Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
Alaska Cedar
A Bibliography with Abstracts

Compiled by A.S. Harris

Pacific Northwest Forest and Range Experiment Station
Institute of Northern Forestry
Juneau, Alaska
U.S. Department of Agriculture - Forest Service
FOREWORD

This bibliography contains references to North American and European literature containing information about Alaska-cedar (Chamaecyparis nootkatensis (D. Don) Spach).

References are listed alphabetically by author, and abstracts are given for many of those considered more significant. A subject matter index is included on pages 42-45, and a list of scientific and common names of tree species mentioned is on pages 46-47.

The single, most useful source of references for the bibliography was "Forestry Abstracts," followed by "Bibliography of Agriculture." Thanks are due to reviewers for pointing out many additional references not found by the compiler and to others who helped in preparation.

The compiler would appreciate learning of additional articles on Alaska-cedar not included here.
BIBLIOGRAPHY

 Tables contain consensus as to conifers suited for particular uses. Alaska-cedar is shown suitable for the following situations:
 Parks, large gardens and pleasure grounds, smaller gardens, rock gardens, and windbreaks.

 Discusses briefly the nomenclature, description, character of stands, working qualities, and uses of Alaska-cedar. Log and lumber grading rules are also discussed.

 Alaska-cedar wood is highly regarded in Canada and the U.S. for interior woodwork and paneling. The yellow timber has a fine texture and is responsive to finishing treatments. Freshly cut wood has a strong but pleasant aromatic scent which is generally absent in seasoned material. The wood weighs about 29 pounds per cubic foot in seasoned condition. Shrinkage in drying is slight, and the wood is noted for dimensional stability in service. It is used for both construction and decoration.

 Alaska-cedar occurs in the park up to 7,000-foot elevation. It is common on northern exposures, along streams, and in basins at the head of canyons. It also grows on crests and ridges where frequent showers and fogs supply the moisture it demands. In sheltered localities, it grows to a height of 80 feet, but is commonly small, with a bent and twisted stem and somewhat scrubby appearance. A general description is given.
7. Aller, Alvin R.

1955. These are the champs. Amer. Forests 61(9): 31-40.

The largest Alaska-cedar known is located in Olympic National Park, Washington: circumference at 4-1/2 feet is 21 feet; height 175 feet; spread 27 feet 5 inches. Reported by Robert L. Wood, Poulsbo, Wash.

10. Andersen, Harold E.

Describes the distribution, habitat, life history, and varieties of Alaska-cedar.

11. Anderson, James R.

A brief description of the tree's appearance, uses, and range in Alaska and British Columbia; odor of the wood is described as "strong and pleasant."

12. Anderson, J. P.

13. Andrews, Clarence L.

Describes the use of Alaska-cedar for shipbuilding in Alaska by the early Russian colonists.

14. Archer, C. F.

Alaska-cedar seasons readily, and 1- and 1-1/2-inch stock may be dried successfully by the same schedule as that for western redcedar. Two-inch stock, particularly wide clears, requires more careful treatment, and a schedule is given.
15. Arno, Stephen F.

Alaska-cedar is the highest reaching tree species, ascending beyond 7,000 feet and growing out of rock cliffs in the Olympic rain shadow. Krummholz of this species have advantages over others in severe alpine environments because of extremely durable wood and more flexible branchlets that are less apt to be scoured off. Roots of Krummholz Alaska-cedar may extend 100 feet. Root sprouting and layering probably explain scrubline development of Alaska-cedar shrubs whose foliage may form circles of nearly 50-foot diameter. The condition of Alaska-cedar at timberline throughout its range is discussed.

Ultraviolet absorption spectra and molecular weight determinations are given for a new natural compound, nootkatin, which has been isolated from the heartwood of Chamaecyparis nootkatensis. Nootkatin is shown to be a tropolone derivative.

17. Babb, M. F.

Contains a brief description of Alaska-cedar. In Alaska, the species has only limited suitability for landscaping—in southeast and extreme southern Alaska.

18. Baerg, Harry J.
1955. How to know the western trees; pictured keys to the native and cultivated trees found growing in the Rocky Mountains and westward, with suggestions and aids for their study. 170 pp., illus. Dubuque: W. C. Brown Co.

20. Bailey, L. H.
1933. The cultivated conifers in North America, comprising the pine family and the taxals (successor to the Cultivated Evergreens). 404 pp., illus. New York: The Macmillan Co. (Second printing, 1948.)

Contains a brief description of Chamaecyparis nootkatensis, and describes four varieties: var. compacta, var. quiaua, var. lutea, and var. pendula.

Contains a key to Alaska-cedar.

A study of the branching habits of Alaska-cedar. Spacing between leaf axils increased from the base to the apex of branches.

A study of the morphology of Alaska-cedar.

Alaska-cedar is classed as "tolerant" on a scale of "very tolerant," "tolerant," "intermediate," "intolerant," and "very intolerant."

Alaska-cedar and mountain hemlock are characteristic trees in the Hudsonian zone, ranging from about 5,000- to 6,000-foot elevation.

Cupressus nootkatensis was discovered by Menzies and named by Lambert after the sound on the west of Vancouver Island where Captain Colnett's ship, Prince of Wales, anchored in July 1787. The tree was brought into cultivation in 1853. No cypress is of more symmetrical habit or of harder constitution.

Yellow-cedar is the most valuable timber found on some of the islands in the Alexander Archipelago and in the neighborhood of Sitka, and frequently attains a height of 100 feet and diameters of 5 or 6 feet. The wood is in demand by shipbuilders and cabinetmakers because of its fine texture, durable quality, and aromatic odor.

28. Bannan, M. W.

Frequency of anticlinal divisions in fusiform cambial cells of Chamaecyparis lawsoniana, C. thyoides, and C. nootkatensis, was studied. Nearly all anticlinal divisions were of the pseudotransverse type, and occurred as often as three or four times a year when growth was vigorous.

29.

Abnormal rays, such as reported previously for Thuja, Juniperus, and Libocedrus, occur also in Chamaecyparis. They are larger than ordinary rays and differ in the arrangement and structure of the cells. The abnormal rays are described in detail. Three species of Chamaecyparis were studied; C. lawsoniana, C. thyoides, and C. nootkatensis.

30.

In stems exceeding a few inches in diameter, most of the pseudotransverse divisions involved in the multiplication of fusiform cambial cells occur toward the end of the growing season. Often these aestival transverse divisions are immediately followed by extensive elongation of the newly formed cambial cells, especially at their overlapping tips. In the succeeding year, relatively slight elongation ensues during the development of the first quarter of the annual ring, but through the succeeding quarters the amount of extension increases and is usually maximal in the final quarter. The actual rates of elongation remain undetermined. The multiplication of fusiform initials is accompanied by loss, most of the failure taking place during the last quarter. Generally the fusiform initials with the most extensive ray contacts survive and enlarge, and those with poor ray associations fail or are reduced to potential ray initials. The elongations and multiplication of fusiform initials tend to produce local ray deficiencies. Reduction of the fusiform initials with the poorest ray contacts to ray initials, rectifies to a varying extent the ray shortages in those areas. (Author's summary.)

31.

The loss of fusiform initials from the cambium, which is of frequent occurrence in all parts of the tree, takes place in different ways. Some cambial cells seem gradually to fail and are shortly lost from the cambium by maturation into more or less imperfect xylem or phloem elements. The majority are transversely subdivided by one or a succession of anticlinal
divisions which begin near the center of the fusiform initial and usually extend to the daughter cells. The resulting segments shorten through the following periclinal divisions, some disappearing during the process of shortening and others undergoing transformation to rays initials. Nearly all new rays in the secondary body originate in this manner. (Author's summary.)

The trends in variation in different parts of the tree with regard to tracheid and ray cell dimensions, size and distribution of rays, size and arrangement of pits, and thickness of cell walls were compared between three species of American *Chamaeyparis* and other Cupressaceae. Intraspecific variability is usually so extensive that specific ranges overlap widely. No single microscopic character is entirely diagnostic, but certain structural features are valuable when used together.

Discusses the orientation of pseudotransverse divisions in the cambium of conifers and presents in tabular form the sequels to 40,000 pseudotransverse divisions, with reference to failure or lineal continuation of sister fusiform initials arising therefrom, in 25 conifer species, including Alaska-cedar.

Discusses the process of division and survival of fusiform initials in conifers. Length of fusiform initials at pseudotransverse division, and information on surviving and failing fusiform initials of 15 conifers, including Alaska-cedar, are tabulated.

After their origin, sister fusiform initials usually elongated rapidly. Rate and amount of extension varied, often proceeding in a somewhat periodic fashion. Growth appeared to be apical, "intrusive" in the sense that the elongating tips thrust between other cells. No evidence was found to support the theory of simultaneous elongation of considerable portions of adjoining walls by "symplastic" growth.

Reviews the distribution and characteristics of *Cupressus* and *Chamaeyparis*, the occurrence of natural hybrids, and the possibility of breeding for superior qualities.
Alaska-cedar from Chichagof Island, Alaska, was planted in 1922 as 2-2 planting stock. Seventy percent survived. Most were about 40-50 cm. high but a few were 1.5 meters when sheltered. They are green and look healthy but have not been able to grow above the surrounding vegetation because of wind. Cones with seed were found on even the small plants. The species is not suitable for planting on the outer coast because of wind.

Alaska-cedar is included in the tree species found in the subalpine salal-Pseudotsuga (Gaultherieto-Pseudotsugetum Subalpinum) association characteristic for elevations from 3,000 feet to timberline (7,000-8,000 feet) in Oregon and Washington.

Describes methods of producing oil from leaves of *Thuja occidentalis*, *T. plicata*, *Juniperus virginiana*, and *Chamaecyparis nootkatensis*, and gives data on yields, production, and prices. Some properties of the oil are tabulated, and a brief description is given of the industry in Canada and the U.S. with details of the main commercial outlets in Canada.

Brief discussion of the range, silvical characteristics, supply, wood properties, and uses of Alaska-cedar.

44. Blackerby, Alva W.

45. Bones, J. T.

Shows conversion factors relating diameter outside bark to diameter inside bark for Tsuga heterophylla, Picea sitchensis, Chamaecyparis nootkatensis, and Thuja plicata, with information on the number and size of sample trees measured.

46. Bowers, Nathan A.

Gives the description, distribution, and some general information about Alaska-cedar.

49. British Standards Institute.

Lists scientific, standard, and common names, sources of supply, and wood properties of many woods, including Alaska-cedar.

50. Britton, N. L., and Shafer, J. A.

51. Brockman, C. Frank.

Alaska-cedar is a conspicuous tree of the Canadian zone between 3,000 and 5,000 feet. Foliage is scalelike, the bark is ash gray and flaky, cones are small and globular, and the branches have a characteristic
drooping appearance as if wilted. This latter character is particularly noticeable along the Paradise Valley highway between Ricksecker Point and Narada Falls.

Just below the subalpine meadow country, the most characteristic tree association is composed of noble fir, Alaska-cedar, and western white pine. Intermingled with these principal species are Douglas-fir and western hemlock.

Alaska-cedar is a component of the intermediate forest in elevations from 4,000 to 5,200 feet; the subalpine forest, from 5,000 to 6,500 feet; and the timberline forest from 6,500 to 7,000 feet. In the Park, it is found most easily along the Paradise Valley highway in the vicinity of Canyon Rim and Narada Falls. It is a medium-sized tree from 75 to 100 feet tall and from 1-1/2 to 2 (occasionally 3) feet in diameter, but smaller in exposed situations. A general description is given.

The subalpine mountain hemlock biogeoclimatic zone occurs on the crests and slopes of innumerable peaks or ridges forming the Coast Ranges and, in the study area which includes part of Garibaldi Park and the North Shore Mountains, it is found at elevations between approximately 3,000 and 5,500 feet. The zone is characterized in detail. Within the forested biogeocenotic units, Alaska-cedar occurs in association with *Tsuga mertensiana* and *Abies amabilis*. Lesser vegetation is also listed.

Describes general characteristics and minute anatomy of many woods. Alaska-cedar has an odor resembling that of raw potatoes, with a faint, bitter, somewhat spicy taste. The wood is comparable to that of *Chamaecyparis lawsoniana*.

57. Browne, J. E.

Appendices contain standard cubic-foot volume tables and merchantable volume factors for Alaska-cedar.

59. Canada, Dominion Forest Service.

60. Carl, G. Clifford, Guiguet, C. J., and Hardy, George A.

A preliminary study of the steam-volatile constituents of the heartwood of C. nootkatensis has resulted in the isolation of carvacrol, the "sesquiterpene type" tropolone nootkatin, C_{15}H_{20}O_{2}, and a new acid, C_{10}H_{14}O_{2}, for which the name chamic acid is proposed. (Author's summary.)

62. Chittenden, F. J.

Contains a series of papers which include information on Alaska-cedar grown in Great Britain. Also lists statistics on notably large trees.

63. Clifford, N.
1957. Timber identification for the builder and architect. 141 pp., illus. London: Leonard Hill Ltd.

Describes briefly the color, characteristics, durability, and suitable uses of Chamaecyparis nootkatensis wood.

64. Coleman, Babette Brown, Muenscher, Walter C., and Charles, Donald R.

The Hudsonian zone from 3,500- to 5,000-foot elevation is characterized by the Alaska-cedar, subalpine fir, mountain hemlock climax. Alaska-cedar is shown to be host to 17 species of lichens and two species of mosses.

Describes horticultural uses and culture of many conifers, including Alaska-cedar.

The author observed Chamaecyparis nootkatensis in the Prince William Sound region at its northwestern limit on Glacier Island, where it is locally abundant and thrifty. A resident fox farmer reported diameters up to 3 feet. The isolated occurrences in Prince William Sound area present an interesting phytogeographic problem, but the species is of no importance ecologically.

Alaska-cedar is listed as one of the 12 character trees of the province.

Examination of a branch of C. nootkatensis showed a definite sexual "spectrum," with the apex sterile, the female conelets borne on the intermediate portion of the branch, and the male on the oldest, basal part. (From authors' summary.)

One small tree was reported from Khantaak Island near the Indian village.
The cedar bark beetle, *Phloeosinus squamosus* Blkm., continued active over much of southeast Alaska, but the rather considerable tree killing was confined to stands of Alaska-cedar of low commercial value.

Includes a general description of the tree and wood, uses, silvical characteristics, list of varieties, and experience with the tree in Great Britain.

The largest Alaska-cedar reported is located in the Olympic National Park, Washington. Circumference at 4-1/2 feet—21 feet; height—175 feet; spread—27 feet 5 inches.

Alaska-cedar is found on mountain ridges below 3,500 feet.

Summarizes results of cutting trials for 1959 and 1960. Two varieties of *Chamaecyparis* were tested; *var. glauca* and *var. pendula*.
81. Downing, G. L.

An infestation of western redcedar and Alaska-cedar by *Phloeosinus squamosus* Blkm., a cedar bark beetle, was reported. The outbreak was confined to scrub cedar stands on poorly drained slopes and muskeg bottoms, on Kuiu Island, Alaska.

82. __________

A cedar bark beetle, *Phloeosinus squamosus* Blkm., was responsible for the death of large numbers of Alaska-cedar and western redcedar on Kuiu and Kupreanof Islands. The outbreak extends over several thousand acres and is confined primarily to scrub cedar stands.

83. Duff, S. R., and Erdtman, H.

Presents chemical proof for the structure deduced from X-ray evidence for the tropolone nootkatin, *C_{15}H_{20}O_{2}* from the heartwood of *Chamaecyparis nootkatensis*.

84. __________, Erdtman, H., and Harvey, W. E.

85. Dunn, Malcolm.

Cupressus nootkatensis, or as it is perhaps better known, *Thuyopsis borealis*, is one of the hardiest and most beautiful of the cypresses, and appears to thrive everywhere in the British Isles. It is somewhat branchy for a timber tree, but when planted close, it forms a clean straight stem. The tallest tree recorded in Britain is at Murthyly: 50 feet high and 1 foot 9 inches girth. Dimensions of several other large trees are given.

86. Eades, H. W.

87. Earl, Derek.

Discusses the silvics of Alaska-cedar in its natural range, particularly in British Columbia, with notes on its timber characteristics, and the history of the species in Britain.

In a test of daily and seasonal flowering during 1958 and 1959 on Vancouver Island, the following order of flowering among conifers was observed: Tsuga heterophylla, Chamaecyparis nootkatensis, Pseudotsuga menziesii, Abies grandis, A. amabilis, Pinus contorta, P. monticola, A. lasiocarpa, and T. mertensiana. Flowering began later with increasing elevation, but pollen production did not decrease with elevation.

Nootka cypress appears well suited for growth in the colder districts of Great Britain, although it is little used as a plantation tree, possibly because of its slow rate of growth. This is a common feature of all trees from the Far North. The tree is described briefly. The intergeneric hybrid, Leyland cypress, is mentioned briefly. The largest tree at Leighton Hall, planted in 1911, is 82 feet tall and 8-1/2 feet in girth.

Wood laminates of Alaska-cedar and western larch, adhesive bonded with three commercial phenol resorcinol formaldehyde adhesives, were exposure tested. Based on 18 months' outdoor exposure, it is concluded that laminates of Alaska-cedar and western larch made according to described specifications should be satisfactory for marine service use.
95. English, Edith Hardin.

Alaska-cedar occurs only occasionally on Mount Baker, associated with mountain hemlock and subalpine fir.

96. Erdtman, H.

Alaska-cedar heartwood was found to contain at least one new tropolonate derivative called nootkatone. The wood also contains carvacrol LII, a terpenoid phenol, formerly known among conifers only in the genus Tetraclinis.

97. and Harvey W. E.
1952. The chemistry of the natural order Cupressales. IX. Nootkatone. Chem. & Ind. 71(52): 1267.

98. , Harvey, W. E., and Topliss, J. G.

Describes the structure of chamic and chaminic acids, derived from the heartwood of Alaska-cedar. Chaminic acid has been shown to be the optical antipode of isochamic acid.

99. and Topliss, J. G.

A preliminary study of the neutral constituents gave terpenoid hydrocarbons, alcohols, compounds containing carbonyl, and carvacrol methyl ether. Nootkatene was isolated in an apparently pure state. (From author's summary.)

100. Erdtman, Holger, and Hirose, Yoshiyuki.

Nootkatone, a new eudalenoid sesquiterpene ketone, was isolated from heartwood of Chamaecyparis nootkatensis.

101. Fitzpatrick, H. M.

Presents a comprehensive description of the conifers, based on foliage morphology, in the form of an artificial key. Eighteen species of Cupressus and Chamaecyparis are listed, including Alaska-cedar.
102. Fonda, R. W.

103. Forest Products Laboratories Division (Canada).
 1951. Canadian woods; their properties and uses. Ed. 2, 367 pp., illus. Ottawa: King's Printer.

 Tabulations of physical and mechanical properties are included in the appendix.

104. Forest Products Research (London).

105. Fowells, H. A.

 Contains a revision of silvical characteristics of Alaska-cedar (Andersen, H. E., 1959).

106. Franklin, Jerry F.

 An illustrated key to seedling identification. Chamaecyparis nootkatensis seedlings have two (rarely three) cotyledons, flat in cross section, less than 12 mm. long; juvenile needles not glaucous.

107. __________

108. __________ and Mitchell, Russel G.

109. __________ and Trappe, James M.

 Alaska-cedar may be a component of avalanche communities maintained as topographic climaxes.

110. Frost, F.

 Discusses the planting of snowbreaks along the railroad across Saltfjell, north of the Arctic Circle, reaching an altitude of 680 m.
111. Garman, E. H.

Describes soils and vegetation on a portion of Prince of Wales Island, Alaska. Alaska-cedar occurs from sea level to about 1,500 feet, and occurs on the following soils series: Maybeso, McGilvery, St. Nicholas, and Wadleigh.

113. Gorman, M. W.

Alaska-cedar was seen above 4,000 feet, but was observed only about Slate Mountain. Only small trees were seen, some of these bearing fertile cones. Dead trees, up to 20 inches in diameter, were remnants of a stand previously destroyed by fire.

114. __________

Alaska-cedar, formerly thought to reach its southern limit here, is now known to be fairly common on Mount Jefferson and Whiskey Peak (Josephine County) 3 miles from the California border. On Mount Hood, Alaska-cedar is found on moist slopes on the south and west sides up to 4,000 feet.

115. Gorman, Martin W.

Within the region described, Alaska-cedar is found only in moist ravines or canyons that head in or about the main divide of the Cascade Range. Its altitudinal range is from 2,100 feet on the Stehekin to 6,000 feet about the headwaters of the Methow River and Rattlesnake Creek. Finest specimens range from 50 to 75 feet in height and 10 to 25 inches in diameter. At its upper limits the tree is stunted, with an alpine appearance.

116. __________

The author collected a specimen of Alaska-cedar from Whiskey Peak, Josephine County, Oregon, 3 miles from the California border.

117. Grant, John A., and Grant, Carol L.

118. Greaves, C., and Schwartz, H.
Analysis of wood is tabulated (mean values obtained in percentage of ovendry wood).

119. Green, George Rex.

A concise description of Alaska-cedar, including silvics, morphology, and uses.

120. Greguss, Pál.

Provides anatomical key and illustration of Alaska-cedar.

121. Greig, E. J.

Alaska-cedar is a component of the Hudsonian zone near timberline at 5,000 feet and one of the dominant trees where the transition zone merges into the Canadian zone at 4,000 feet.

122. Gripenberg, Jarl.

Reviews information on the constituents of Thuja plicata, Thujopsis dolabrata.

123. Guiguet, C. J.

On Goose Island, two plant associations are included in the general heading of coniferous forest; the typical coast climax association of western redcedar, western hemlock, and Sitka spruce, and an association which includes western redcedar, western hemlock in association with lodgepole pine, Alaska-cedar, and Pacific yew. The latter is a stunted forest forming an ecotone between spruce, hemlock, and muskeg associations, and also predominates in rocky areas. Floral composition is described by the Aldous method.

124. Hagem, Oscar.

125. Hale, J. D.

Contains a key to the identification of woods commonly used in Canada.

126. Halliday, W. E. D.

Alaska-cedar is a component of the coast forest region. Amabilis fir and Alaska-cedar occur generally, their ability to stand drier conditions being shown by their presence toward the upper limits of tree growth.

127. Hanan, A. M. S.

Describes trials of Cupressocyparis leylandii, which so far has proved to be a vigorous, reasonably hardy tree.

128. Hansen, Carl.

"Mr. Menzies was the first discoverer of this species. He obtained specimens from Nootka Sound, when Vancouver (with whom he sailed as surgeon and naturalist) stopped there in his celebrated voyage round the world; and from his specimens Lambert described it in his "Genus Pinus." It was introduced from the Botanic Garden of St. Petersburg into Europe, under the name of Thuyopsis borealis, about 1850, and is now plentifully distributed. Mr. R. Brown, who collected for the Edinburg "British Columbia Botanical Association" in one of his letters ... says "Next morning looking about our neighborhood, we re-entered our canoe, hollowed out of Cupressus nutkaensis, the mats we sat upon being made of the fibre of the same tree, ropes of the same material, and occasionally of Thuya plicata." Notes on habits and habitat are given. The tree was introduced in Denmark in 1870.

129. Hansen, Henry P.

130. Hanzlik, E. J.

Alaska-cedar is a component of sites IV and V. Generally these sites are from 2,500 feet to 4,500 feet in northern Washington and from 3,500 to 4,000 feet in Oregon. Site IV associates are western hemlock, Pacific silver fir, noble fir, and mountain hemlock. Site V associates are Pacific silver fir, mountain hemlock, and subalpine fir.

132. Hard, J. S.

133. Harlow, William M., and Harrar, Elwood S.

134. Harrar, E. S.

Briefly describes the discovery, uses, habits, and morphology of the tree, diagnostic features of the wood, and its microscopic anatomical features. Physical and mechanical properties are tabulated.

135. Harris, A. S.

A report for Alaska-cedar indicated a "medium" crop of both 1- and 2-year cones near Petersburg (Alaska). The only report from the Sitka District showed a crop failure.

136. Hazard, John W.

Forest statistics for Chelan and Douglas Counties are given as of 1959-60. On commercial forest land, the volume of Alaska-cedar growing stock 5.0 inches d.b.h. and larger was 3 million cubic feet. Volume of Alaska-cedar sawtimber 11.0 inches d.b.h. and larger was 10 million board feet (Scribner).

137.

Forest statistics for southwest Washington, which includes Clark, Cowlitz, Lewis, Pacific, Skamania, and Wahkiakum counties, are given as of January 1, 1964. On commercial forest land, the volume of Alaska-cedar growing stock 5.0 inches d.b.h. and larger was 24 million cubic feet. Volume of Alaska-cedar sawtimber 11.0 inches d.b.h. and larger was 120 million board feet (Scribner).
138. and Metcalf, Melvin E.

Forest statistics for west-central Oregon, which includes Benton, Lane, Lincoln, and Linn Counties, are given as of 1963. On commercial forest land, the volume of Alaska-cedar growing stock 5.0 inches d.b.h. and larger was 3 million cubic feet. Volume of Alaska-cedar sawtimber 11.0 inches d.b.h. and larger was 7 million board feet (Scribner).

139. Hegnauer, R.

140. Henry, J. K.
1915. Flora of southern British Columbia and Vancouver Island: with many references to Alaska and northern species. 363 pp. Toronto: W. J. Gage & Co., Ltd.

141. Heusser, C. J.

Describes the distribution, habitat, and plant associates of Alaska-cedar throughout its range.

142. Heusser, Calvin J.

143.

144. Hibberson, R. W.

A brief description of Alaska-cedar in British Columbia.

Characterizes the terrestrial plant communities of typical climax stands. Above the Abies amabilis-Tsuga mertensiana forest, T. mertensiana and C. nootkatensis assume dominance, generally at elevations between 4,000 to 5,000 feet. The plant community is described.
146. Hiorth, G.

147. Hoffman, B. E.
Uses and characteristics of Alaska-cedar.

148. Holubcik, M.
1960. Prispevok kotazke pestovania cudokrajnych drevin v nasich porastoch. (Raising exotics in Czechoslovak stands) Lesn. Cas. 6(1): 64-75 (In Slovak.)

Discusses briefly experience with and possibilities for 14 conifers including Chamaecyparis nootkatensis and a few broad-leaved species.

149. Howell, Thomas.

150. Hulten, E.
1937. Outline of the history of arctic and boreal biota during the Quaternary period; their evolution during and after the Glacial period as indicated by the equiformal progressive areas of present plant species. 168 pp. plus 43 plates. Stockholm: Bokforlags Aktiebolaget Thule.

151.

152. Huntington, LeRoy W.

Describes forest conditions in Alaska. Minimum stumpage rate for Alaska-cedar on the Tongass Forest is $1.50 per thousand board feet. A few Alaska-cedar logs have been shipped to Japan but receipts did not justify continuing export.

As of 1955, the inventory of mature Alaska-cedar in mature stands was 1,560,123 cubic feet. Annual cut of Alaska-cedar for all timber products was 3,336 cubic feet.

154. Hutchison, O. Keith.
In Alaska the volume of Alaska-cedar and western redcedar is about 4 billion board feet each. There is no active market for either species today. A photo of a tree 4 feet in diameter is shown on page 46.

Describes the occurrence of a chance hybrid between yellow cedar and Monterey cypress. Authors propose to name it Cupressus leylandii.

Chamae- (Greek) in botany sometimes signifies false.

Cyparis- (Greek) Kyparissos means cypress. Hence, the generic name Chamaecyparis, or false cypress.

Approved common name is nootka falsecypress. The following clons are recognized: blue (glauca), compact (compacta), Sanders (sanderi), silver (argentaeo-variegata), weeping (pendula), and yellow leaf (lutea).

On both Woronkofski and Coronation Islands, Alaska, Alaska-cedar is often present as a subordinant tree in the overmature stands; but in blow-down areas and muskeg edges on Coronation Island and in an old burn on Woronkofski Island, it is frequently a dominant species or codominant with hemlock and spruce. In open scrub forests on poorly drained sites, lodgepole pine is usually the dominant tree form although it is frequently replaced by Alaska-cedar on Coronation Island. Trees are dwarfed, commonly not over 20-30 feet in height, and widely spaced.

Coniferous trees growing in the Pacific Northwest are listed by lower and subalpine altitudes according to their increasing shade tolerance. In subalpine altitudes, _Chamaecyparis nootkatensis_, along with _Tsuga mertensiana_ and _Abies amabilis_, are listed in seventh and last place, being most shade tolerant. British Columbia is divided into seven biogeoclimatic regions (formations) and several zones. Alaska-cedar is one of the plant indicator species present in the Pacific coastal subalpine forest region in the mountain hemlock zone.

173. Krause, A.
1956. The Tlingit Indians: Results of a trip to the northwest coast of America and Bering Straits. (Trans. by E. Gunther) 272 pp., illus. Seattle: Univ. Wash. Press. (Originally published as, Die Tlinkit-Indianer, Jena, 1885.)

Alaska-cedar, found singly near Sitka, has a splendid wood for carving. The strong, aromatic odor is supposed to be protection against moths and other harmful insects. For this quality, it was highly prized in China where it was formerly imported and made into trunks under the name of camphor wood by the Chinese. The ship worm, the teredo, is supposed to not touch cedar. Uses of the tree by the Tlingit Indians are also described.

Notes on 16 forms of Thuja and 18 species and forms of Chamaecyparis.

175. Kurth, E. F.

Four species of western hardwoods and four species of western softwoods, including Chamaecyparis nootkatensis, were analyzed for ether, alcohol, water extractives, holocellulose, lignin, methoxyl group, acetyl group, and ash content.

Forest conditions in the Cascade Range Forest Reserve are described by township. Alaska-cedar was found in 14 townships within the reserve, but only in two were the trees large and numerous enough to be included in timber estimates. Mature trees are 1.5 feet in diameter and 45 feet high, with 12 feet of clear trunk.

177. Liddicoet, A. R., and Righter, F. I.

178. Little, Elbert L., Jr.

180. Lucas, Colin Cameron.
1926. The essential oil content of the *Chamaecyparis nootkatensis*.

181. Lyons, C. P.
1956. Trees, shrubs and flowers to know in Washington. 211 pp., illus.
Toronto, Vancouver: J. M. Dent & Sons, Ltd.

182. MacDonald, J.
1952. The place of northwestern American conifers in British forestry.

Alaska-cedar has not been planted extensively as a forest tree in
Britain, because its growth is slow and it often forks very badly. However,
it hybridizes with *Cupressus macrocarpa*, to produce *Cupressocyparis
leylandii*. This hybrid is apparently more frost resistant than either of
its parents and shows remarkable vigor.

183. MacDonald, James, Wood, R. F., Edwards, M. V., and Aldhous, J. R.
30, 167 pp., illus.

The Nootka cypress, discovered by Archibald Menzies in 1793 and
introduced into Great Britain in 1853, has been planted as a specimen tree
and ornamental in most parts of Britain and has succeeded. A number of
examples are given. The tree does not seem to be greatly affected by late
spring frosts and is able to withstand exposure. However, it is slow
growing and is damaged by deer. The seeds require stratification for up
to a year before sowing.

[n. d.] Characteristics and uses of yellow cedar. 9 pp. plus tables.
Vancouver, Brit. Columbia

185. Markwardt, L. J.
1930. Comparative strength properties of woods grown in the United

Tables include data on specific gravity, shrinkage, and composite
strength values of many hardwoods and softwoods, including Alaska-cedar.

186.
1930. Aircraft woods: their properties, selection, and characteristics.

Strength of various woods for aircraft design is given, and factors
affecting these values are discussed. Alaska-cedar may be considered with
red, white, and Sitka spruce for use in highly stressed parts, such as
wing beams.

187.
1931. The distribution and the mechanical properties of Alaska woods.
Gives information of the range, distribution, supply, properties, and uses of Alaska-cedar, and a general description of the tree. The total stand is estimated to be about 10 billion board feet, with about 2.5 billion board feet in Alaska.

188. __________

Describes the important characteristics of many woods for aircraft construction, including Alaska-cedar. Alaska-cedar is not likely to be considered for use in aircraft because of its limited supply. It may serve as a species supplementary to spruce in some applications, the result being somewhat greater strength at the expense of increased weight.

189. __________ and Wilson, T. R. C.

Lists mechanical properties of Alaska-cedar.

190. Mason, Herbert L.

Alaska-cedar was collected in 1939 on the northeast slope of Mount Emily in northwestern Siskiyou County, and was reported seen on Little Grayback, farther to the west. Both localities are a little over 2 miles from the Oregon border. Specimens of the Mount Emily material are deposited in the herbarium at Rancho Santa Ana Botanic Garden, Anaheim, California. Trees associated with Alaska-cedar were Abies shastensis, Picea breweriana, Pinus monticola, Libocedrus decurrens, and Taxus brevifolia.

191. Mayr, Heinrich.

1890. Die Waldungen von Nordamerika ihre Holzarten, deren Anbaufähigkeit und forstlicher Werth für Europa im Allgemeinen und Deutschland insbesonder. (The forests of North America, their tree species, their cultivation possibilities, and general forest values for Europe.) 448 pp., illus. Munchen: University Buchhandlung. (In German.)

192. McAvoy, Blanche.

Alaska-cedar was found at only one location in the region (on a mountain along the north border at the west end of the valley).

193. McElhanney, T. A.

194. McGugan, B. M.

196. Mertie, J. B.

Alaska-cedar averaging 3 feet in diameter is reported growing on benches.

197. Metcalf, Melvin E., and Hazard, John W.

Forest statistics are given for the following counties: Clackamas, Clatsop, Columbia, Hood River, Marion, Multnomah, Polk, Tillamook, Washington, and Yamhill. On commercial forest land, the volume of Alaska-cedar growing stock 5.0 inches d.b.h. and larger was 5 million cubic feet. Volume of Alaska-cedar sawtimber 11.0 inches d.b.h. and larger was 10 million board feet (Scribner).

198. Molnar, A. C., Harris, J. W. E., and Ross, D. A.

199. Morton, B. R., and Lewis, R. G.

Gives range and description of Alaska-cedar in Canada.

200. Muenscher, W. C.

A catalog of plant collections made by the author. Lists seven locations where specimens of Alaska-cedar were collected. In Whatcom County, Alaska-cedar is locally common in cool, moist mountain valleys, sometimes forming clumps of trees in alpine meadows.

201. Muir, John.

202. Mulholland, F. D.
Total merchantable timber and accessible merchantable timber by forest district is given. Alaska-cedar volume is shown in the Vancouver and Prince Rupert district. Total merchantable volume is 3,019,200,000 board feet, of which 1,398,300,000 board feet is accessible.

203. Munday, Don.

A general discourse on Alaska-cedar, its appearance, habitat, growth rate, stature, and longevity. The largest trees seen by the writer were 19-1/2 and 20-1/2 feet in circumference and were estimated to be at least 3,500 years old.

204. Munns, E. N.

Contains a range map of Alaska-cedar on page 60.

A new C₁₅-tropolone, C₁₅H₁₈O₃, has been isolated from the heartwood of Chamaecyparis nootkatensis, for which the name chanootin is proposed.

Describes the absolute configuration of three chemical substances found in the heartwood of Alaska-cedar.

208. Orloci, Laszlo.

Author presents an ecosystem classification of the forest stands of the coastal western hemlock zone. Alaska-cedar is shown to be an inhabitant of the dry edaphic and mesic zonal forest types of the wet and cool subzone. Alaska-cedar is included in a number of forest types.

Alaska-cedar is tabulated with its plant associates in the Gaultherieto-Tsugetum heterophyllae association under two ecosystem types; Orthic Vaccinium-Gaultheria type, and Lithosolic Vaccinium-Gaultheria type. Characteristic landform, slope, altitude, and soil characteristics of the habitats are tabulated. Associated tree species on both types are: Tsuga heterophylla, Thuja plicata, Pseudotsuga menziesii, and Pinus monticola.

Describes natural hybrid between Cupressus macrocarpa and Chamaecyparis nootkatensis. In the great frost of January 1940 it proved much hardier than C. macrocarpa. It is easy to propagate from cuttings, and has been raised from seed.

Major vegetative types of southeastern Alaska. U.S. Fish & Wildlife Serv., 16 pp. (Mimeogr.)

Choose the right wood. Properties and uses of some minor western softwoods. Hitchcock's Woodworking Dig. 63(10): 26-27.

Tabulates and briefly discusses the sources, supply, physical and mechanical properties, and uses, of Alaska-cedar and several other western conifers.

The western cedars, including Alaska-cedar, commonly have highly durable heartwood. Alaska-cedar has a specific gravity of 0.42, higher than other cedars, with growth rates generally 10 and mostly around 20 rings per inch. This slow growth is desirable for certain specialty uses which require uniform structure.

After treatment, Alaska-cedar wood was found to be suitable for use as battery separators. Tests and treatments are described.

218. Peattie, Donald Culross.

219. Peavey, George W.

Alaska-cedar is described and mentioned briefly under minor species. The tree occurs between 2,500- and 7,000-foot elevation in Oregon.

221. Penhallow, D. P.

222. Penhallow, David Pearce.

223. Perry, R. S.

The natural range of the species is the Pacific coast of North America from southern Alaska to northern Oregon. The total estimated stand is about 6 billion board feet, half of which is found on the western side of the coast mountains in British Columbia. It usually grows in mixtures with Sitka spruce, western hemlock, fir, or western redcedar. It averages 85 feet in height and 3 feet in diameter. It is a slow-growing species and is susceptible to heart rot, which makes it difficult to obtain large amounts of high-grade lumber. The wood is clear, yellow in color, straight grained, light in weight, of average strength and toughness, has a low shrinkage factor, and is of high durability. Many of its uses are listed. The strength properties of this and other western commercial species are tabulated.

A comprehensive discussion of Alaska-cedar, with emphasis on the tree in British Columbia. Nomenclature, locality, supply, silvical characteristics, wood characteristics, seasoning, workability, finishing, durability, marketing, and uses are discussed, and strength properties tabulated.

225. **Phillips, E. W. J.**

226. **Piper, Charles V.**

227. **and Beattie, R. Kent.**

1915. Flora of the northwest coast, including the area west of the summit of the Cascade Mountains from the 49th parallel south to the Calapooya Mountains on the south border of Lane County, Oregon. 418 pp. Lancaster, Pa.: New Era Printing Co.

228. **Platt, Rutherford.**

229. **Plummer, Fred G.**

230. **Pomeroy, Kenneth B., and Dixon, Dorothy.**

1966. These are the champs. Amer. Forests 72(5): 14-35.

The largest reported Alaska-cedar tree in the United States is located in Mount Rainier National Park, Washington. It is 25 feet 6 inches in circumference, 134 feet high, and has a 25-foot spread.

231. **Prentice, R. M.**

232. **Preston, Richard J., Jr.**

Gives the general description, range, and silvical characteristics, of Alaska-cedar.
233. Querengasser, F.

234. Randall, Warren R.

235. Rayner, R. W.

Lists the following disease of Alaska-cedar in the U.S.A.:

236. Record, Samuel J.

Wood identification with key.

237.

238. and Hess, Robert W.

239. Rehder, A.

240. Rehder, Alfred.

Gives 31 references to the sources of botanical names, valid names, and synonyms.

241. Rennerfelt, Erik, and Nacht, Gertrud.
Nootkatin, a heartwood substance from Alaska-cedar, was found to inhibit fungus growth at 0.001- to 0.002-percent concentrations. Chamic acid from Alaska-cedar heartwood inhibited fungi at 0.01-0.02 percent.

242. Resch, Helmut, and Ecklund, Barton A.

The high volatile-oil content of Port-Orford-cedar and Alaska-cedar affected moisture determination by the oven method. Correction factors for electrical resistance meters were based on moisture determinations by the Karl Fischer method, which were consistently lower.

243. ________ and Ecklund, Barton A.

244. Robinson, Robena Claire.

245. Rowe, J. S.

246. Rudnicki, J. M.

248. ________ and Warren, Fred A.

249. Sargent, C. S.
1885. The woods of the United States. With an account of their structure, qualities, and uses. With geographical and other notes upon the trees which produce them. 203 pp., illus. New York: D. Appleton & Co.

250. Sargent Charles S.

Gives a brief description of the tree and its occurrence in the United States, with information on wood properties.
251. Sargent, Charles Sprague.
(Reprinted 1961. 2 vol. New York: Dover Publ., Inc.)

252. Scheffer, T. C., and Eslyn, W. E.

Wet-heating schedules lowered decay resistance of some species tested, including Alaska-cedar. No decrease in resistance occurred at 180° F. for 48 hours, but decay resistance was lowered after heating for 1 hour at 300° F.

253. Schmidt, R. L.

Adventitious rooting of yellow cedar was noted on Vancouver Island.

254.

Describes a study in Elk Valley, Vancouver Island, on two aspects between 1,000 and 4,600 feet. Length of the frost-free season decreased at the rate of 2.8 days per 500 feet of elevation within the altitudinal range of Douglas-fir, western hemlock, and western redcedar, but above this level the frost-free season decreased 36 days in 500 feet. Alaska-cedar, subalpine fir, Pacific silver fir, and mountain hemlock were not affected by the temperature boundary. Alaska-cedar occurs from 1,000- to 5,000-foot elevation at the study site.

255. Scott, David R. M.

256. Shaw, C. G., and Harris, M. R.

257. Shaw, Charles Gardner.

258. Sheldon, E. P.
1904. The forest wealth of Oregon. 32 pp., illus. Lewis & Clark Exposition Comm., Portland.

259. Sigafoos, Robert S.

-35-

Describes many species, including Alaska-cedar, grown in several aboreta in the U.S.

Constants a and b for 24 tree species are given for the combined variable formula in which tree volume (V) is estimated in terms of d.b.h. squared (D^2) and total height (H).

$$V = a + b \frac{D^2H}{100}$$

The same constants are used for Alaska-cedar and western redcedar, a set being tabulated separately for coast immature, coast mature, and interior trees, by diameter classes of 0 to 26 inches and 27 inches and above. Standard errors for very tall and very short trees are also tabulated.

The timber types containing Alaska-cedar have been slightly modified in the 1964 edition.

A description of the composition, nature, and occurrence of the following numbered timber types in which Alaska-cedar occurs in mixture with other tree species: high elevations (in the mountains), mountain hemlock-subalpine fir (205); middle elevations (interior), western hemlock (224), Pacific silver fir-hemlock (226), western redcedar-western hemlock (227), western redcedar (228).

Cyphostethus tristriatus (F.), a green and brown bug, formerly thought to be virtually monophagous on *Juniperus communis* L., was found to feed and breed on *Chamaecyparis nootkatensis* planted in Ascot, Berkshire.

Volume of Alaska-cedar growing stock in Pierce County, Washington, in 1959 was reported to be 16 million board feet (International 1/4-inch rule). Volume of sawtimber on commercial forest land was 15 million board feet (Scribner). Area of commercial forest land occupied by Alaska-cedar type was 1,000 acres, all of which was in public ownership.

Examines in detail, by dynamic physical methods, the capillary structure of six western conifers, including Alaska-cedar.

Lists the following common names in use: yellow cedar, Sitka cypress, yellow cypress, Nootka cypress, Nootka Sound cypress, Alaska ground cypress, Alaska cypress. Fourteen varieties are distinguished in cultivation: *viridifolia* Sudw., *cinerascens* Sudw., *cinerascens genuina* Sudw.,

-37-

Gives log specifications used in bucking.

Briefly describes Alaska-cedar wood.

One pound of cleaned seed contains from 66,000 to 180,000 seeds, with an average of 108,000. Germination is characteristically low with germinative capacity ranging from 0 to 2 percent and potential germination from 22 to 57 percent. Stratification for 60-90 days at 410 F. is recommended to break embryo dormancy. The seed is fragile.

Contains basic information on wood as a material of construction with data for its use in design and specification.

Presents a series of standard terms for describing properties of various species of wood, including Alaska-cedar, as developed by the Forest Products Laboratory.

A general discussion of mechanical properties, pulp and papermaking characteristics, seasoning data, and preservative treatment of various Alaska woods, including Alaska-cedar. Includes summary tables on strength properties, pulp processes and yields, and drying schedules.

The directory lists four sources of Alaska-cedar seed and one source of planting stock.

288. Van Dersal, William R.

Free water is necessary for paint blistering and water vapor alone does not cause it. Susceptibility to paint blistering decreased by species in this order: Thuja plicata, Pseudotsuga taxifolia, Chamaecyparis nootkatensis, Pinus strobus, Juniperus virginiana, Pinus resinosa, and Picea spp.

290. Verrall, Arthur F.

291. Wade, Leslie Keith.

A report on the vegetation of a marine terrace adjacent to the coastal beaches of Wickannish Bay, near Tofino, Vancouver Island. Ten tentative plant community types are described, two of which contain Alaska-cedar: *Pinus contorta-Chamaecyparis nootkatensis*—a community restricted to bog periphery and incorporating both bog and forest elements in its composition—and Bog Forest—a forest of characteristically dwarfed conifers surrounding the bog area. The latter is extensive and probably represents the final stage in succession from the bog. The dwarfed and peculiarly shaped condition of the trees is due to poor drainage and scarcity of nutrients. Principal trees are *Pinus contorta*, *Thuja plicata*, *C. nootkatensis*, *Tsuga heterophylla*, and *Taxus brevifolia*.

292. West, W. I.

Purpose of the report was to make the collection's existence known. Lists seven specimens of Alaska-cedar.

293. Whitford, H. N., and Craig, Ronald D.

In the vicinity of the Strait of Georgia, Alaska-cedar is seldom found below 2,000 feet and extends up to 5,000 feet. Northward, it gradually descends to tidewater at Knight Inlet. Clear yellow cypress is perhaps the highest priced lumber produced in the province, as high as $100 per thousand board feet having been paid for it by local boatbuilders. There is an estimated 4,056,000,000 board feet of standing timber in the province.

294. Whittaker, R. H.

The range of Alaska-cedar in the Klamath region suggests that it is a relict from glacial time. It is confined to three isolated patches in the extreme southern end of its range, two of these reported by Mason (1941) and one found by the author on Preston Peak.

295. Winkenwerder, Hugo.

296. Witt, J. A.

Cupressocyparis leylandii has been planted in the University of Washington arboretum and has made good growth. It promises to be one of the best evergreen screening and hedge plants for the area.

297. Wolf, Carl B.
The author quotes in its entirety an article describing hybridization between \textit{Cupressus macrocarpa} and \textit{Chamaecyparis nootkatensis} (Jackson, A. B., and Dallimore, W., 1926. A new hybrid conifer. Bull. Misc. Inf. Kew. 3, 113-114). The author states that he had not seen either living or pressed specimens of the resulting hybrid (\textit{Cupressocyparis leylandii}), but that the evidence presented by Jackson and Dallimore for its origin is convincing, and he concedes that they are probably correct in their conclusion.

298. Wood, R. F.

There appears to be no generalized climatic limit in Great Britain for \textit{Chamaecyparis nootkatensis}. The species has low requirements and is worthy of trial at high elevations.

299. Wyman, Donald.

The species does not have a wide distribution in the United States because it requires a moist climate. It is not used much on the Pacific coast, but is considered one of the finest trees where it can be grown.

Heartwood of 14 species of Cupressaceae were examined by paper partition chromatography for the tropolones present, and the results are discussed.

301. Zehetmayr, J. W. L.

In tests on \textit{Scirpus-Calluna-Molina}, Alaska-cedar has grown slowly, even when fertilized with phosphate, with heights of 3 feet at 12 years after planting. Unfertilized controls reached 2 feet in height. On poorer soil, Alaska-cedar reached 3 to 4 feet 16 years after planting. Smaller plants were damaged by frost in the spring of 1947.
SUBJECT INDEX

Arboreta .. 174, 177, 260, 296
Branching habit .. 22, 71
Cambial growth ... 28, 29, 30, 31, 33, 34, 35
Chemical constituents ... 16, 58, 61, 83, 84, 96, 97, 98, 99, 100, 118, 122, 139, 175, 180, 206, 207, 241, 300
Cotyledons .. 106
Dendrology (see identification)
Description (tree) .. 2, 6, 10, 11, 20, 44, 46, 51, 53, 74, 101, 105, 111, 119, 130, 134, 144, 147, 181, 193, 199, 201, 203, 204, 218, 223, 226, 227, 234, 238, 250, 272, 275, 293
Discovery .. 128, 134, 183
Diseases ... 10, 86, 235, 241, 244, 256, 257, 269, 290
Durability ... 15, 63, 173, 223, 224, 241, 252
Epiphytes .. 64
Exotic planting
Britain .. 5, 26, 62, 74, 85, 87, 90, 182, 183, 266, 272, 282, 298, 301
Czechoslovakia ... 148, 174
Denmark .. 128
Norway .. 37, 110, 124, 146
Extractives .. 39, 96, 97, 98, 99, 100, 122, 175, 206, 207, 241, 300
Flowering .. 71, 89, 119
Form ... 45, 261

-42-
Fusiform initials 28, 30, 31, 34, 35
Grading rules 2, 9
Growth rate 203, 216, 301
Habitat 6, 7, 10, 15, 38, 40, 53, 54, 91, 105, 112, 114, 115, 123, 141, 164, 170, 200, 208, 210, 211, 245, 248, 275, 278, 291
Historical 13, 26, 27, 128, 173, 183
Horticulture 1, 17, 65, 85, 296, 299
Hybrids 36, 90, 105, 127, 156, 182, 212, 296, 297
Insects 73, 81, 82, 132, 194, 198, 231, 266
Layering 15
Leaf oil 39, 180
Logging 279
Longevity (age) 119, 203, 275
Marketing 152, 153, 154, 184, 224, 293
Morphology 22, 23, 71
Nomenclature 2, 26, 40, 49, 76, 119, 157, 158, 162, 179, 224, 240, 250, 273, 274, 276
Occurrence
 Alaska 10, 69, 105, 112, 141, 196, 201
 British Columbia 60, 121, 123, 129, 141, 144, 192, 213, 245, 254, 291, 293
 California 114, 190, 294
 Oregon 7, 25, 38, 40, 52, 68, 114, 141, 176, 219, 294
 Washington 6, 15, 38, 51, 52, 53, 54, 64, 79, 95, 102, 113, 115, 141, 145, 200, 229, 247, 248, 278, 281
Ornamental planting (see Horticulture)
Physiology 28, 29, 30
Plant associates

Plant geography

Planting stock

Pollen

Provenance trials

Resources (see Supply)

Range (see also Occurrence)

Roots

Seed

dealers

dormancy

germination

weight

production

Seedling identification

Selective breeding

Silvical characteristics

Site

Soil

Species trials

Spiral grain

Stature (size)

Succession

Supply

Taxonomy
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>24, 141, 170, 275</td>
</tr>
<tr>
<td>Uses</td>
<td>2, 3, 10, 11, 13, 27, 39, 43, 56, 63, 74, 94, 105, 119, 128, 131, 134, 144, 147, 173, 184, 186, 187, 188, 193, 201, 215, 217, 218, 223, 224, 249, 284</td>
</tr>
<tr>
<td>Value (see Marketing)</td>
<td></td>
</tr>
<tr>
<td>Varieties</td>
<td>10, 20, 74, 105, 111, 162, 240, 274</td>
</tr>
<tr>
<td>Vegetative reproduction</td>
<td>15, 80, 253</td>
</tr>
<tr>
<td>Volume tables</td>
<td>57, 261, 262</td>
</tr>
<tr>
<td>Wood anatomy</td>
<td>120</td>
</tr>
<tr>
<td>Wood chemistry</td>
<td>16, 61, 83, 84, 96, 97, 98, 99, 100, 118, 122, 175, 206, 300</td>
</tr>
<tr>
<td>Wood finishing</td>
<td>224, 289</td>
</tr>
<tr>
<td>Wood identification</td>
<td>55, 56, 104, 120, 125, 134, 165, 225, 234, 236, 237, 280</td>
</tr>
<tr>
<td>Wood moisture</td>
<td>242, 243</td>
</tr>
<tr>
<td>Wood properties</td>
<td>2, 3, 14, 42, 43, 44, 49, 55, 63, 87, 94, 103, 131, 134, 155, 163, 173, 184, 185, 186, 187, 188, 189, 205, 215, 216, 217, 223, 224, 246, 249, 250, 270, 280, 284, 285, 286, 289</td>
</tr>
<tr>
<td>Wood seasoning</td>
<td>14, 224, 242, 243, 252, 286</td>
</tr>
<tr>
<td>Wood structure</td>
<td>29, 31, 32, 33, 55, 56, 125, 221, 222, 225, 270</td>
</tr>
<tr>
<td>Wood weight</td>
<td>155</td>
</tr>
<tr>
<td>Tree Species</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Alaska-cedar</td>
<td>Chamaecyparis nootkatensis (D. Don) Spach</td>
</tr>
<tr>
<td>Atlantic white-cedar</td>
<td>Chamaecyparis thyoides (L.) B. S. P.</td>
</tr>
<tr>
<td>Baldcypress</td>
<td>Taxodium distichum (L.) Rich.</td>
</tr>
<tr>
<td>Brewer's spruce</td>
<td>Picea breweriana S. Wats.</td>
</tr>
<tr>
<td>California red fir</td>
<td>Abies magnifica A. Murr.</td>
</tr>
<tr>
<td>Common juniper</td>
<td>Juniperus communis L.</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>Pseudotsuga menziesii (Mirb.) Franco</td>
</tr>
<tr>
<td>Eastern redcedar</td>
<td>Juniperus virginiana L.</td>
</tr>
<tr>
<td>Eastern white pine</td>
<td>Pinus strobus L.</td>
</tr>
<tr>
<td>Englemann spruce</td>
<td>Picea engelmannii Parry</td>
</tr>
<tr>
<td>Grand fir</td>
<td>Abies grandis (Dougl.) Lindl.</td>
</tr>
<tr>
<td>Hiba Arbor-vitae</td>
<td>Thujopsis dolabrata (Lif.) Sieb. & Zucc.</td>
</tr>
<tr>
<td>Hinoki cypress</td>
<td>Chamaecyparis obtusa (Sieb. & Zucc.)</td>
</tr>
<tr>
<td>Incense-cedar</td>
<td>Libocedrus decurrens Torr.</td>
</tr>
<tr>
<td>Leyland cypress</td>
<td>Cupressocyparis leylandii</td>
</tr>
<tr>
<td>Lodgepole pine</td>
<td>Pinus contorta Dougl.</td>
</tr>
<tr>
<td>Monterey cypress</td>
<td>Cupressus macrocarpa Hartw.</td>
</tr>
<tr>
<td>Mountain hemlock</td>
<td>Tsuga mertensiana (Bong.) Carr.</td>
</tr>
<tr>
<td>Noble fir</td>
<td>Abies procera Rehd.</td>
</tr>
<tr>
<td>Northern white-cedar</td>
<td>Thuja occidentalis L.</td>
</tr>
<tr>
<td>Pacific silver fir</td>
<td>Abies amabilis (Dougl.) Forbes</td>
</tr>
<tr>
<td>Pacific yew</td>
<td>Taxus brevifolia Nutt.</td>
</tr>
<tr>
<td>Para angelwood</td>
<td>Dicorynia paraensis</td>
</tr>
<tr>
<td>Port-Orford-cedar</td>
<td>Chamaecyparis Lawsoniana (A. Murr.) Parl.</td>
</tr>
<tr>
<td>Red pine</td>
<td>Pinus resinosa Ait.</td>
</tr>
<tr>
<td>Redwood</td>
<td>Sequoia sempervirens (D. Don) Endl.</td>
</tr>
<tr>
<td>Tree Type</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Shasta red fir</td>
<td>Abies magnifica var. shastensis Lemm.</td>
</tr>
<tr>
<td>Sitka spruce</td>
<td>Picea sitchensis (Bong.) Carr.</td>
</tr>
<tr>
<td>Subalpine fir</td>
<td>Abies lasiocarpa (Hook.) Nutt.</td>
</tr>
<tr>
<td>Western hemlock</td>
<td>Tsuga heterophylla (Raf.) Sarg.</td>
</tr>
<tr>
<td>Western larch</td>
<td>Larix occidentalis Nutt.</td>
</tr>
<tr>
<td>Western redcedar</td>
<td>Thuja plicata Donn</td>
</tr>
<tr>
<td>Western white pine</td>
<td>Pinus monticola Doug.</td>
</tr>
<tr>
<td>Whitebark pine</td>
<td>Pinus albicaulis Engelm.</td>
</tr>
<tr>
<td>White oak</td>
<td>Quercus alba L.</td>
</tr>
</tbody>
</table>
Harris, A. S.
Pacific Northwest Forest & Range Exp. Sta.,
Portland, Oregon.

This bibliography contains references to North American and European literature containing information about Alaska-cedar (*Chamaecyparis nootkatensis* (D. Don) Spach).

Abstracts are given for many of those references considered more significant, and a subject matter index is included.
Headquarters for the PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION is in Portland, Oregon. The Station's mission is to provide the scientific knowledge, technology, and alternatives for management, use, and protection of forest, range, and related environments for present and future generations. The area of research encompasses Alaska, Washington, and Oregon, with some projects including California, Hawaii, the Western States, or the Nation. Project headquarters are at:

- College, Alaska
- Juneau, Alaska
- Bend, Oregon
- Corvallis, Oregon
- La Grande, Oregon
- Portland, Oregon
- Roseburg, Oregon
- Olympia, Washington
- Seattle, Washington
- Wenatchee, Washington
The FOREST SERVICE of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives — as directed by Congress — to provide increasingly greater service to a growing Nation.