva, 270.
— putolus = L. parva, 270.
— viola = L. divaricata, 270.
Lafocca dumosa, 194.
— fruticosa, 195.
Lagea apiculata, 179.
— aspersa, 180.
— botelliformis, 179.
— chavata, 179.
— distoma, 180.
— globosa, 179.
— gracilis, 180.
— gracillima, 179.
— hexagona, 180.
— hispida, 180.
— levis, 179.
— lagenoides, 181.
— lineata, 180.
— marginata, 180.
— marginata, var. ornata, 180.
— orbignyanæ, 181.
— quadrata, 181.
— semistriata, 180.
— squamosa, 180.
— striata, 180.
— sulcata, 180.
— sulcata, var. interrupta, 180.
— trigono-marginata, 180.
— vulgaris = L. levis, 179.
— vulgaris, var. clavata = L. clavata, 179.
— vulgaris, var. gracilis = L. gracilis, 180.
— vulgaris, var. substrata = L. striata, 180.
Lagenipora socialis, 261.
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagisca extenuata</td>
<td>221</td>
</tr>
<tr>
<td>— floccosa</td>
<td>221</td>
</tr>
<tr>
<td>— rarispina</td>
<td>221</td>
</tr>
<tr>
<td>Lamellaria perspicua</td>
<td>272</td>
</tr>
<tr>
<td>— tentaculata = L. perspicua</td>
<td>272</td>
</tr>
<tr>
<td>Lamellidoris aspersa</td>
<td>284</td>
</tr>
<tr>
<td>— bilamellata</td>
<td>284</td>
</tr>
<tr>
<td>— depressa</td>
<td>284</td>
</tr>
<tr>
<td>— oblonga</td>
<td>284</td>
</tr>
<tr>
<td>— pusilla</td>
<td>284</td>
</tr>
<tr>
<td>— sparsa</td>
<td>284</td>
</tr>
<tr>
<td>Lamellaria perspicua</td>
<td>272</td>
</tr>
<tr>
<td>— tentaculata = L. perspicua</td>
<td>272</td>
</tr>
<tr>
<td>Lamellidoris aspersa</td>
<td>284</td>
</tr>
<tr>
<td>— bilamellata</td>
<td>284</td>
</tr>
<tr>
<td>— depressa</td>
<td>284</td>
</tr>
<tr>
<td>— oblonga</td>
<td>284</td>
</tr>
<tr>
<td>— pusilla</td>
<td>284</td>
</tr>
<tr>
<td>— sparsa</td>
<td>284</td>
</tr>
<tr>
<td>Lanice conchilega</td>
<td>229</td>
</tr>
<tr>
<td>Lar Sabellarum</td>
<td>188</td>
</tr>
<tr>
<td>— Willia stellata hydroid</td>
<td>192</td>
</tr>
<tr>
<td>Lasa rubra</td>
<td>289</td>
</tr>
<tr>
<td>Leander serratus</td>
<td>249</td>
</tr>
<tr>
<td>— squilla</td>
<td>249</td>
</tr>
<tr>
<td>Lepas anatifera</td>
<td>237</td>
</tr>
<tr>
<td>Lepidonotus clava</td>
<td>221</td>
</tr>
<tr>
<td>— squaniatus</td>
<td>221</td>
</tr>
<tr>
<td>Lepralia foliacea</td>
<td>242</td>
</tr>
<tr>
<td>— Pallasiana</td>
<td>262</td>
</tr>
<tr>
<td>— pertusa</td>
<td>262</td>
</tr>
<tr>
<td>Leptolabis luciensis</td>
<td>186</td>
</tr>
<tr>
<td>Leptoniysis gracilis</td>
<td>247</td>
</tr>
<tr>
<td>— ligvura</td>
<td>247</td>
</tr>
<tr>
<td>— mediterranea</td>
<td>247</td>
</tr>
<tr>
<td>Lepton squamosum</td>
<td>289</td>
</tr>
<tr>
<td>Leptolana drabachensis</td>
<td>214</td>
</tr>
<tr>
<td>— fallax</td>
<td>214</td>
</tr>
<tr>
<td>— tremellaris</td>
<td>214</td>
</tr>
<tr>
<td>Leuconia bidentata</td>
<td>285</td>
</tr>
<tr>
<td>Lecosolenia botryoides</td>
<td>185</td>
</tr>
<tr>
<td>— complicata</td>
<td>185</td>
</tr>
<tr>
<td>— variabilis</td>
<td>185</td>
</tr>
<tr>
<td>Lencotticar sinicarpa</td>
<td>230</td>
</tr>
<tr>
<td>Lichenopora hispida</td>
<td>266</td>
</tr>
<tr>
<td>Ligia oceanica</td>
<td>244</td>
</tr>
<tr>
<td>Lima hians</td>
<td>287</td>
</tr>
<tr>
<td>— Loscombi</td>
<td>288</td>
</tr>
<tr>
<td>— subauriculata</td>
<td>288</td>
</tr>
<tr>
<td>Limapontia capitata</td>
<td>278</td>
</tr>
<tr>
<td>— nigra = L. capitata</td>
<td>278</td>
</tr>
<tr>
<td>Limonaria lignorum</td>
<td>243</td>
</tr>
<tr>
<td>Limopsis aurita</td>
<td>286</td>
</tr>
<tr>
<td>Linus bilineatus</td>
<td>218</td>
</tr>
<tr>
<td>— gesserensis</td>
<td>218</td>
</tr>
<tr>
<td>— lactens</td>
<td>218</td>
</tr>
<tr>
<td>— longissimus</td>
<td>218</td>
</tr>
<tr>
<td>— marinus = L. longissimus</td>
<td>218</td>
</tr>
<tr>
<td>— obscurus = L. gesserensis</td>
<td>218</td>
</tr>
<tr>
<td>Liriantha appendiculata</td>
<td>200</td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>270</td>
</tr>
<tr>
<td>— neritoides</td>
<td>270</td>
</tr>
<tr>
<td>— obtusa</td>
<td>270</td>
</tr>
<tr>
<td>— rudis</td>
<td>270</td>
</tr>
<tr>
<td>Lizzia blondina</td>
<td>192</td>
</tr>
<tr>
<td>Loimia medusa</td>
<td>229</td>
</tr>
<tr>
<td>Loligo Forbesi</td>
<td>291</td>
</tr>
<tr>
<td>— Marnare, 294</td>
<td></td>
</tr>
<tr>
<td>— media</td>
<td>294</td>
</tr>
<tr>
<td>Lomanotus marmoratus</td>
<td>281</td>
</tr>
<tr>
<td>— portlandicus</td>
<td>281</td>
</tr>
<tr>
<td>Longipedia Scotti</td>
<td>236</td>
</tr>
<tr>
<td>Lucernaria = Depastrum</td>
<td>201</td>
</tr>
<tr>
<td>— campanulata</td>
<td>201</td>
</tr>
<tr>
<td>Lucina borealis</td>
<td>288</td>
</tr>
<tr>
<td>— spinifera</td>
<td>288</td>
</tr>
<tr>
<td>Lucinopsis undata</td>
<td>290</td>
</tr>
<tr>
<td>Luidia Sarsi</td>
<td>207</td>
</tr>
<tr>
<td>Lumbriconereis impatients</td>
<td>226</td>
</tr>
<tr>
<td>— Latreillei</td>
<td>226</td>
</tr>
<tr>
<td>Lutraria elliptica</td>
<td>290</td>
</tr>
<tr>
<td>Lyonsia norvegica</td>
<td>293</td>
</tr>
<tr>
<td>Lysianax (Lysianassa) Coste</td>
<td>238</td>
</tr>
<tr>
<td>Lysidice nitetta</td>
<td>225</td>
</tr>
</tbody>
</table>

M.

Maclovia gigantea = M. iricolor, 226
— iricolor, 226
Macoma balthica, 289
Macromysis flexuosa, 248
— inermis, 248
Macropodia egyptia, 254
— longirostris, 254
— rostratus, 255
Macropsis Slabberi, 249
Macrorhynchus croceus, 212
— helgolandicus, 212
— Naegeli, 212
Mactra stultorum, 289
Mactra = Spisula, 290
Maera grossimana, 240
— Othonis, 240
— semiserrata, 240
Magtilia perarmana, 220
Magelona papilocornis, 228
Maia squinado, 255
Malacobdella grossa, 217
Malgrenia castanea, 222
Mangilia attenuata, 275
— (Bellardiella) gracilis, 275
— nebula, 275
Manzonia costata, 271.
Margelis autumnalis, 192.
— bella, 192.
— britannica, 192.
— principis, 192.
Margellium octopunctatum, 192.
Marginella = Erato, 272.
Marphysa Belli, 225.
— sanguinea, 225.
Megapora = Mura semiserrata, 240.
Melampus = Leneonia, 285.
Melinna adriatica, 230.
— gladius, 240.
— obtusata, 240.
— palinata, 240.
Menibraniopora aurita, 260.
— catenularia, 260.
— curvirostris, 260.
— Dumerili, 260.
— Flemingi, 260.
— flustoides, 260.
— imbellis, 261.
— Lacroixi, 261.
— membranacea, 261.
— pilosa, 261.
— Rosselli, 261.
— nitida, 262.
Meretrix chione, 290.
Merona cornucopiea, 187.
Mesostoma neapolitanum, 212.
Metridium senilis, 204.
Micrella rufa, 218.
Micropora coriacea, 261.
— coriacea, 262.
— impressa, 262.
— Malusii, 262.
— violacea, 262.
Microsetella norvegica, 236.
Microstoma croceum, 212.
Mierura aurantica, 218.
— candida = M. lactea, 218.
— fasciata, 218.
— lactea, 218.
— purpurea, 218.
Miliolina agglutinans, 176.
— bicornis, 175.
— bicornis, var. elegans, 175.
— buneana, 175.
— circularis, 175.
— oblonga, 175.
— secans, 175.
Miliolina seminulum, 175.
— seminulum, var. oblonga = M. oblonga, 175.
— seminulum, var. disciformis = M. secans, 175.
— subrotunda, 175.
— tricolorata, 175.
— trigonula, 175.
Mitrocomella fulva, 399.
Modiolaria marmorata, 286.
Molgula ocultata, 295.
— simplex, 295.
Monocelides carinatus, 239.
Monodonta crassa, 269.
Monopora strigatam, 214.
Monoporus rubropunctatus, 211.
Monotus albus, 214.
— fuscus, 214.
— lineatus, 214.
Montacuta = Tellimya, 288.
— substriata, 288.
Morchellioides Alderi, 298.
Morchellium argus, 297.
Mosehites cirrosa, 293.
Mucronella cocinea, 263.
— Peachi, 263.
— variola, 263.
— ventricosa, 263.
Muggsea atlantica, 201.
Munna Kröyeri, 241.
Murex = Ocinebra, 274.
Mya truncata, 292.
Myriniida fasciata = M. pinnigera, 220.
— pinnigera, 220.
Myriotyla phrygia, 188.
Mysidopsis angusta, 247.
— gibbosa, 247.
Mysis = Dasymysis, 249.
— = Hemimysis, 247.
— = Neomysis, 249.
— = Schistomysis, 249.
Mytilus = Volsella, 286.
Mytilus edulis, 286.
Myxicola infundibulum, 232.
Myzomenia banyulensis, 267.
Myzostoma cirriferum, 233.

N.
Nassa bidentata, 243.
Nassa incrassata, 275.
— reticulata, 275.
Natica (Lunatia) Alderi, 272.
INDEX TO PLYMOUTH FAUNA.

Natica (Lumatia) catena, 272.
Nebalia bipes, 237.
Nematoneis unicornis, 225.
Nemertopsis flavida, 216.
— tenellus, 216.
Nemys vulgaris, 249.
Nethys caeca, 225.
— cirrosa, 225.
— Houberti, 225.
Nereis cultrifera, 224.
— diversicolor, 224.
— Dumerilli, 224.
— fucata, 224.
— irrorata, 224.
— longissima, 224.
— pelagica, 224.
Nerine cirratula, 227.
— coniocephala, 227.
— foliosa = N. coniocephala, 227.
Nerocila neapolitana, 243.
Nicola zosterica, 229.
Ni. edulis, 251.
Nodosaria calomorpha, 181.
— communis, 181.
— pyrula, 181.
— scalaris, 181.
Nonionina barbae = N. umbilicata, 184.
— depressa, 184.
— jeffreysi = Haplophragmium canariense, 176.
— scapha, 184.
— stelligera, 184.
— turgida, 184.
— umbilicata, 184.
Notomastus latericeus, 230.
— rubicundus, 230.
Ocula nitida, 285.
— nucleus, 285.
Nyciphanes Couchi, 245.
Nympheus gallicus, 258.
— gracile, 250.
— rubrum, 250.
O. obelaria gelatinosa, 193.
Obelia = Obelia, 193.
Obelia dichotoma, 193.
— genticulata, 193.
— longissima, 193.
— lucifera, 199.
— nigra, 199.
NEW SERIES. VOL. VII. NO. 5.

Ocinebra erinacea, 274.
Octopus = Cucumaria, 206.
Octopus = Polypus vulgaris, 205.
Octorhitis Gegenbauri, 200.
Odontocystis ctenostoma, 219.
— fulgurans, 219.
— gibba, 220.
Odostomia = Turbonilla, 273.
— pallida = Brachystomia ambigua, 273.
Oerstedia dorsalis, 217.
— immutabilis, 217.
— nigra, 217.
Oikopleura dioica, 298.
Oithona plumifera, 236.
— similis, 236.
Oligocladus sangninolentus, 215.
Oocea mediterranea, 236.
— minuta, 236.
— subtilis, 236.
Onobrus striata, 271.
Onuphis conchilega, 225.
Operculicolla hispida, 194.
— lacerata, 194.
Ophepitis Balli, 209.
Ophiocliniida brachiata, 209.
Ophiocliniida granulata = O. nigra, 209.
— nigra, 209.
Ophiopisila aranea, 209.
Ophiura albida, 208.
— ciliaris, 208.
Ophiurotrecha puerilis, 226.
Orbulina universa, 182.
Orchestia littorea, 238.
— mediterranea, 238.
Orechomene Datei, 238.
Orechomella ciliata = O. nana, 238.
— nana, 238.
Oscanius membranaceus, 277.
Ostrea edulis, 287.
Otina otis, 285.
Ovula (Simnia) patula, 272.
Owenia fusiformis, 228.
Oxypolita beaumontiana, 218.

P.
Pachydrilus sp., 233.
Pagurus = Anapagurus, 253.
— = Eupagurus, 253.
— Forbesi = Eupagurus sculptimanus, 253.

2 M
INDEX TO PLYMOUTH FAUNA.

Patemon = Leander, 249.
— = Palamometes, 249.
Palamometes varians, 249.
Palinurus vulgaris, 252.
Palio Lessoni, 283.
Pallasia murata, 232.
Pallene brevirostris, 288.
Palmiscellaria Skenei, 263.
Palmipes membranaceus = P. placenta, 207.
— placenta, 207.
Palmodestrina stagnalis, 271.
Pandalus annulicornis = P. Montagui, 249.
— brevirostris, 250
— Montagui, 249.
Pandora obtusa = P. inequivalvis, 293.
— inequivalvis, 293.
— rostrata = P. inequivalvis, 293.
Paracalanus parvus, 234.
Paractius mutabilis, n. sp. = Ophryotrocha puerilis, 226.
Paraphellia expansa, 204.
Parapontella brevicornis, 235.
Paratheniisto obliqua, 238.
Paratylus Swammerdami, 239.
Pariambus typicus, 241.
Patella vulgata, 268.
Patella corrugata, 183.
Pecten niaximus, 287.
— (Equipecten) opercularis, 287.
— (Hinnites) opalina, 287.
— (Talitrum) tigrinus, 287.
— (Chlamys) varius, 287.
Pectinaria (Amphictene) auricoma, 230.
— (Lagis) Koreni, 230.
Pectinaria = Glycineras, 286.
Pedicillina cernea, 267.
— gracilis, 267.
Perigonia = repens, 189, 191.
— serpens, 189.
Perophora Listeri, 297.
Petalostoma minutum, 233.
Phallusia mantellata, 296.
Phascolion strombi, 233.
Phasianella pullus, 270.
Phialidium buskianum, 200.
— cymbaloideum, 200.
— temporarium, 200.
Philine aperta, 276.
— catena, 276.
— punctata, 276.
INDEX TO PLYMOUTH FAUNA. 505

Poecilochetae serpens, 228.
Polybius Henslowi, 257.
Policarpa pomaria, 295.
Polygordius (apogon McIntosh), 219
Polyplasia mamillaris, 186.
Polyunia nebulosa, 229.
— neidensis, 229.
Polyuris compressa, 182.
— Gibba, 182.
— lactea, 182.
— lactea, var. oblonga = P. oblonga, 182.
— oblonga, 182.
Polynoe seolopendrina, 222.
Polyopthalnus pictus, 230.
Polypus vulgaris, 295.
Polystomea arctica, 185.
— crispa, 184.
— macella, 184.
— striatopunctata, 185.
— subnudosa, 184.
— umbilicalis = P. striatopunctata, 185.
Pomatoeceros triquetar, 232.
Pontobedella muricata, 233.
Pontophyllus spinosus, 251.
Porania pulvillus, 207.
Porcellana longicornis, 254.
— platychelos, 254.
Porrella concinna, 262.
Poronia = Lasoa, 289.
Portunus biguttatus, 257.
Portunus arcuatus, 256.
— corrugatus, 256.
— depurator, 256.
— holosus, 257.
— marmoreus, 257.
— puber, 257.
— pusillus, 257.
Portunus = Bathynectes, 257.
Potamilla incerta, 232.
— reniformis, 231.
— Torelli, 231.
Promesostoma agile, 212.
— marmoratum, 212.
— Promesostoma ovoideum, 212.
— solea, 212.
Proneomenia = Rhopalomenia, 267.
Proporus venenosus, 211.
Prosthecereus vittatus, 214.
Prosthiostomum sphunculus, 215.
Protelis phasma, 241.
Protodrilus Leuckarti, 219.
Protula tubularia, 232.
Provogeta affinis, 213.
— balticus, 213.
— rubrobacillus, 213.
Proxenetes cochlear, 212.
— flabellifer, 212.
Psammobia = Gari, 291.
Psunocalanus elongatus, 235.
Psudocuma cerarica, 245.
Psedorhynchus bidentis, 212.
Pteria pirundo, 286.
Pterocirrus macroceros, 223.
Pulvinulina Menardii, 183.
— repanda, 183.
Purpura lapillus, 275.
Pycnoclavella aurilucens, 297.
Pycnogonum littorale, 258.
Pyrgoma anglicum, 237.
Pyrgostelis interrupta, 273.

R.
Rhizostoma octopus, 202.
Rhopalomenia Agaphophenia, 267.
Rhynchophora bispinosum, 263.
Rynchophora = Rhynechozoon, 263.
Rissa = Ceratia, 271.
— = Ciugula, 271.
— = Hyala, 271.
— = Manzione, 271.
— = Onoba, 271.
— Berntii = Alavania reticulata, 270.
— colathus = Alavania reticulata, 270.
— cingillus = Cingula trifasica, 271.
— crenulata = Alavania cancellata, 270.
— labiosa = Zippora membranacea, 271.
— striatula = Galeodina carinata, 271.
Rissola parva, 270.
Rocinella dammoniensis, 242.
— Duneriti, 243.
Rossia macrosoma, 294.
Rostang cocceina, 283.
Rotalia Becarrii, 184.
— nitida, 184.
Rotulina = Nonionina, 184.
Rotalina = Trochammina, 176.
— concomorata = Discorbina globularis, 183.
— mamilla = Discorbina rosacea, 183.
Roxania utriculata, 276.
Runeina coronata, 277.
— Hancock = R. coronata, 277.
S.
Sabella pavonina, 231.
Sabella alveolata, 232.
— spinulosa, 232.
Saccopsis Alleni, 236.
Sacculina Carcini, 237.
Sagartia = Cylista, 204.
— bellis = Cerus pedunculatus, 204.
— bellis = Cylista undata, 204.
— Ha7icockii = Cylista coronata, 277.
S. Sabellaria pavonina, 231.
S. Sabellaria alveolata, 232.
— spinulosa, 232.
S. Scalpellum vulgare, 237.
S. Scalpellum vulgare, 237.
— spiritus, 248.
S. Scalpellum vulgare, 237.
— spiritus, 248.
S. Scalpellum vulgare, 237.
— spiritus, 248.
Schizoporella cristata, 264.
— Hyalina, 264.
— Johnstoni, 264.
— linearis, 264.
— simplex = S. Johnstoni, 264.
— spinifera, 264.
— unicornis, 264.
S. Schizotheca fissa, 264.
Selerocochilus minutus, 231.
S. Scololepis fuliginosa, var. macrochorta major = S. vulgaris, 227.
— Giardi, 227.
— vulgaris, 227.
S. Scoloplos armiger, 227.
S. Scrobicularia piperata = S. plana, 289.
— plana, 289.
S. Scrupocellaria repta, 259.
— scrupea, 259.
— scruposa, 259.
S. ScyUitriis ardus = Arctws ursus, 252.
S. Sepia elegans, 294.
— officinalis, 294.
S. Sepiola atlantica, 294.
— scandica, 294.
S. Serpula vermicularis, 232.
S. Sertularella Gayi, 196.
— polyzonias, 196.
S. Sertularia abietina, 196.
— argentea, 197.
— cupressina, 197.
— operculata, 197.
— pumila, 197.
S. Siphonostoma (Flabelligera) affinis, 231.
S. Sirriella armata, 246.
— Clussi, 246.
— crassipes = S. jaltensis, 246.
— jaltensis, 246.
S. Skenea planorbis, 271.
S. Snuttia cheilostoma, 263.
— Landaborovii, 263.
— trispinosa, 263.
S. Solaster papposus, 208.
S. Solecurtus antiquatus, 292.
— candidus = S. scopula, 292.
— scopula, 292.
S. Solen = Cultellus, 292.
— = Ensis, 292.
S. Solen vagina, 292.
S. Solnaris coronanthe, 200.
S. Spatangus purpureus, 211.
S. Spharodoruyn 2^enjwhts = Ephesia gracilis, 227.
S. Spharodoruyn 2^enjwhts = Ephesia gracilis, 227.
INDEX TO PLYMOUTH FAUNA.

Spheroideina dehiscent, 182.
— Sperma curta, 243.
— Sperma curtum, 243.
Spermoëllis ovigera, 220.
Spirillina = Cornuspira, 176.
— arenacea = Anomalodes incertus, 176.
Spirillina margaritifera, 182.
— vivipara, 182.
Spiruloidina depressa = S. limbata, 174.
— depressa, var. rotundata = S. planulata, 174.
— excarata, 174.
— fragilissima, 174.
— limbata, 174.
— planulata, 174.
— temuisepata, 174.
Spirorbis borealis, 232.
Spisula elliptica, 290.
— solida, 290.
Squilla Desmaresti, 245.
Stauridium productum, 188.
Staurocophalus ciliatiis, 226.
— pallidius, 226.
— rubrovitatus, 226.
Steenstrupia rubra = Corymorpha Medusa, 190.
— rubra, 191.
Steenstrupia rubra, 191.
Stenorynchus phalangium = Macropodia rostratus, 255.
— tenirostris = Macropodia longirostris, 254.
Stenothoe marina, 239.
— monoculoides, 239.
— setosa, 239.
Sthenelais boa, 222.
Stiliger bellulus, 277.
Stomatopora granulata, 266.
— Johnstoni, 266.
— major, 266.
Stylochoplana maciilata, 214.
Styloschis grossularia, 295.
Stylochoplana variabile, 215.
— Johnstoni, 215.
Suberites domuncula, 186.
Sycon compressum, 185.
— coronatum, 185.
Syllis (Elhersia) cornuta, 219.
— gracilis, 219.
Synaptta digitata, 206.
— inerens, 206.
Syncoryne eximia, 188.
— (sp. ?) gravata, 188.
T.
Talinus laevis, 233.
Tanaïs tomentosus, 242.
Tapes aureus, 291.
— decussatus, 291.
— pullastra, 291.
— virgineus, 291.
Tandelocassicorinna = Urticina felina, 205.
Tellimya ferruginoasa, 288.
Tellina erassa, 289.
— donacina, 289.
— fabula, 289.
— incarnata = T. squalida, 289.
— solidula = Macoma balbica, 289.
— squalida, 289.
Temora longicornis, 235.
Terebellides Stroemi, 229.
Teredo navalis, 293.
Tergipes despectus, 279.
Tethyja lynceurium, 186.
Tetrateuma ambiguum, 217.
— candidum, 217.
— cephalophorum, 217.
— fluidum = Nemertopsis flavida, 216.
— fluidum, var. longissimum = Nemertopsis tenus, 216.
— melanocephalum, 217.
— vermiculatum, 217.
Textularia agglutinans, 177.
— agglutinans, var. porrecta, 177.
— cuneiformis, var. conica = T. trochus, 177.
— gramen, 177.
— trochus, 177.
— sagittula, 177.
— variabilis, var. differmis = Bolivina dilatata, 178.
— variabilis, var. levigata = Bolivina textilaroides, 178.
— variabilis, var. spatulata = Bolivina dilatata, 179.
Thalassema neptuni, 233.
Thalestris myos, 236.
Thaumantias = Obelia, 199.
Theacera pennigera, 283.
Thelepus sotois, 229.
Thoe sphyroidea, 205.
Thracia fragilis, 293.
INDEX TO PLYMOUTH FAUNA.

Thracia phaseolina = T. fragilis, 293.
— pubescens, 293.
Thuiaria articulata, 197.
Thyasira flexuosa, 288.
Thyone fusus, 206.
Thyranopoda = Nyctiphanes Couchi, 245.
Thiacia pileata, 191.
Tiaropsis multircrata, 199.
Todaropsis Ebelisae, 294.
Tomopteris helgolandica, 224.
Tornatina mamillata, 276.
— truncatula, 276.
Tragosia infundibuliformis, 186.
— polypoides, 186.
Trich hydra podica, 195.
Triforis perversa, 273.
Triopha clavigera, 191.
Triticella Boecki, 267.
Tritonia Hombergi, 282.
— (Candiella) lineata, 282.
— (Candiella) plebeia, 282.
Tritonofusus gracilis, 274.
Umbonula verrucosa, 262.
Unciola crenatipalmata, 241.
Upogebia stellata, 252.
Uradler = Asterias rubens, 208.
Urticina felina, 205.
Utcreaus = Tornatina, 276.
Uvigerina angulosa, 182.

Typosyllis alternosetosa, 219.
— prolifera, 219.

Velutina laevigata, 272.
Venus (Ventricola) casina, 290.
— (Chlausinella) fasciata, 290.
— (Chamelcea) gallina, 290.
— (Timoclea) ovata, 290.
— striatula = V. (Chamelcea) gallina, 290.
— (Ventricola) verrucosa, 290.
Vernerulina polystropha, 177.
Verruca Stroemia, 237.
Viridula = Hippolyte, 250.
Virgiluria mirabilis, 202.
Virgulina schrebersiana, 178.
Volvia barbata, 286.
— phaseolina, 286.
Volvulella acuminata, 276.
Vorticeros auriculatum, 213.
— luteum, 213.

Willia stellata, 192.

Xantho florida = X. incisus, 256.
— hydrophilus, 256.
— incisus, 256.
— rivulosa = X. hydrophilus, 256.

Zanclea impexa, 188.
Zanclea = Gemmaria, 192.
Zippora membranacea, 271.
Fig. 1-10, 14-21, 23-26, 30.